Piedmont Bottomland Forest (Typic Low Subtype)

Total Page:16

File Type:pdf, Size:1020Kb

Piedmont Bottomland Forest (Typic Low Subtype) PIEDMONT BOTTOMLAND FOREST (TYPIC LOW SUBTYPE) Concept: Piedmont Bottomland Forests are communities of the higher parts of large Piedmont floodplains, away from the river and naturally dominated by a mix of bottomland oaks, hickories, Liriodendron tulipifera, and Liquidambar styraciflua, rather than the characteristic Piedmont Levee Forest species. The Typic Low Subtype covers most examples on lower terraces, ridges, and flat floodplains, without an appreciable component of upland species, and lacking the distinctive composition of the Northern Low Subtype. Quercus lyrata may be present but is not dominant as it may be in Piedmont Swamp Forest. Distinguishing Features: Piedmont Bottomland Forests are distinguished from Piedmont Levee Forests by lack or scarcity of the characteristic levee species. They are distinguished from Piedmont Swamp Forest by shorter flooding duration and by vegetation reflecting the drier conditions. In the most intact examples, oaks are characteristic, along with Liriodendron tulipifera, Liquidambar styraciflua, and Acer rubrum. The Typic Low Subtype is distinguished from the Northern Low Subtype by the absence or near absence of Quercus palustris. It is distinguished from the High Subtype by the predominance of bottomland species without an appreciable component of most upland species. Plants that Matthews (2011) found to be more common in this subtype and less common or absent in the High Subtype include Saururus cernuus, Carex lupulina, Carex tribuloides, Elymus virginicus, Glyceria striata, Juncus effusus, Persicaria virginiana, Ulmus americana, and Quercus lyrata. However, a few characteristically upland species still occurred with some frequency in this type, including Quercus alba and Carya ovata. A number of more mesophytic species are largely absent in this subtype. In examples cleared in the past, Liquidambar or Liriodendron may strongly dominate, so that distinguishing the subtypes is difficult. However, in more intact examples, at least some bottomland oaks will be present. Synonyms: Quercus pagoda – Quercus phellos – Quercus lyrata – Quercus michauxii / Chasmanthium latifolium Forest (CEGL007356). Ecological Systems: Southern Piedmont Large Floodplain Forest (CES202.324). Sites: Piedmont Bottomland Forests occur on floodplain ridges and on irregular or flat terraces well above the river. They usually are behind a natural levee or riparian zone with Piedmont Levee Forest but may sometimes extend to the river channel. The Typic Low Subtype is most extensive and well-developed in Triassic basin floodplains but may potentially occur on any large floodplain. Soils: Soils are coarse to fine-textured alluvial soils. Most are mapped as Chewacla (Fluvaquentic Dystrudept), less often as Riverview (Fluventic Dystrudept) or other alluvial soils. Hydrology: The Typic Low Subtype is intermittently flooded for short periods, but somewhat longer and more frequent than the High Subtype. Wetness may vary with microtopography and soil texture. Though parts may be well-drained when the river is not in flood, local low areas or areas with clayey soils may be poorly drained. Vegetation: The Typic Low Subtype is a forest consisting of a mix of bottomland and swamp species. In Matthews, et al. (2011), the most constant trees are Fraxinus pennsylvanica, Acer rubrum, Liquidambar styraciflua, Quercus phellos, and Ulmus americana, but Quercus michauxii, Quercus pagoda, Quercus lyrata, and Carya carolinae-septentrionalis are frequent and often dominant or codominant. Other trees that are fairly frequent, though not codominant, include Quercus nigra and Quercus alba. The understory is dominated by Carpinus caroliniana, with no other typical understory species frequent. The only highly constant shrub species is Ilex decidua. Viburnum prunifolium and Ligustrum sinense are fairly frequent, as is Rubus sp. Vines are a regular component. Bignonia capreolata, Parthenocissus quinquefolia, Smilax rotundifolia, Toxicodendron radicans, and Lonicera japonica are highly constant, and Thyrsanthella difforme and Vitis spp. are also fairly frequent. Herbs have relatively low cover. Boehmeria cylindrica, Arisaema triphyllum, Viola spp., and Microstegium vimineum are highly constant in plots. Other herb species that are at least fairly frequent include Asarum canadense, Polystichum acrostichoides, Carex spp. (intumescens, typhina, tribuloides, blanda, amphibola, caroliniana, debilis and others), Ranunculus abortivus, Saururus cernuus, Chasmanthium latifolium, Elymus virginicus, Festuca subverticillata, Galium tinctorium, Glyceria striata, Impatiens capensis, Juncus coriaceus, Persicaria virginiana, Poa cuspidata, Sanicula canadensis, Sceptridium biternatum/dissectum, Solidago spp., and Erechtites hieracifolia. Range and Abundance: Ranked G2? but perhaps G3. This subtype is scattered in the eastern and central Piedmont. The largest examples are in Triassic basins, but examples in other areas are equally abundant. Good examples appear more numerous than for the High Subtype, as might be expected for wetter, less easily farmed sites, but extensive remnants are still few. Associations and Patterns: The Typic Low Subtype occurs naturally as a large patch community, occurring either as large expanses or as part of a mosaic with large aggregate area, but it is now often reduced to small remnants. Few occurrences are large. It is usually associated with Piedmont Levee Forest, sometimes with Piedmont Swamp Forest or with the High Subtype, but sometimes occupies all or most of a floodplain’s width. It may contain embedded Floodplain Pools. On the edge of the floodplain, it will grade to various mesic or dry-mesic upland forests, most commonly Mesic Mixed Hardwood Forest. Variation: Variation within this subtype is not well known. Matthews, et al. (2011) had only a single finer grouping in their classification that appears to correspond to this subtype. Dynamics: As a community at intermediate elevation above the river, the Typic Low Subtype floods at higher frequency and duration than the High Subtype but lower than Piedmont Swamp Forest. Flood currents likely are slow when they reach this community, so that scouring and movement of litter and debris probably are minor, but deposition of nutrients in sediment probably is important for fertility. It is unclear how the altered hydrological regimes caused by land clearing in the watersheds has affected them. As this subtype is often locally the highest part of its floodplain, beaver ponds probably are relatively unlikely to flood much of it, but ponds may affect it near sloughs and tributary streams. Comments: As noted in the comments on the Piedmont and Mountain Floodplains theme, the classification of bottomland and swamp forest has been particularly confused, and for that reason the central concepts and circumscription of the 3rd Approximation communities have been changed more than others in the 4th Approximation. The distinction between the Typic Low Subtype and Piedmont Swamp Forest remains among the more uncertain. As a community dry enough to support a substantial presence of a number of oak species, it is recognized as a subtype of Piedmont Bottomland Forest in the 4th Approximation, with Piedmont Swamp Forest narrowed from its 3rd Approximation concept to include only communities wet enough to largely exclude most of the oak species. However, the analysis by Matthews, et al. (2011) did tie the equivalent community to their swamp and bottomlands group, where it seems to represent the bottomlands. They distinguished them from the higher oak-hickory flats, but it is not entirely clear why. The Typic Low Subtype does share a high abundance of the species most often dominant in swamps. However, it also contains a large number of species shared with the oak-hickory flats and absent in the swamps forests it is grouped with. Further investigation may be needed. The Matthews, et al. (2011) community that corresponds closely to this subtype is called Quercus (phellos, pagoda, michauxii) – Ulmus americana / Ilex decidua / Arisaema triphyllum. They noted that it generally occurred on wide, flat Triassic Basin floodplains. Quercus lyrata occurs in it, but only in wet inclusions. However, Natural Heritage Program records include a number of occurrences outside of Triassic basins that appear to represent this community. The reason for this discrepancy needs further investigation. Rare species: Vascular plants: Carex decomposita, Eurybia mirabilis, and Urtica chamaedryoides. Invertebrate animals: Gomphus abbreviatus. References: Matthews, E.M., R.K. Peet and A.S. Weakley. 2011. Classification and description of alluvial plant communities of the Piedmont region, North Carolina, U.S.A. Applied Vegetation Science 14: 485-505. .
Recommended publications
  • Survival and Initial Growth Attributes of Improved and Unimproved Cherrybark Oak in South Arkansas
    SURVIVAL AND INITIAL GROWTH ATTRIBUTES OF IMPROVED AND UNIMPROVED CHERRYBARK OAK IN SOUTH ARKANSAS Joshua P. Adams, David Graves, Matthew H. Pelkki, Chris Stuhlinger, and Jon Barry1 Abstract--Thousands of acres are planted every year with genetically improved seedlings; but while pine continues to be extensively explored, the same is not true for hardwoods due to costs and rotation length. An improved cherrybark oak (Quercus pagoda Raf.) seed orchard exists in North Little Rock, AR, providing an opportunity to evaluate hardwood improvement. However, the cost and limited testing of these seedlings have been large limiting factors in their deployment. In February 2012, improved and woods-run seedlings were hand-planted at two sites in southern Arkansas including a site near Hope, AR, and one near Monticello, AR. The sites were treated with 2 ounces per acre of Oust XP® 2 weeks after tree planting with manual control of sumac (Rhus spp.) and sweetgum (Liquidambar styraciflua L.) shortly thereafter. A random sample of seedlings at the nursery confirmed that seedling undercutting effectively controlled root length which was statistically the same for both groups at 21.8 inches. However, root collar diameter of an improved seedling was on average 27 percent larger than an unimproved seedling. These trends were similar to those among planted seedlings in which improved seedlings were 9 percent and 8 percent greater in regards to ground line diameter and height, respectively. However, improved seedlings exhibited greater initial mortality, by 6.2 percent, in the first few months of their growing season. While initial mortality is often considered random, disparity between the two groups points to other causes, such as the larger root sizes, which may pose planting problems.
    [Show full text]
  • Recommended Trees for Winnetka
    RECOMMENDED TREES FOR WINNETKA SHADE TREES Common_Name Scientific_Name Ohio Buckeye Acer galbra Miyabe Maple Acer miyabei Black Maple Acer nigrum Norway Maple Acer plantanoides v. ___ Sugar Maple (many cultivars) Acer saccharum Shangtung Maple Acer truncatum Autumn Blaze or Marmo Maple Acer x freemanii Red Horsechestnut Aesculus x carnea 'Briotii' Horsechestnut Aesulus hippocastanum Alder Alnus glutinosa Yellowwood Caldrastis lutea Upright European Hornbeam Carpinus betulus “Fastigata” American Hornbeam Carpinus carolinians Hickory Carya ovata Catalpa Catalpa speciosa Hackberry Celtis occidentalis Katsuratree Cercidiphyllum japonicum Turkish Filbert Corylus colurna American Beech Fagus grandifolia Green Beech Fagus sylvatica European Beech Fagus sylvatica Ginkgo Ginkgo biloba Thornless Honeylocust Gleditsia triacanthos inermis Kentucky Coffeetree Gymnocladus dioica Goldenraintree Koelreuteria paniculata Sweetgum Liquidambar styraciflua Tulip Tree Liriodendron tulipfera Black gum, Tupelo Liriodendron tulipfera Hophornbeam Ostrya virginiana Corktree Phellodendron amurense Exclamation Plantree Plantanus x aceerifolia Quaking Aspen Populus tremuloides Swamp White Oak Quercus bicolor Shingle Oak Quercus imbricaria Bur Oak Quercus macrocarpa Chinkapin Oak Quercus muehlenbergii English Oak Quercus robur Red Oak Quercus rubra Schumard Oak Quercus shumardii Black Oak Quercus velutina May 2015 SHADE TREES Common_Name Scientific_Name Sassafras Sassafras albidum American Linden Tilia Americana Littleleaf Linden (many cultivars) Tilia cordata Silver
    [Show full text]
  • Antimicrobial and Antioxidant Activity of the Leaves, Bark and Stems of Liquidambar Styraciflua L
    Int.J.Curr.Microbiol.App.Sci (2016) 5(1): 306-317 ISSN: 2319-7706 Volume 5 Number 1(2016) pp. 306-317 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.501.029 Antimicrobial and Antioxidant Activity of the Leaves, Bark and Stems of Liquidambar styraciflua L. (Altingiaceae) Graziele Francine Franco Mancarz1*, Ana Carolina Pareja Lobo1, Mariah Brandalise Baril1, Francisco de Assis Franco2 and Tomoe Nakashima1 1Pharmaceutical ScienceDepartment, Universidade Federal do Paraná, Curitiba, PR, Brazil 2Coodetec Desenvolvimento, Produção e Comercialização Agrícola Ltda, Cascavel, PR, Brazil *Corresponding author A B S T R A C T K e y w o r d s The genus Liquidambar L. is the best-known genus of the Altingiaceae Horan family, and species of this genus have long been used for the Liquidambar treatment of various diseases. Liquidambar styraciflua L., which is styraciflua, popularly known as sweet gum or alligator tree, is an aromatic deciduous antioxidant tree with leaves with 5-7 acute lobes and branched stems. In the present activity, study, we investigated the antimicrobial and antioxidant activity of aerial antimicrobial parts of L.styraciflua. Antimicrobial activity was evaluated using the activity, microdilution methodology. The DPPH and phosphomolybdenum methods microdilution method, were used to assess the antioxidant capacity of the samples. The extracts DPPH assay showed moderate or weak antimicrobial activity. The essential oil had the lowest MIC values and exhibited bactericidal action against Escherichia Article Info coli, Enterobacter aerogenes and Staphylococcus aureus. The ethyl acetate fraction and the butanol fraction from the bark and stem showed the best Accepted: antioxidant activity.
    [Show full text]
  • Genetic Improvement and Root Pruning Effects on Cherrybark Oak (Quercus Pagoda L.) Seedling Growth and Survival in Southern Arkansas Joshua P
    Genetic Improvement and Root Pruning Effects on Cherrybark Oak (Quercus Pagoda L.) Seedling Growth and Survival in Southern Arkansas Joshua P. Adams, Nicholas Mustoe, Don C. Bragg, Matthew H. Pelkki, and Victor L. Ford Associate Professor, School of Agricultural Sciences and Forestry, Louisiana Tech University, Ruston, LA; Forester, U.S. Department of Agriculture (USDA) Forest Service, Fishlake National Forest, Richfield, UT; Research Forester and Project Leader, USDA Forest Service, Southern Research Station, Monticello, AR; Professor and Associate Director, Arkansas Forest Resources Center, University of Arkansas at Monticello, Monticello, AR; Director and Professor, Southwest Research and Extension Center, University of Arkansas Research and Extension, Little Rock, AR Abstract (Wharton et al. 1982). Among hardwoods, red oaks (Quercus subgroup Erythrobalanus) are ecologically Cherrybark oak is a highly desirable hardwood and economically valuable. Despite the high desir- species across the Southeastern United States. Sil- ability of red oaks, natural regeneration failures in vicultural techniques for establishment have been stands historically dominated by these oaks has been carefully studied, but advances in tree improvement well documented (Clatterbuck and Meadows 1992, have yet to be realized. Cherrybark oak seedlings of Hodges and Janzen 1987, Lorimer 1989, Oliver et al. genetically improved and unimproved stock were 2005). The lack of natural oak regeneration on many tested in field plantings in southern Arkansas and in sites has resulted in some landowners planting oaks a controlled pot study for root pruning effects. After to ensure this taxa remains viable for future genera- 2 years, initial growth advantages of improved stock tions, provides wildlife habitat, conserves the natu- were no longer present; however, improved stock ral environment, and produces high-value products averaged 19 percent higher survival compared with (Michler et al.
    [Show full text]
  • United States Department of Agriculture
    Pest Management Science Pest Manag Sci 59:788–800 (online: 2003) DOI: 10.1002/ps.721 United States Department of Agriculture—Agriculture Research Service research on targeted management of the Formosan subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae)†‡ Alan R Lax∗ and Weste LA Osbrink USDA-ARS-Southern Regional Research Center, New Orleans, Louisiana, USA Abstract: The Formosan subterranean termite, Coptotermes formosanus Shiraki is currently one of the most destructive pests in the USA. It is estimated to cost consumers over US $1 billion annually for preventative and remedial treatment and to repair damage caused by this insect. The mission of the Formosan Subterranean Termite Research Unit of the Agricultural Research Service is to demonstrate the most effective existing termite management technologies, integrate them into effective management systems, and provide fundamental problem-solving research for long-term, safe, effective and environmentally friendly new technologies. This article describes the epidemiology of the pest and highlights the research accomplished by the Agricultural Research Service on area-wide management of the termite and fundamental research on its biology that might provide the basis for future management technologies. Fundamental areas that are receiving attention are termite detection, termite colony development, nutrition and foraging, and the search for biological control agents. Other fertile areas include understanding termite symbionts that may provide an additional target for control. Area-wide management of the termite by using population suppression rather than protection of individual structures has been successful; however, much remains to be done to provide long-term sustainable population control. An educational component of the program has provided reliable information to homeowners and pest-control operators that should help slow the spread of this organism and allow rapid intervention in those areas which it infests.
    [Show full text]
  • Checklist of Illinois Native Trees
    Technical Forestry Bulletin · NRES-102 Checklist of Illinois Native Trees Jay C. Hayek, Extension Forestry Specialist Department of Natural Resources & Environmental Sciences Updated May 2019 This Technical Forestry Bulletin serves as a checklist of Tree species prevalence (Table 2), or commonness, and Illinois native trees, both angiosperms (hardwoods) and gym- county distribution generally follows Iverson et al. (1989) and nosperms (conifers). Nearly every species listed in the fol- Mohlenbrock (2002). Additional sources of data with respect lowing tables† attains tree-sized stature, which is generally to species prevalence and county distribution include Mohlen- defined as having a(i) single stem with a trunk diameter brock and Ladd (1978), INHS (2011), and USDA’s The Plant Da- greater than or equal to 3 inches, measured at 4.5 feet above tabase (2012). ground level, (ii) well-defined crown of foliage, and(iii) total vertical height greater than or equal to 13 feet (Little 1979). Table 2. Species prevalence (Source: Iverson et al. 1989). Based on currently accepted nomenclature and excluding most minor varieties and all nothospecies, or hybrids, there Common — widely distributed with high abundance. are approximately 184± known native trees and tree-sized Occasional — common in localized patches. shrubs found in Illinois (Table 1). Uncommon — localized distribution or sparse. Rare — rarely found and sparse. Nomenclature used throughout this bulletin follows the Integrated Taxonomic Information System —the ITIS data- Basic highlights of this tree checklist include the listing of 29 base utilizes real-time access to the most current and accept- native hawthorns (Crataegus), 21 native oaks (Quercus), 11 ed taxonomy based on scientific consensus.
    [Show full text]
  • Designing Hardwood Tree Plantings for Wildlife Brian J
    FNR-213 Hardwood Tree Improvement and Regeneration Center North Central Research Station USDA Forest Service Department of Forestry and Natural Resources Purdue University Designing Hardwood Tree Plantings for Wildlife Brian J. MacGowan, Department of Forestry and Natural Resources, Purdue University Woody plants can be of value to many wildlife species. The species of tree or shrub, or the location, size, and shape of planting can all have an impact on wildlife. The purpose of this paper is to discuss the benefits of trees and shrubs for wildlife and how to design tree and shrub plantings for wildlife. Some of the practices may conflict with other management goals and may have to be modified for individual priorities. Trees and Shrubs for Wildlife The species you select for a tree planting should depend on the growing conditions of the site and the wildlife species that you want to manage. Talk to a professional forester to help you select the tree species best suited for your growing conditions. A professional biologist, such as a Department of Natural Resources District Biologist (www.in.gov/ food source for wildlife (Table 2). Shrubs can be dnr/fishwild/huntguide1/wbiolo.htm), can assist you particularly important because several species of with planning a tree planting for wildlife. wildlife, especially songbirds, prefer to feed or nest There is no specific formula for developing wild- on or near the ground. Shrubs also provide good life habitat. For example, acorns are eaten by a wide protective cover for these types of wildlife. Pines variety of wildlife species including tree squirrels, and other softwoods provide limited food, but are an pheasants, wild turkey, and deer.
    [Show full text]
  • Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews
    Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews With contributions from Anne Boscawen (UK), John Bulmer (UK), Koen Camelbeke (Belgium), John Gammon (UK), Hugh Glen (South Africa), Philippe de Spoelberch (Belgium), Dick van Hoey Smith (The Netherlands), Robert Vernon (UK) and Ulrich Würth (Germany). Affinities, generic distribution and fossil record Liquidambar L. has close taxonomic affinities with Altingia Noronha since these two genera share gum ducts associated with vascular bundles, terminal buds enclosed within numerous bud scales, spirally arranged stipulate leaves, poly- porate (with several pore-like apertures) pollen grains, condensed bisexual inflorescences, perfect or imperfect flowers, and winged seeds. Not surpris- ingly, Liquidambar, Altingia and Semiliquidambar H.T. Chang have now been placed in the Altingiaceae, as originally treated (Blume 1828, Wilson 1905, Chang 1964, Melikan 1973, Li et al. 1988, Zhou & Jiang 1990, Wang 1992, Qui et al. 1998, APG 1998, Judd et al. 1999, Shi et al. 2001 and V. Savolainen pers. comm.). These three genera were placed in the subfamily Altingioideae in Hamamelidaceae (Reinsch 1890, Chang 1979, Cronquist 1981, Bogle 1986, Endress 1989) or the Liquidambaroideae (Harms 1930). Shi et al. (2001) noted that Altingia species are evergreen with entire, unlobed leaves; Liquidambar is deciduous with 3-5 or 7-lobed leaves; while Semiliquidambar is evergreen or deciduous, with trilobed, simple or one-lobed leaves. Cytological studies have indicated that the chromosome number of Liquidambar is 2n = 30, 32 (Anderson & Sax 1935, Pizzolongo 1958, Santamour 1972, Goldblatt & Endress 1977). Ferguson (1989) stated that this chromosome number distinguished Liquidambar from the rest of the Hamamelidaceae with their chromosome numbers of 2n = 16, 24, 36, 48, 64 and 72.
    [Show full text]
  • Liquidambar Styraciflua L.) from Caroline County, Virginia
    43 Banisteria, Number 9, 1997 © 1997 by the Virginia Natural History Society An Abnormal Variant of Sweetgum (Liquidambar styraciflua L.) from Caroline County, Virginia Bruce L. King Department of Biology Randolph Macon College Ashland, Virginia 23005 Leaves of individuals of Liquidambar styraciflua L. Similar measurements were made from surrounding (sweetgum) - are predominantly 5-lobed, occasionally 7- plants in three height classes:, early sapling, 61-134 cm; lobed or 3-lobed (Radford et al., 1968; Cocke, 1974; large seedlings, 10-23 cm; and small seedlings (mostly first Grimm, 1983; Duncan & Duncan, 1988). The tips of the year), 3-8.5 cm. All of the small seedlings were within 5 lobes are acute and leaf margins are serrate, rarely entire. meters of the atypical specimen and most of the large In 1991, I found a seedling (2-3 yr old) that I seedlings and saplings were within 10 meters. The greatest tentatively identified as a specimen of Liquidambar styrac- distance between any two plants was 70 meters. All of the iflua. The specimen occurs in a 20 acre section of plants measured were in dense to moderate shade. In the deciduous forest located between U.S. Route 1 and seedling classes, three leaves were measured from each of Waverly Drive, 3.2 km south of Ladysmith, Caroline ten plants (n = 30 leaves). In the sapling class, counts of County, Virginia. The seedling was found at the middle leaf lobes and observations of lobe tips and leaf margins of a 10% slope. Dominant trees on the upper slope were made from ten leaves from each of 20 plants (n include Quercus alba L., Q.
    [Show full text]
  • Wood from Midwestern Trees Purdue EXTENSION
    PURDUE EXTENSION FNR-270 Daniel L. Cassens Professor, Wood Products Eva Haviarova Assistant Professor, Wood Science Sally Weeks Dendrology Laboratory Manager Department of Forestry and Natural Resources Purdue University Indiana and the Midwestern land, but the remaining areas soon states are home to a diverse array reforested themselves with young of tree species. In total there are stands of trees, many of which have approximately 100 native tree been harvested and replaced by yet species and 150 shrub species. another generation of trees. This Indiana is a long state, and because continuous process testifies to the of that, species composition changes renewability of the wood resource significantly from north to south. and the ecosystem associated with it. A number of species such as bald Today, the wood manufacturing cypress (Taxodium distichum), cherry sector ranks first among all bark, and overcup oak (Quercus agricultural commodities in terms pagoda and Q. lyrata) respectively are of economic impact. Indiana forests native only to the Ohio Valley region provide jobs to nearly 50,000 and areas further south; whereas, individuals and add about $2.75 northern Indiana has several species billion dollars to the state’s economy. such as tamarack (Larix laricina), There are not as many lumber quaking aspen (Populus tremuloides), categories as there are species of and jack pine (Pinus banksiana) that trees. Once trees from the same are more commonly associated with genus, or taxon, such as ash, white the upper Great Lake states. oak, or red oak are processed into In urban environments, native lumber, there is no way to separate species provide shade and diversity the woods of individual species.
    [Show full text]
  • Water's Park Tree Inventory and Assessment
    Arborist’s Report Tree Inventory and Assessment 1 Waters Park Drive San Mateo, CA 94403 Prepared for: Strada Investment Group March 3, 2018 Prepared By: Richard Gessner ASCA - Registered Consulting Arborist ® #496 ISA - Board Certified Master Arborist® WE-4341B ISA - Tree Risk Assessor Qualified CA Qualified Applicators License QL 104230 © Copyright Monarch Consulting Arborists LLC, 2018 1 Waters Park Drive, San Mateo Tree Inventory and Assessment March 3, 2018 Table of Contents Summary............................................................................................................... 1 Introduction........................................................................................................... 2 Background ............................................................................................................2 Assignment .............................................................................................................2 Limits of the assignment ........................................................................................2 Purpose and use of the report ................................................................................3 Observations......................................................................................................... 3 Tree Inventory .........................................................................................................3 Analysis................................................................................................................
    [Show full text]
  • Key to Leaves of Eastern Native Oaks
    FHTET-2003-01 January 2003 Front Cover: Clockwise from top left: white oak (Q. alba) acorns; willow oak (Q. phellos) leaves and acorns; Georgia oak (Q. georgiana) leaf; chinkapin oak (Q. muehlenbergii) acorns; scarlet oak (Q. coccinea) leaf; Texas live oak (Q. fusiformis) acorns; runner oak (Q. pumila) leaves and acorns; background bur oak (Q. macrocarpa) bark. (Design, D. Binion) Back Cover: Swamp chestnut oak (Q. michauxii) leaves and acorns. (Design, D. Binion) FOREST HEALTH TECHNOLOGY ENTERPRISE TEAM TECHNOLOGY TRANSFER Oak Identification Field Guide to Native Oak Species of Eastern North America John Stein and Denise Binion Forest Health Technology Enterprise Team USDA Forest Service 180 Canfield St., Morgantown, WV 26505 Robert Acciavatti Forest Health Protection Northeastern Area State and Private Forestry USDA Forest Service 180 Canfield St., Morgantown, WV 26505 United States Forest FHTET-2003-01 Department of Service January 2003 Agriculture NORTH AMERICA 100th Meridian ii iii ACKNOWLEDGMENTS The authors wish to thank all those who helped with this publication. We are grateful for permission to use the drawings illustrated by John K. Myers, Flagstaff, AZ, published in the Flora of North America, North of Mexico, vol. 3 (Jensen 1997). We thank Drs. Cynthia Huebner and Jim Colbert, U.S. Forest Service, Northeastern Research Station, Disturbance Ecology and Management of Oak-Dominated Forests, Morgantown, WV; Dr. Martin MacKenzie, U.S. Forest Service, Northeastern Area State and Private Forestry, Forest Health Protection, Morgantown, WV; Dr. Steven L. Stephenson, Department of Biology, Fairmont State College, Fairmont, WV; Dr. Donna Ford-Werntz, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV; Dr.
    [Show full text]