Paul Lorenzen–Mathematician and Logician

Total Page:16

File Type:pdf, Size:1020Kb

Paul Lorenzen–Mathematician and Logician Logic, Epistemology, and the Unity of Science 51 Gerhard Heinzmann Gereon Wolters Editors Paul Lorenzen – Mathematician and Logician Logic, Epistemology, and the Unity of Science Volume 51 Series Editor Shahid Rahman, CNRS-UMR: 8163, Université de Lille, Lille, France Managing Editor Nicolas Clerbout, Universidad de Valparaíso, Valparaíso, Chile Founding Editor John Symons, Department of Philosophy, The University of Texas at El Paso, El Paso, TX, USA Editorial Board Jean Paul van Bendegem, Gent, Belgium Hourya Benis Sinaceur, Techniques, CNRS, Institut d’Histoire et Philosophie des Sci, Paris, France Johan van Benthem, Institute for Logic Language & Computation, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands Karine Chemla, CNRS, Université Paris Diderot, Paris, France Jacques Dubucs, CNRS, IHPST, Université Paris, Paris, France Anne Fagot-Largeault, Philosophy of Life Science, College de France, Paris, France Bas C Van Fraassen, Department of Philosophy, Princeton University, Princeton, NJ, USA Dov M. Gabbay, King’s College, Interest Group, London, UK Paul McNamara, Philosophy Department, University of New Hampshire, Durham, NH, USA Graham Priest, Department of Philosophy, Graduate Center, City University of New York, New York, NY, USA Gabriel Sandu, Department of Philosophy, University of Helsinki, Helsinki, Finland Sonja Smets, Institute of Logic, Language and Computation, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands Tony Street, Faculty of Divinity, University of Cambridge, Cambridge, UK Göran Sundholm, Philosophy, Leiden University, Leiden, Zuid-Holland, The Netherlands Heinrich Wansing, Department of Philosophy II, Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany Timothy Williamson, Department of Philosophy, University of Oxford, New College, Oxford, UK Logic, Epistemology, and the Unity of Science aims to reconsider the question of the unity of science in light of recent developments in logic. At present, no single logical, semantical or methodological framework dominates the philosophy of science. However, the editors of this series believe that formal frameworks, for example, constructive type theory, deontic logics, dialogical logics, epistemic logics, modal logics, and proof-theoretical semantics, have the potential to cast new light on basic issues in the discussion of the unity of science. This series provides a venue where philosophers and logicians can apply specific systematic and historic insights to fundamental philosophical problems. While the series is open to a wide variety of perspectives, including the study and analysis of argumentation and the critical discussion of the relationship between logic and philosophy of science, the aim is to provide an integrated picture of the scientific enterprise in all its diversity. This book series is indexed in SCOPUS. For inquiries and submissions of proposals, authors can contact Christi Lue at [email protected] More information about this series at http://www.springer.com/series/6936 Gerhard Heinzmann • Gereon Wolters Editors Paul Lorenzen – Mathematician and Logician 123 Editors Gerhard Heinzmann Gereon Wolters Archives Henri-Poincaré (UMR 7117) Fachbereich Philosophie Université de Lorraine/Université de Universitat Konstanz Strasbourg/CNRS Konstanz, Baden-Württemberg, Germany Nancy, France ISSN 2214-9775 ISSN 2214-9783 (electronic) Logic, Epistemology, and the Unity of Science ISBN 978-3-030-65823-6 ISBN 978-3-030-65824-3 (eBook) https://doi.org/10.1007/978-3-030-65824-3 © The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap- tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi- cation does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland For Dr. Brigitte Parakenings, Archivist of the Philosophical Archive at the University of Konstanz (1991–2019), in gratitude for her dedicated work Preface This volume assembles contributions presented at the workshop “Paul Lorenzen: Mathematician and Logician” (8–9 March 2018) at the University of Konstanz. It was organized by the Philosophical Archive of this university, which holds the papers of Lorenzen. Paul Lorenzen (1915–1994) was an outstanding philosopher of the latter half of the twentieth century. His name is associated with the Erlangen School of Methodical Constructivism, whose approach in linguistic philosophy and philoso- phy of science determined philosophical discussions especially in Germany in the 1960s and 1970s. At that time, Lorenzen already had an international reputation as a brilliant mind in mathematics and logic. Focussing at first on abstract algebra, Lorenzen later turned his attention to foundational issues in logic and mathematics. His studies in this field are still highly regarded today and finally led to his concept of operative logic and mathematics, which in turn were the base for his philosophy later on. The contributions in this volume focus on integrating Lorenzen’s original approach into the history of logic and mathematics. Furthermore, they explore the options of how Lorenzen’s systematical ideas can be implemented in today’s debates on the philosophy of mathematics and proof-theoretic semantics. The volume opens with memories of Kuno Lorenz, Paul Lorenzen’s first student. The editors would like to thank Brigitte Parakenings (former Archivist of the Philosophical Archive) for her careful organization of the conference and Christopher von Bülow for his splendid editing of the contributions. We are also very grateful to Paul Lorenzen-Stiftung for their generous financial support for both the workshop and the production of this volume. Nancy, France Gerhard Heinzmann Konstanz, Germany Gereon Wolters May 2020 vii Contents Paul Lorenzens Weg von der Mathematik zur Philosophie – Persönliche Erinnerungen ......................................... 1 Kuno Lorenz Operation and Predicativity: Lorenzen’s Approach to Arithmetic .... 11 Gerhard Heinzmann Conceptions of Infinity and Set in Lorenzen’s Operationist System .. 23 Carolin Antos Lorenzen and Constructive Mathematics ........................... 47 Thierry Coquand Lorenzen between Gentzen and Schütte............................ 63 Reinhard Kahle and Isabel Oitavem Syntax for Semantics: Krull’s Maximal Ideal Theorem .............. 77 Peter Schuster and Daniel Wessel RegularEntailmentRelations...................................... 103 Thierry Coquand, Henri Lombardi and Stefan Neuwirth Connecting Sequent Calculi with Lorenzen-Style Dialogue Games .. 115 Christian G. Fermüller Lorenzen’s Reshaping of Krull’s Fundamentalsatz for Integral Domains(1938–1953) .............................................. 143 Stefan Neuwirth Lorenzen’s Correspondence with Hasse, Krull, and Aubert, Together with Some Relevant Documents .......................... 185 edited by Stefan Neuwirth ix List of Contributors Carolin Antos Department of Philosophy, University of Konstanz, Universitätsstr. 10, DE- 78464 Konstanz, Germany, e-mail: [email protected] Thierry Coquand Computer Science and Engineering Department, University of Gothenburg, Vasaparken, SE-405 30 Göteborg, Sweden, e-mail: [email protected] u.se Christian Fermüller Department of Computer Science, Institute for Logic and Computation, TU Wien, Favoritenstr. 9–11,AT-1040 Wien, Austria, e-mail: chrisf@logic .at Gerhard Heinzmann Archives Henri-Poincaré (UMR 7117), Université de Lorraine/Université de Strasbourg, CNRS-PReST, 1 av. De la Libération, FR-54001 Nancy cedex, France, e-mail: [email protected] Reinhard Kahle Theorie und Geschichte der Wissenschaften, Eberhard-Karls-Universität Tübingen, Keplerstr. 2,D-72074 Tübingen, Germany, and Center for Mathematics and Applications, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal, e-mail: [email protected] Henri Lombardi Laboratoire de mathématiques de Besançon (UMR 6623), Université
Recommended publications
  • Harmonic and Complex Analysis and Its Applications
    Trends in Mathematics Alexander Vasil’ev Editor Harmonic and Complex Analysis and its Applications Trends in Mathematics Trends in Mathematics is a series devoted to the publication of volumes arising from conferences and lecture series focusing on a particular topic from any area of mathematics. Its aim is to make current developments available to the community as rapidly as possible without compromise to quality and to archive these for reference. Proposals for volumes can be submitted using the Online Book Project Submission Form at our website www.birkhauser-science.com. Material submitted for publication must be screened and prepared as follows: All contributions should undergo a reviewing process similar to that carried out by journals and be checked for correct use of language which, as a rule, is English. Articles without proofs, or which do not contain any significantly new results, should be rejected. High quality survey papers, however, are welcome. We expect the organizers to deliver manuscripts in a form that is essentially ready for direct reproduction. Any version of TEX is acceptable, but the entire collection of files must be in one particular dialect of TEX and unified according to simple instructions available from Birkhäuser. Furthermore, in order to guarantee the timely appearance of the proceedings it is essential that the final version of the entire material be submitted no later than one year after the conference. For further volumes: http://www.springer.com/series/4961 Harmonic and Complex Analysis and its Applications Alexander Vasil’ev Editor Editor Alexander Vasil’ev Department of Mathematics University of Bergen Bergen Norway ISBN 978-3-319-01805-8 ISBN 978-3-319-01806-5 (eBook) DOI 10.1007/978-3-319-01806-5 Springer Cham Heidelberg New York Dordrecht London Mathematics Subject Classification (2010): 13P15, 17B68, 17B80, 30C35, 30E05, 31A05, 31B05, 42C40, 46E15, 70H06, 76D27, 81R10 c Springer International Publishing Switzerland 2014 This work is subject to copyright.
    [Show full text]
  • From Riemann Surfaces to Complex Spaces Reinhold Remmert∗
    From Riemann Surfaces to Complex Spaces Reinhold Remmert∗ We must always have old memories and young hopes Abstract This paper analyzes the development of the theory of Riemann surfaces and complex spaces, with emphasis on the work of Rie- mann, Klein and Poincar´e in the nineteenth century and on the work of Behnke-Stein and Cartan-Serre in the middle of this cen- tury. R´esum´e Cet article analyse le d´eveloppement de la th´eorie des surfaces de Riemann et des espaces analytiques complexes, en ´etudiant notamment les travaux de Riemann, Klein et Poincar´eauXIXe si`ecle et ceux de Behnke-Stein et Cartan-Serre au milieu de ce si`ecle. Table of Contents 1. Riemann surfaces from 1851 to 1912 1.1. Georg Friedrich Bernhard Riemann and the covering principle 1.1∗. Riemann’s doctorate 1.2. Christian Felix Klein and the atlas principle 1.3. Karl Theodor Wilhelm Weierstrass and analytic configurations AMS 1991 Mathematics Subject Classification: 01A55, 01A60, 30-03, 32-03 ∗Westf¨alische Wilhelms–Universit¨at, Mathematisches Institut, D–48149 Munster,¨ Deutschland This expos´e is an enlarged version of my lecture given in Nice. Gratias ago to J.-P. Serre for critical comments. A detailed exposition of sections 1 and 2 will appear elsewhere. SOCIET´ EMATH´ EMATIQUE´ DE FRANCE 1998 204 R. REMMERT 1.4. The feud between G¨ottingen and Berlin 1.5. Jules Henri Poincar´e and automorphic functions 1.6. The competition between Klein and Poincar´e 1.7. Georg Ferdinand Ludwig Philipp Cantor and countability of the topology 1.8.
    [Show full text]
  • Lorenzen's Proof of Consistency for Elementary Number Theory [With An
    Lorenzen’s proof of consistency for elementary number theory Thierry Coquand Computer science and engineering department, University of Gothenburg, Sweden, [email protected]. Stefan Neuwirth Laboratoire de mathématiques de Besançon, Université Bourgogne Franche-Comté, France, [email protected]. Abstract We present a manuscript of Paul Lorenzen that provides a proof of con- sistency for elementary number theory as an application of the construc- tion of the free countably complete pseudocomplemented semilattice over a preordered set. This manuscript rests in the Oskar-Becker-Nachlass at the Philosophisches Archiv of Universität Konstanz, file OB 5-3b-5. It has probably been written between March and May 1944. We also com- pare this proof to Gentzen’s and Novikov’s, and provide a translation of the manuscript. arXiv:2006.08996v1 [math.HO] 16 Jun 2020 Keywords: Paul Lorenzen, consistency of elementary number the- ory, free countably complete pseudocomplemented semilattice, inductive definition, ω-rule. We present a manuscript of Paul Lorenzen that arguably dates back to 1944 and provide an edition and a translation, with the kind permission of Lorenzen’s daughter, Jutta Reinhardt. It provides a constructive proof of consistency for elementary number theory by showing that it is a part of a trivially consistent cut-free calculus. The proof resorts only to the inductive definition of formulas and theorems. More precisely, Lorenzen proves the admissibility of cut by double induction, on the complexity of the cut formula and of the derivations, without using any ordinal assignment, contrary to the presentation of cut elimination in most standard texts on proof theory.
    [Show full text]
  • What Is Mathematics: Gödel's Theorem and Around. by Karlis
    1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27
    [Show full text]
  • Nachlass Peschl: Kapsel 1: Korrespondenz Und Notizen
    Nachlass ERNST PESCHL (1906-1986) Inhaltsverzeichnis Bearbeitet von Lea Korb und Marie-Claire Born Bonn, 2019 2 Ernst Peschl wurde am 1. September 1906 in Passau geboren. Nach dem Besuch der dortigen Oberrealschule nahm er 1925 ein Studium der Mathematik, Physik und Astronomie in München auf. Im Jahr 1929 bestand Peschl das Staatsexamen, 1931 erfolgte seine Promotion bei Constantin Carathéodory. In den folgenden Jahren arbeitete er als Assistent für Robert König in Jena und für Heinrich Behnke in Münster. Im Jahr 1935 habilitierte sich Peschl in Jena und wurde 1938 außerordentlicher Professor an der Universität Bonn. Seinen Kriegsdienst leistete Peschl in den Jahren 1941-43 in der Deutschen Forschungsanstalt für Luftfahrt in Braunschweig. 1945 wurde er Direktor des Mathematischen Institutes der Universität Bonn und im Jahr 1948 ordentlicher Professor. Peschl war maßgeblich am Aufbau des Instituts für reine und angewandte Mathematik, des Instituts für Instrumentelle Mathematik und der Gesellschaft für Mathematik und Datenverarbeitung beteiligt. Letztere leitete er gemeinsam mit Heinz Unger von 1969 bis 1974. Im Jahr 1965 wurde Peschl mit der Pierre-Fermat-Medaille ausgezeichnet. 1969 erhielt er die Ehrendoktorwürde der Universität Toulouse und wurde 1970 Mitglied der Nordrhein-Westfälischen, Bayerischen und Österreichischen Akademie der Wissenschaften. 1975 wurde Peschl von der französischen Regierung zum „Officier des Palmes Académiques“ ernannt. Im Jahr 1982 folgte die Ehrendoktorwürde der Universität Graz und im Folgejahr zeichnete man Peschl mit dem Verdienstkreuz 1. Klasse der Bundesrepublik Deutschland aus. Ernst Peschl verstarb am 9. Juni 1986 in Eitorf. Sein umfangreicher Nachlass wurde 2018 vom Mathematischen Institut übernommen. Weitere Nachlassteile befinden sich im Nachlass von Erich Bessel-Hagen.
    [Show full text]
  • April 8Th, 9Th & 10Th, 2014 Sale #14
    Lot 620 Lot 618A Lot 614 Lot 614A Lot 615 Lot 53 Lot 236 Lot 268 A traditional fl oor auction featuring live internet bidding April 8th, 9th & 10th, 2014 Sale #14 www.sparks-auctions.com 1 2 6 14 22 unused faults 32 33 34 39 42 stitch watermark unused faults 45A 55 56 58 63 never hinged stitch watermark 72 84 88 122 127A never hinged o.g. o.g. unused 131 141 142 165 184 unused “Pawnbroker” o.g., “Pawnbroker” unused o.g., “5 on 6” THIS SALE HOW TO CONTACT US: 62 Sparks Street, Ottawa, ON , K1P 5A8, CANADA At the time of writing we are still in the grip of the nasty polar vortex which has frozen much of North America. How- Offi ce Hours: Monday through Friday ever the longer days are putting smiles on the increasing number of people we see coming in to add stamps to their 10:00a.m. to 5:00p.m. Eastern Time collections. Collectors of all levels will fi nd something of interest Tel: 613-567-3336 in this sale. This auction introduces to the stamp collect- Fax: 613-567-2972 ing community a handful of items not previously known as Email: [email protected] well as a great many rarities up to and including traditional world-class expensive classics. Every auction our consign- ors trust us to sell an increasing number of their valuable www.sparks-auctions.com items. In this auction, a total of 105 consignors have laid out a veritable “candy store” of temptation.
    [Show full text]
  • Zum Korrespondenznachlaß Erich Bessel-Hagen
    1 Nachlass Erich BESSEL-HAGEN Inhaltsverzeichnis Bearbeitet von den Mitarbeitern der Handschriftenabteilung Bonn, 2018 2 Vorwort Erich Bessel-Hagen wurde am 12. September 1898 als Sohn von Fritz Karl Bessel-Hagen (1856 – 1945, Chirurg und Direktor des städtischen Krankenhauses Charlottenburg – Wes- tend) in Charlottenburg geboren. Sein Urgroßvater war der Astronom Friedrich Wilhelm Bes- sel (1784 – 1846). Nach dem Abitur am Kaiserin-Augusta-Gymnasium nahm er 1917 in Berlin ein Studium der Mathematik und Physik auf. Während seiner Studienzeit hörte er u.a. bei Max Planck, Erhard Schmiss und Issai Schur. Wegen seiner körperlichen Konstitution und seiner Kurzsichtigkeit entging er dem Militäreinsatz im Ersten Weltkrieg. Im Jahr 1920 promovierte Erich Bessel- Hagen bei Constantin Carathédorg über das Thema „unstetige Variationsprobleme“. Im Anschluss an die Promotion arbeitete er von 1921 bis 1924 als privater Assistent von Felix Klein an der Universität Göttingen. 1925 habilitierte sich Bessel–Hagen an der Universität Göttingen mit dem Thema „ellipti- sche Modulfunktionen“ und wurde Privatdozent. 1927 und 1928 folgten Umhabilitierungen an die Universität Halle und die Universität Bonn. Dort wurde Bessel-Hagen 1931 zunächst nichtbeamteter außerordentlicher Professor und 1939 außerplanmäßiger Professor. 1935 übernahm er die Leitung der Historischen Abteilung des Mathematischen Seminars als Nachfolger des amtsenthobenen Otto Toeplitz. Dem Nationalsozialismus gegenüber äußerst kritisch eingestellt, hielt er auch nach deren Entlassung weiterhin Kontakt zu seinen jüdischen Fachgenossen Felix Hausdorff und Otto Toeplitz. Während des Zweiten Weltkrieges kümmerte sich Erich Bessel-Hagen, der auf- grund einer starken Gehbehinderung und anderer Krankheiten kriegsuntauglich in Bonn ver- blieb, um die Studenten seiner eingezogenen Kollegen und um die Sicherung der Bestände des mathematikhistorischen Instituts und des Nachlasses von Felix Hausdorff.
    [Show full text]
  • The Fall and Original Sin of Set Theory
    Article The Fall and Original Sin of Set Theory Danie Strauss https://orcid.org/0000-0002-2397-9181 North-West University [email protected] Abstract Hermann Weyl published a brief survey as preface to a review of The Philosophy of Bertrand Russell in 1946. In this survey he used the phrase, “The Fall and Original Sin of Set Theory.” Investigating the background of this remark will require that we pay attention to a number of issues within the foundations of mathematics. For example: Did God make the integers—as Kronecker alleged? Is mathematics set theory? Attention will also be given to axiomatic set theory and relevant ontic pre-conditions, such as the difference between number and number symbols, to number as “an aspect of objective reality” (Gödel), integers and induction (Skolem) as well as to the question if infinity—as endlessness—could be completed. In 1831 Gauss objected to viewing the infinite as something completed, which is not allowed in mathematics. It will be argued that the actual infinite is rather connected to what is present “at once,” as an infinite totality. By the year 1900 mathematicians believed that mathematics had reached absolute rigour, but unfortunately the rest of the twentieth century witnessed the opposite. The axiom of infinity ruined the expectations of logicism—mathematics cannot be reduced to logic. The intuitionism of Brouwer, Weyl and others launched a devastating attack on classical analysis, further inspired by the outcome of Gödel’s famous proof of 1931, in which he has shown that a formal mathematical system is inconsistent or incomplete.
    [Show full text]
  • Interdisciplinary Works in Logic, Epistemology, Psychology and Linguistics Dialogue, Rationality, and Formalism Logic, Argumentation & Reasoning
    Logic, Argumentation & Reasoning 3 Manuel Rebuschi Martine Batt Gerhard Heinzmann Franck Lihoreau Michel Musiol Alain Trognon Editors Interdisciplinary Works in Logic, Epistemology, Psychology and Linguistics Dialogue, Rationality, and Formalism Logic, Argumentation & Reasoning Interdisciplinary Perspectives from the Humanities and Social Sciences Volume 3 Series Editor Shahid Rahman For further volumes: http://www.springer.com/series/11547 Logic, Argumentation & Reasoning The Series is developed in partnership with the Maison Européenne des Sciences de l’Homme et de la Société (MESHS) at Nord - Pas de Calais and the UMR-STL: 8163 (CNRS). Aims & Scope: The scientific objectives of the series, where humanities and social sciences are conceived as building interdisciplinary interfaces, are: This series publishes volumes that link practices in the Humanities and Social Sciences, with theories in Logic, Argumentation and Reasoning, such as: Decision theory and action theory, Argumentation Theories in: cognitive sciences, economy, sociology, law, logic, philosophy of sciences. The series is open towards research from the Analytic and the Continental traditions, and has four main focus areas: Pragmatic models and studies that develop a dynamic approach to reasoning in which argumentation is structured as an interaction or as a game, in which two or more participants play moves defined by the type of argumentation in question, communication, language and techniques of argumentation: studies between the practical and theoretical dimen- sions of argumentation, as well as the relationships between argumentation and other modes of communication, reception, persuasion and power: studies in which reasoning practice is considered from the point of view of its capacity to produce conviction of persuasion, and focusing on understanding what makes an argument performative, Diachronic transformations of reasoning practices studies that emphasize the invention and renewal of reasoning forms, with respect to its performance and its effectiveness.
    [Show full text]
  • Dokument Öffnen (2MB)
    Thomas Becker (Hg.) Zwischen Diktatur und Neubeginn Die Universität Bonn im ›Dritten Reich‹ und in der Nachkriegszeit V&R unipress Bonn University Press Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. ISBN 978-3-89971-440-1 Veröffentlichungen der Bonn University Press erscheinen im Verlag V&R unipress GmbH. © 2008, V&R unipress in Göttingen / www.vr-unipress.de Alle Rechte vorbehalten. Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Verwertung in anderen als den gesetzlich zugelassenen Fällen bedarf der vorherigen schriftlichen Einwilligung des Verlages. Hinweis zu § 52a UrhG: Weder das Werk noch seine Teile dürfen ohne vorherige schriftliche Einwilligung des Verlages öffentlich zugänglich gemacht werden. Dies gilt auch bei einer entsprechenden Nutzung für Lehr- und Unterrichtszwecke. Printed in Germany. Titelbild: Wiederaufbau am Hofgartenflügel des Hauptgebäudes 1950 (Foto: Klapdor) Gedruckt auf alterungsbeständigem Papier Inhalt EINLEITUNG ..............................................................................................................7 TEIL I – UNIVERSITÄT UND NATIONALSOZIALISMUS KLAUS HILDEBRAND Universitäten im ›Dritten Reich‹. Eine historische Betrachtung..................................................................................13 WOLFRAM KINZIG Wort Gottes in Trümmern. Karl Barth und die Evangelisch-Theologische
    [Show full text]
  • Existence, Meaning and the Law of Excluded Middle. a Dialogical Approach to Hermann Weyl's Philosophical Considerations
    Existence, Meaning and the Law of Excluded Middle. A dialogical approach to Hermann Weyl’s philosophical considerations Zoe Mcconaughey To cite this version: Zoe Mcconaughey. Existence, Meaning and the Law of Excluded Middle. A dialogical approach to Hermann Weyl’s philosophical considerations. Klesis - Revue philosophique, Klesis, 2020, ”Le tiers exclu” à travers les âges, 46. hal-03036825 HAL Id: hal-03036825 https://hal.archives-ouvertes.fr/hal-03036825 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Klēsis – 2020 : 46 – « Le tiers exclu » à travers les âges EXISTENCE, MEANING AND THE LAW OF EXCLUDED MIDDLE. A DIALOGICAL APPROACH TO HERMANN WEYL’S PHILOSOPHICAL CONSIDERATIONS Zoe McConaughey (Université de Lille, UMR 8163 STL, and UQÀM)1 Abstract Intuitionistic logic is often presented as a proof-based approach to logic, where truth is defined as having a proof. I shall stress another dimension which is also important: that of the constitution of meaning. This dimension of meaning does not reduce to proof, be it actual or potential, as standard presentations of intuitionistic logic put it. The law of ex- cluded middle sits right at the junction between these two dimensions, proof and mean- ing: in intuitionistic logic, there is no proof for the law of excluded middle, but the law of excluded middle is a proposition that does have meaning.
    [Show full text]
  • Philosophy of Science in Germany, 1992–2012: Survey-Based Overview and Quantitative Analysis
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library J Gen Philos Sci (2014) 45:71–160 DOI 10.1007/s10838-014-9270-8 REPORT Philosophy of Science in Germany, 1992–2012: Survey-Based Overview and Quantitative Analysis Matthias Unterhuber • Alexander Gebharter • Gerhard Schurz Published online: 9 November 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract An overview of the German philosophy of science community is given for the years 1992–2012, based on a survey in which 159 philosophers of science in Germany par- ticipated. To this end, the institutional background of the German philosophy of science community is examined in terms of journals, centers, and associations. Furthermore, a quali- tative description and a quantitative analysis of our survey results are presented. Quantitative estimates are given for: (a) academic positions, (b) research foci, (c) philosophers’ of science most important publications, and (d) externally funded projects, where for (c) all survey participants had indicated their five most important publications in philosophy of science. In addition, the survey results for (a)–(c) are also qualitatively described, as they are interesting in their own right. With respect to (a), we estimated the gender distribution among academic positions. Concerning (c), we quantified philosophers’ of science preference for (i) journals and publishers, (ii) publication format, (iii) language, and (iv) coauthorship for their most important publications. With regard to research projects, we determined their (i) prevalence, (ii) length, and (iii) trend (an increase in number?) as well as their most frequent (iv) research foci and (v) funding organizations.
    [Show full text]