Antimicrobial and Antioxidant Activity of the Leaves, Bark and Stems of Liquidambar Styraciflua L

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial and Antioxidant Activity of the Leaves, Bark and Stems of Liquidambar Styraciflua L Int.J.Curr.Microbiol.App.Sci (2016) 5(1): 306-317 ISSN: 2319-7706 Volume 5 Number 1(2016) pp. 306-317 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.501.029 Antimicrobial and Antioxidant Activity of the Leaves, Bark and Stems of Liquidambar styraciflua L. (Altingiaceae) Graziele Francine Franco Mancarz1*, Ana Carolina Pareja Lobo1, Mariah Brandalise Baril1, Francisco de Assis Franco2 and Tomoe Nakashima1 1Pharmaceutical ScienceDepartment, Universidade Federal do Paraná, Curitiba, PR, Brazil 2Coodetec Desenvolvimento, Produção e Comercialização Agrícola Ltda, Cascavel, PR, Brazil *Corresponding author A B S T R A C T K e y w o r d s The genus Liquidambar L. is the best-known genus of the Altingiaceae Horan family, and species of this genus have long been used for the Liquidambar treatment of various diseases. Liquidambar styraciflua L., which is styraciflua, popularly known as sweet gum or alligator tree, is an aromatic deciduous antioxidant tree with leaves with 5-7 acute lobes and branched stems. In the present activity, study, we investigated the antimicrobial and antioxidant activity of aerial antimicrobial parts of L.styraciflua. Antimicrobial activity was evaluated using the activity, microdilution methodology. The DPPH and phosphomolybdenum methods microdilution method, were used to assess the antioxidant capacity of the samples. The extracts DPPH assay showed moderate or weak antimicrobial activity. The essential oil had the lowest MIC values and exhibited bactericidal action against Escherichia Article Info coli, Enterobacter aerogenes and Staphylococcus aureus. The ethyl acetate fraction and the butanol fraction from the bark and stem showed the best Accepted: antioxidant activity. This study revealed that the essential oil of L. 16 December 2015 styraciflua leaves displays antimicrobial activity and can be used as an Available Online: alternative against pathogenic microorganisms. The extracts and fractions of 10 January 2016 this species have a high antioxidant capacity, revealing new sources of antioxidants for the food and pharmaceutical industries. Introduction Infectious diseases are a prominent cause of agents (Silver and Bostian, 1993).Thisability morbidity and mortality worldwide, despite has driven the search for substances with technical and scientific advances. One of the antimicrobial activity in natural products, as main factors responsible for this status is the many secondary metabolites of plants have ability of microorganisms to acquire been proven to have antimicrobial properties mechanisms of resistance to antimicrobial in vitro (Chauhan et al., 2015). 306 Int.J.Curr.Microbiol.App.Sci (2016) 5(1): 306-317 Various degenerative diseases, such as diseases, such as stomach disorders, wounds cancer and Parkinson's disease, can be and cough; however, the essential oil caused by the uncontrolled production of extracted from the leaves is also known to reactive oxygen species. The use of exhibit medicinal properties (Lingbeck et antioxidants to aid in the prevention and al., 2015). treatment of these diseases has been studied due to their potential to reduce oxidative Some studies of species of the genus stress (Sadi et al., 2015). Many medicinal Liquidambar demonstrated antimicrobial plants contain a large number of phenolic potential (Sa diç et al., 2005; Kim et al., compounds, such as flavonoids and tannins, 2008; Lee Y-S et al., 2009); however, no which exhibit antioxidant activity (Araujo et studies have been conducted with the al., 2008), encouraging research in this area. essential oil and extracts of the species L. styraciflua. Some studies demonstrated A little explored family is Altingiaceae antioxidant, antitumor, anticoagulant and Horan, which consists of approximately hepatoprotective activity for the species fifteen species that are divided into three L.orientalis and L.formosona (Wang et al., genera: Liquidambar L., Altingia Noronha 2010; Konno C et al., 1988; Yang et al., and Semiliquidambar HT. Chang (Ickert- 2011). The essential oil of the leaves and Bond and Wen, 2006).The extracts and stem of L. styraciflua has anti-inflammatory resins of plants from this family are used in activity and antioxidant activity with low traditional Chinese and Ayurvedic medicine cytotoxicity (El-Readi et al., 2013), but for the treatment of stomach pain, there are no reports in the literature bronchitis, inflammation, amenorrhea and concerning the antioxidant capacity of skin diseases, such as eczema and scabies extracts and fractions of the aerial parts of (El-Readi et al., 2013). this species. The genus Liquidambar is the best-known The lack of studies related to this species genus of the family and consists of four encourages this work, which aims to intercontinental species in the temperate evaluate the antimicrobial and antioxidant zone of the northern hemisphere: activity of the extracts, fractions and Liquidambar formosana, Liquidambar essential oil of L.styraciflua. acalycina, Liquidambar orientalis and Liquidambar styraciflua (Ickert-Bond et al., Materials and Methods 2005). One of the species of this genus, L.styraciflua L., which is commonly known Plant Material as sweet gum, red gum, alligator tree and Liquidambar, has a wide natural distribution The botanical material was collected from in the southern and southeastern United specimens of L.styraciflua L., States, extending to Mexico and Central ALTINGIACEAE, which were grown in the America. This organism is a deciduous tree experimental field of the Brazilian that is 20-25m high and has leaves with 5-7 Agricultural Research Corporation, acute lobes that are green in the spring and EMBRAPA Forests (Colombo - PR). The summer but turn purple, red, or yellow in the leaves, bark and stems of L. styraciflua were fall (Lorenzi et al., 2003). More than 10,000 collected during the fall and spring of years ago, Native Americans used the storax 2011/2012. of this species for the treatment of various 307 Int.J.Curr.Microbiol.App.Sci (2016) 5(1): 306-317 The hydroalcoholic extract of the leaves and against the selected microorganisms were the hydroalcoholic extract of the bark and determined in sterile 96-wells or holes (TPP) stems of L. styraciflua were prepared using a according to previously described maceration technique at a moderate methodologies (Ayres et al., 2008; temperature. From these extracts, we Hanamanthagouda et al., 2010; Silva et al., prepared fractions into a separatory funnel 2011), with some modifications. The using the liquid-liquid partition method and recommendations ofClinical and Laboratory solvents with increasing polarity (n-hexane, Standards Institute (2005) were applied. chloroform, ethyl acetate, butanol and ethanol 70%). The hydroalcoholic extracts were added to an initial concentration of 2,000 µg/mL, and The essential oil was extracted from dried the serial dilution procedure was then leaves of L. styraciflua via the performed with the first culture medium to hydrodistillation method, using the obtain decreasing concentrations (2,000 Clevenger apparatus. µg/mL to 15.625 µg/mL). For the essential oil, an initial concentration of 1,000 µg/mL Reagents and Chemicals with the solvent 10%Tween 80 was used, and concentrations of 1,000 µg/mL to 3.9 All chemicals and solvents were purchased µg/mL were obtained by serial dilution with from Sigma Aldrich Co. (St. Louis, MO, medium. USA) and Merck Millipore (Darmstadt, Germany). In the last columns of the plate,we added the positive controls (30 µg/mL of erythromycin Antimicrobial Activity for bacteria; 50 µg/mL of ketoconazole and 50 µg/mL of terbinafine for yeast), the For the antibacterial tests, we selected eight negative controls (solvent) and the sterility standard strains of bacteria from the control for the culture medium. company NEWPROV, including four Gram- positive bacteria and four Gram-negative To verify the ability of the sample to inhibit bacteria. In the antifungal tests, we used five the growth of microorganisms or cause the standard yeast strains from the Mycology death of microorganisms, a methodology Laboratory of Clinical Hospital (Curitiba- described by Veljic et al. (2010) was used, PR), which are often isolated from patients. with some modifications. From wells that The culture media used in this study exhibited an MIC, we collected a10 L included Mueller-Hinton broth and aliquot and transferred the aliquot to Petri Sabouraud broth, which were both obtained dishes containing the appropriate culture from HIMEDIA. After growth on Petri medium for each microorganism. plates containing a suitable culture medium, the bacteria and yeasts were inoculated into After the incubation period, samples that sterile saline (0.9%) and the turbidity was showed no visible microbial growth, adjusted to McFarland standard n°0.5 to indicating the death of 99.5% of the obtain a standard concentration of microorganisms in the inoculum, were microorganisms (1 x 108colony-forming considered to have bactericidal/fungicidal unit/mL). activity. The samples with visible microbial growth were considered to have The minimum inhibitory concentration bacteriostatic/fungistatic activity. (MIC) values of the extracts and essential oil 308 Int.J.Curr.Microbiol.App.Sci (2016) 5(1): 306-317 Antioxidant Activity triplicate. These samples were incubated for 90 minutes in a 95°C water bath, and after The DPPH method that was used to cooling, the absorbance of the samples at determine the antioxidant capacity followed 695nm was measured
Recommended publications
  • Recommended Trees for Winnetka
    RECOMMENDED TREES FOR WINNETKA SHADE TREES Common_Name Scientific_Name Ohio Buckeye Acer galbra Miyabe Maple Acer miyabei Black Maple Acer nigrum Norway Maple Acer plantanoides v. ___ Sugar Maple (many cultivars) Acer saccharum Shangtung Maple Acer truncatum Autumn Blaze or Marmo Maple Acer x freemanii Red Horsechestnut Aesculus x carnea 'Briotii' Horsechestnut Aesulus hippocastanum Alder Alnus glutinosa Yellowwood Caldrastis lutea Upright European Hornbeam Carpinus betulus “Fastigata” American Hornbeam Carpinus carolinians Hickory Carya ovata Catalpa Catalpa speciosa Hackberry Celtis occidentalis Katsuratree Cercidiphyllum japonicum Turkish Filbert Corylus colurna American Beech Fagus grandifolia Green Beech Fagus sylvatica European Beech Fagus sylvatica Ginkgo Ginkgo biloba Thornless Honeylocust Gleditsia triacanthos inermis Kentucky Coffeetree Gymnocladus dioica Goldenraintree Koelreuteria paniculata Sweetgum Liquidambar styraciflua Tulip Tree Liriodendron tulipfera Black gum, Tupelo Liriodendron tulipfera Hophornbeam Ostrya virginiana Corktree Phellodendron amurense Exclamation Plantree Plantanus x aceerifolia Quaking Aspen Populus tremuloides Swamp White Oak Quercus bicolor Shingle Oak Quercus imbricaria Bur Oak Quercus macrocarpa Chinkapin Oak Quercus muehlenbergii English Oak Quercus robur Red Oak Quercus rubra Schumard Oak Quercus shumardii Black Oak Quercus velutina May 2015 SHADE TREES Common_Name Scientific_Name Sassafras Sassafras albidum American Linden Tilia Americana Littleleaf Linden (many cultivars) Tilia cordata Silver
    [Show full text]
  • What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
    Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • United States Department of Agriculture
    Pest Management Science Pest Manag Sci 59:788–800 (online: 2003) DOI: 10.1002/ps.721 United States Department of Agriculture—Agriculture Research Service research on targeted management of the Formosan subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae)†‡ Alan R Lax∗ and Weste LA Osbrink USDA-ARS-Southern Regional Research Center, New Orleans, Louisiana, USA Abstract: The Formosan subterranean termite, Coptotermes formosanus Shiraki is currently one of the most destructive pests in the USA. It is estimated to cost consumers over US $1 billion annually for preventative and remedial treatment and to repair damage caused by this insect. The mission of the Formosan Subterranean Termite Research Unit of the Agricultural Research Service is to demonstrate the most effective existing termite management technologies, integrate them into effective management systems, and provide fundamental problem-solving research for long-term, safe, effective and environmentally friendly new technologies. This article describes the epidemiology of the pest and highlights the research accomplished by the Agricultural Research Service on area-wide management of the termite and fundamental research on its biology that might provide the basis for future management technologies. Fundamental areas that are receiving attention are termite detection, termite colony development, nutrition and foraging, and the search for biological control agents. Other fertile areas include understanding termite symbionts that may provide an additional target for control. Area-wide management of the termite by using population suppression rather than protection of individual structures has been successful; however, much remains to be done to provide long-term sustainable population control. An educational component of the program has provided reliable information to homeowners and pest-control operators that should help slow the spread of this organism and allow rapid intervention in those areas which it infests.
    [Show full text]
  • Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews
    Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews With contributions from Anne Boscawen (UK), John Bulmer (UK), Koen Camelbeke (Belgium), John Gammon (UK), Hugh Glen (South Africa), Philippe de Spoelberch (Belgium), Dick van Hoey Smith (The Netherlands), Robert Vernon (UK) and Ulrich Würth (Germany). Affinities, generic distribution and fossil record Liquidambar L. has close taxonomic affinities with Altingia Noronha since these two genera share gum ducts associated with vascular bundles, terminal buds enclosed within numerous bud scales, spirally arranged stipulate leaves, poly- porate (with several pore-like apertures) pollen grains, condensed bisexual inflorescences, perfect or imperfect flowers, and winged seeds. Not surpris- ingly, Liquidambar, Altingia and Semiliquidambar H.T. Chang have now been placed in the Altingiaceae, as originally treated (Blume 1828, Wilson 1905, Chang 1964, Melikan 1973, Li et al. 1988, Zhou & Jiang 1990, Wang 1992, Qui et al. 1998, APG 1998, Judd et al. 1999, Shi et al. 2001 and V. Savolainen pers. comm.). These three genera were placed in the subfamily Altingioideae in Hamamelidaceae (Reinsch 1890, Chang 1979, Cronquist 1981, Bogle 1986, Endress 1989) or the Liquidambaroideae (Harms 1930). Shi et al. (2001) noted that Altingia species are evergreen with entire, unlobed leaves; Liquidambar is deciduous with 3-5 or 7-lobed leaves; while Semiliquidambar is evergreen or deciduous, with trilobed, simple or one-lobed leaves. Cytological studies have indicated that the chromosome number of Liquidambar is 2n = 30, 32 (Anderson & Sax 1935, Pizzolongo 1958, Santamour 1972, Goldblatt & Endress 1977). Ferguson (1989) stated that this chromosome number distinguished Liquidambar from the rest of the Hamamelidaceae with their chromosome numbers of 2n = 16, 24, 36, 48, 64 and 72.
    [Show full text]
  • Hamamelidaceae (& Altingiaceae*)
    Hamamelidaceae (& Altingiaceae*) Altingia Noronha* Loropetalum R.Br. ex Rchb. Corylopsis Siebold & Zucc. Parrotia C.A.Mey. Disanthus Maxim. Parrotiopsis (Nied.) C.K.Schneid. Distylium Siebold & Zucc. Rhodoleia Champ. ex Hook. Exbucklandia R.W.Br. Sinowilsonia Hemsl. Fortunearia Rehder & E.H.Wilson ×Sycoparrotia Endress & Anliker Fothergilla L. Sycopsis Oliv. Hamamelis L. Trichocladus Pers. 1 Liquidambar L.* Uocodendron VEGETATIVE KEY TO SPECIES CULTIVATED IN WESTERN EUROPE Jan De Langhe (29 July 2012 - 9 May 2014) Vegetative key. This key is based on vegetative characteristics, and therefore also usable beyond the flowering/fruiting period. Taxa treated in this key: see page 7. Taxa referred to synonymy in this key: see page 7. Questionable/freguently misapplied names: see page 7. To improve accuracy: - Use a hand lens to judge pubescence in general. - Start counting veins at base of the lamina with first clearly ascending secondary vein, do not include veins ending in the apex. - Look at the entire plant. Young specimens and strong shoots give an atypical view. - Beware of hybridisation, especially with plants raised from seed gathered in collections. Background information: - JDL herbarium specimens - living specimens, in various arboreta, botanic gardens and collections - selected literature: Andrews, S. & Hsu, E. - (2004) - Liquidambar as Tree of the Year in IDS yearbook, p.11-45. Bean, W.J. - (1980) - Corylopsis in Trees and Shrubs hardy in the British Isles VOL.1, p.717-721. Bean, W.J. - (1981) - Disanthus in Trees and Shrubs hardy in the British Isles VOL.2, p.62. Bean, W.J. - (1981) - Distylium in Trees and Shrubs hardy in the British Isles VOL.2, p.65-66.
    [Show full text]
  • Liquidambar Styraciflua L.) from Caroline County, Virginia
    43 Banisteria, Number 9, 1997 © 1997 by the Virginia Natural History Society An Abnormal Variant of Sweetgum (Liquidambar styraciflua L.) from Caroline County, Virginia Bruce L. King Department of Biology Randolph Macon College Ashland, Virginia 23005 Leaves of individuals of Liquidambar styraciflua L. Similar measurements were made from surrounding (sweetgum) - are predominantly 5-lobed, occasionally 7- plants in three height classes:, early sapling, 61-134 cm; lobed or 3-lobed (Radford et al., 1968; Cocke, 1974; large seedlings, 10-23 cm; and small seedlings (mostly first Grimm, 1983; Duncan & Duncan, 1988). The tips of the year), 3-8.5 cm. All of the small seedlings were within 5 lobes are acute and leaf margins are serrate, rarely entire. meters of the atypical specimen and most of the large In 1991, I found a seedling (2-3 yr old) that I seedlings and saplings were within 10 meters. The greatest tentatively identified as a specimen of Liquidambar styrac- distance between any two plants was 70 meters. All of the iflua. The specimen occurs in a 20 acre section of plants measured were in dense to moderate shade. In the deciduous forest located between U.S. Route 1 and seedling classes, three leaves were measured from each of Waverly Drive, 3.2 km south of Ladysmith, Caroline ten plants (n = 30 leaves). In the sapling class, counts of County, Virginia. The seedling was found at the middle leaf lobes and observations of lobe tips and leaf margins of a 10% slope. Dominant trees on the upper slope were made from ten leaves from each of 20 plants (n include Quercus alba L., Q.
    [Show full text]
  • Wood from Midwestern Trees Purdue EXTENSION
    PURDUE EXTENSION FNR-270 Daniel L. Cassens Professor, Wood Products Eva Haviarova Assistant Professor, Wood Science Sally Weeks Dendrology Laboratory Manager Department of Forestry and Natural Resources Purdue University Indiana and the Midwestern land, but the remaining areas soon states are home to a diverse array reforested themselves with young of tree species. In total there are stands of trees, many of which have approximately 100 native tree been harvested and replaced by yet species and 150 shrub species. another generation of trees. This Indiana is a long state, and because continuous process testifies to the of that, species composition changes renewability of the wood resource significantly from north to south. and the ecosystem associated with it. A number of species such as bald Today, the wood manufacturing cypress (Taxodium distichum), cherry sector ranks first among all bark, and overcup oak (Quercus agricultural commodities in terms pagoda and Q. lyrata) respectively are of economic impact. Indiana forests native only to the Ohio Valley region provide jobs to nearly 50,000 and areas further south; whereas, individuals and add about $2.75 northern Indiana has several species billion dollars to the state’s economy. such as tamarack (Larix laricina), There are not as many lumber quaking aspen (Populus tremuloides), categories as there are species of and jack pine (Pinus banksiana) that trees. Once trees from the same are more commonly associated with genus, or taxon, such as ash, white the upper Great Lake states. oak, or red oak are processed into In urban environments, native lumber, there is no way to separate species provide shade and diversity the woods of individual species.
    [Show full text]
  • Integrating Palaeontological and Molecular Data Uncovers Multiple
    Integrating palaeontological and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamelidaceae Xiaoguo Xiang, Kunli Xiang, Rosa del C. Ortiz, Florian Jabbour, Wei Wang To cite this version: Xiaoguo Xiang, Kunli Xiang, Rosa del C. Ortiz, Florian Jabbour, Wei Wang. Integrating palaeontolog- ical and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamel- idaceae. Journal of Biogeography, Wiley, 2019, 46 (11), pp.2622-2631. 10.1111/jbi.13690. hal- 02612865 HAL Id: hal-02612865 https://hal.archives-ouvertes.fr/hal-02612865 Submitted on 19 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Integrating palaeontological and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamelidaceae Xiaoguo Xiang1,2, Kunli Xiang1,3, Rosa Del C. Ortiz4, Florian Jabbour5, Wei Wang1,3 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China 2Jiangxi Province Key Laboratory of Watershed Ecosystem
    [Show full text]
  • Water's Park Tree Inventory and Assessment
    Arborist’s Report Tree Inventory and Assessment 1 Waters Park Drive San Mateo, CA 94403 Prepared for: Strada Investment Group March 3, 2018 Prepared By: Richard Gessner ASCA - Registered Consulting Arborist ® #496 ISA - Board Certified Master Arborist® WE-4341B ISA - Tree Risk Assessor Qualified CA Qualified Applicators License QL 104230 © Copyright Monarch Consulting Arborists LLC, 2018 1 Waters Park Drive, San Mateo Tree Inventory and Assessment March 3, 2018 Table of Contents Summary............................................................................................................... 1 Introduction........................................................................................................... 2 Background ............................................................................................................2 Assignment .............................................................................................................2 Limits of the assignment ........................................................................................2 Purpose and use of the report ................................................................................3 Observations......................................................................................................... 3 Tree Inventory .........................................................................................................3 Analysis................................................................................................................
    [Show full text]
  • Phylogeographical Structure of Liquidambar Formosana Hance Revealed by Chloroplast Phylogeography and Species Distribution Models
    Article Phylogeographical Structure of Liquidambar formosana Hance Revealed by Chloroplast Phylogeography and Species Distribution Models 1,2, 1, 1 2 1 1, Rongxi Sun y , Furong Lin y, Ping Huang , Xuemin Ye , Jiuxin Lai and Yongqi Zheng * 1 State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; [email protected] (R.S.); [email protected] (F.L.); [email protected] (P.H.); [email protected] (J.L.) 2 Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6288-8565 These authors contributed equally to this work. y Received: 2 September 2019; Accepted: 29 September 2019; Published: 1 October 2019 Abstract: To understand the origin and evolutionary history, and the geographical and historical causes for the formation of the current distribution pattern of Lquidambar formosana Hance, we investigated the phylogeography by using chloroplasts DNA (cpDNA) non-coding sequences and species distribution models (SDM). Four cpDNA intergenic spacer regions were amplified and sequenced for 251 individuals from 25 populations covering most of its geographical range in China. A total of 20 haplotypes were recovered. The species had a high level of chloroplast genetic variation (Ht = 0.909 0.0192) and a significant phylogeographical structure (genetic differentiation takes into ± account distances among haplotypes (Nst) = 0.730 > population differentiation that does not consider distances among haplotypes (Gst) = 0.645; p < 0.05), whereas the genetic variation within populations (Hs = 0.323 0.0553) was low.
    [Show full text]
  • Plant Biodiversity of Urban Roadside Trees in Antalya, Turkey
    Kastamonu Uni., Orman Fakültesi Dergisi, 2017,17 (1): 80-87 Research Article Kastamonu Univ., Journal of Forestry Faculty Doi: 10.17475/kastorman.296501 Plant Biodiversity of Urban Roadside Trees in Antalya, Turkey Songül SEVER MUTLU1, Ceren SELİM1*, Gülçin ÜN1 1Akdeniz University, Faculty of Agriculture, Landscape Architecture Department, Antalya, Turkey *Corresponding Author: [email protected] Received Date: 25.08.2016 Accepted Date: 23.01.2017 Abstract: Planting trees in urban areas has a number of environmental, social and ecological benefits, and roadside trees are an integral part of urban green space. Having a broad diversity of trees in urban roadsides can guard against the possibility of large-scale devastation by both native and introduced insect and disease pests. Urban foresters and municipal arborists are advised to follow guidelines for tree diversity within their areas of jurisdiction: (1) plant no more than 10% of any species, (2) no more than 20 % of any genus, and (3) no more than 30 % of any family. The aim of the study was to assess biological diversity on the five major urban roadsides (Atatürk Boulevard, Yüzüncüyıl Boulevard, Hürriyet Street, Serik Street, Palmiye Street). The species are identified and counted. Face to face interviews were carried out with landscape architects/municipal arborists to understand decision making process on selecting and deciding the species to be planted. Results showed that three species and one genus do not fit to the expected ratio. Municipals lacked an inventory list and a biodiversity scale for planning and planting in ratios necessary to keep a diverse biological environment. Based on the shortcomings, we would recommend to establish an inventory to do more informed decision first, and plan new plantings in a way that would increase biodiversity in species and genus level.
    [Show full text]