What Is Mathematics: Gödel's Theorem and Around. by Karlis

Total Page:16

File Type:pdf, Size:1020Kb

What Is Mathematics: Gödel's Theorem and Around. by Karlis 1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27 1.5. Hilbert's Program..................................................................................30 1.6. Some Replies to Critics.........................................................................32 2. Axiomatic Set Theory...................................................................................36 2.1. The Origin of Cantor's Set Theory........................................................36 2.2 Formalization of Cantor's Inconsistent Set Theory................................42 2.3. Zermelo-Fraenkel Axioms....................................................................47 2.4. Around the Continuum Problem...........................................................65 2.4.1. Counting Infinite Sets........................................................................65 2.4.2. Axiom of Constructibility..................................................................74 2.4.3. Axiom of Determinacy.......................................................................77 2.4.4. Large Cardinal Axioms......................................................................80 2.4.5. Ackermann's Set Theory....................................................................89 3. First Order Arithmetic..................................................................................93 3.1. From Peano Axioms to First Order Arithmetic.....................................93 3.2. How to Find Arithmetic in Other Formal Theories............................106 3.3. Representation Theorem.....................................................................110 4. Hilbert's Tenth Problem..............................................................................122 4.1. History of the Problem. Story of the Solution....................................122 4.2. Plan of the Proof.................................................................................135 4.3. Investigation of Fermat's Equation.....................................................138 4.4. Diophantine Representation of Solutions of Fermat's Equation.........144 4.5. Diophantine Representation of the Exponential Function..................148 4.6. Diophantine Representation of Binomial Coefficients and the Factorial Function.....................................................................................................150 4.7. Elimination of Restricted Universal Quantifiers................................153 4.8. 30 Ans Apres.......................................................................................158 5. Incompleteness Theorems..........................................................................160 5.1. Liar's Paradox.....................................................................................160 5.2. Arithmetization and Self-Reference Lemma......................................162 5.3. Gödel's Incompleteness Theorem.......................................................166 5.4. Gödel's Second Incompleteness Theorem..........................................179 6. Around Gödel's Theorem............................................................................188 6.1. Methodological Consequences...........................................................188 6.2. Double Incompleteness Theorem.......................................................193 6.3. Is Mathematics "Creative"?................................................................197 3 6.4. On the Length of Proofs......................................................................201 6.5. Diophantine Incompleteness Theorem: Natural Number System Evolving?...................................................................................................205 6.6. Löb's Theorem....................................................................................208 6.7. Consistent Universal Statements Are Provable..................................209 6.8. Berry's Paradox and Incompleteness. Chaitin's Theorem...................214 Appendix 1. About Model Theory..................................................................222 Appendix 2. Around Ramsey's Theorem........................................................230 Appendix 3. Elements of Category Theory (under construction)..................242 4 References Barwise J. (1942-2000) [1977] Handbook of Mathematical Logic, Elsevier Science Ltd., 1977, 1166 pp. (Russian translation available) Brouwer L. E. J. [1912] Intuitionism and formalism. Inaugural address at the University of Amsterdam (October, 14, 1912). Published in Bull. Amer. Math. Soc., 1913, vol. 20, pp.81-96 (online copy). van Dantzig D. [1955] Is 10**10**10 a finite number? "Dialectica", 1955, vol.9, N 3/4, pp. 273-278 Detlovs V., Podnieks K. [2000] Introduction to Mathematical Logic. Hyper-textbook for students, 2000-2013. Available online. Devlin K. J. [1977] The axiom of constructibility. A guide for the mathematician. "Lecture notes in mathematics", vol. 617, Springer-Verlag, Berlin – Heidelberg – New York, 1977, 96 pp. Feferman S., Friedman H. M., Maddy P., Steel J. R. [2000] Does mathematics need new axioms? "The Bulletin of Symbolic Logic", 2000, vol.6, N 4, pp. 401-446 (see online copy at www.math.ucla.edu/~asl/bsl/0604/0604-001.ps). Hadamard J. [1945] An essay on the psychology of invention in the mathematical field. Princeton, 1945, 143 pp. (Russian translation available) Heijenoort van J. [1967] From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Harvard University Press, 1967, 680 pp. Hersh R. [1979] Some Proposals for Reviving the Philosophy of Mathematics. "Advances in Mathematics", 1979, vol. 31, pp. 31-50. Jech T. Lectures in set theory with particular emphasis on the method of forcing. "Lecture Notes in Mathematics", vol. 217, Springer-Verlag, Berlin – 5 Heidelberg – New York, 1971 (Russian translation available) Keldysh L. V. [1974] The ideas of N.N.Luzin in descriptive set theory. Russian Mathematical Surveys, 1974, vol. 29, N 5, pp. 179-193 (Russian original: Uspekhi matematicheskih nauk, 1974, vol. 29, N 5, pp. 183-196). Mendelson E. [1997] Introduction to Mathematical Logic. Fourth Edition. International Thomson Publishing, 1997, 440 pp. (Russian translation available) Parikh R. [1971] Existence and Feasibility in Arithmetic. JSL, 1971, Vol.36, N 3, pp.494-508. Podnieks K. M. [1975] The double-incompleteness theorem. Scientific Proceedings of Latvia State University, 1975, Vol.233, pp. 191-200 (in Russian, online copy: PDF). Podnieks K. M. [1976] The double-incompleteness theorem. Proceedings of Fourth All-Union Conference on Mathematical Logic, 1976, Kishinev, p.118 (in Russian, online copy: PDF, English translation: Section 6.2). Podnieks K. M. [1988a] Platonism, Intuition and the Nature of Mathematics. "Heyting'88. Summer School & Conference on Mathematical Logic. Chaika, Bulgaria, September 1988. Abstracts.", Sofia, Bulgarian Academy of Sciences, 1988, pp.50-51 (online copy: PDF). Podnieks K. M. [1988b] Platonism, Intuition and the Nature of Mathematics. Riga, Latvian State University, 1988, 23 pp. (in Russian). Podnieks K. M. [1981, 1992] Around Gödel's theorem. Latvian State University Press, Riga, 1981, 105 pp. (in Russian). 2nd edition: "Zinatne", Riga, 1992, 191 pp. (in Russian). Poincare H. [1908] Science et methode. Paris, 1908, 311 pp. (Russian translation available) Rashevsky P. K. [1973] (translated also as Rashevskii) On the dogma of natural numbers. Uspekhi matematicheskih nauk, 1973, vol.28, N 4, pp.243-246 (in Russian). See also Russian Mathematical Surveys, 1973, vol.28, N4, 143-148 (online copy). 6 1. Platonism, intuition and the nature of mathematics This chapter presents an extended the translation of the paper: K. Podnieks. Platonism, intuition and the nature of mathematics. In: Semiotika i informatika, Moscow, VINITI, 1990, Vol. 31, pp. 150-180 (in Russian). It was included also as the first chapter into my book "Around Gödel's theorem" published in 1992 in Russian. View onlinee
Recommended publications
  • Redalyc.Sets and Pluralities
    Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Gustavo Fernández Díez Sets and Pluralities Revista Colombiana de Filosofía de la Ciencia, vol. IX, núm. 19, 2009, pp. 5-22, Universidad El Bosque Colombia Available in: http://www.redalyc.org/articulo.oa?id=41418349001 Revista Colombiana de Filosofía de la Ciencia, ISSN (Printed Version): 0124-4620 [email protected] Universidad El Bosque Colombia How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Sets and Pluralities1 Gustavo Fernández Díez2 Resumen En este artículo estudio el trasfondo filosófico del sistema de lógica conocido como “lógica plural”, o “lógica de cuantificadores plurales”, de aparición relativamente reciente (y en alza notable en los últimos años). En particular, comparo la noción de “conjunto” emanada de la teoría axiomática de conjuntos, con la noción de “plura- lidad” que se encuentra detrás de este nuevo sistema. Mi conclusión es que los dos son completamente diferentes en su alcance y sus límites, y que la diferencia proviene de las diferentes motivaciones que han dado lugar a cada uno. Mientras que la teoría de conjuntos es una teoría genuinamente matemática, que tiene el interés matemático como ingrediente principal, la lógica plural ha aparecido como respuesta a considera- ciones lingüísticas, relacionadas con la estructura lógica de los enunciados plurales del inglés y el resto de los lenguajes naturales. Palabras clave: conjunto, teoría de conjuntos, pluralidad, cuantificación plural, lógica plural. Abstract In this paper I study the philosophical background of the relatively recent (and in the last few years increasingly flourishing) system of logic called “plural logic”, or “logic of plural quantifiers”.
    [Show full text]
  • Paradox Philosophy
    Paradox Philosophy Course at Akita International University Philipp Blum, University of Lucerne, [email protected] https://philipp.philosophie.ch/teaching/paradoxes20.html Summary of the course, version of February 17, 2020 Contents 1 Administrative info 2 2 What is a paradox? 3 3 Mathematical Paradoxes 4 3.1 Things and their groupings .............................. 4 3.2 Cantor and modern set theory ............................ 4 3.3 Frege’s definition of number and Russell’s paradox ................. 6 4 Physical Paradoxes 7 4.1 Zeno’s paradoxes .................................... 7 4.2 Not easily solved by the modern calculus ....................... 9 4.3 Whitehead’s lesson: becoming is not continuous ................... 9 4.4 Russell’s lesson: the at-at theory of motion ..................... 10 4.5 Black’s lesson: the problem of hypertasks ...................... 11 4.6 Background 1: the line and the points ........................ 11 4.7 Background 2: the metaphysics of persistence and the problem of change . 12 5 Semantic Paradoxes 13 5.1 Truth and Falsity .................................... 13 5.2 The Liar ......................................... 14 5.3 The Strengthened Liar ................................. 15 5.4 A Spicy Curry ..................................... 15 5.5 Having fun with liars and curries ........................... 16 5.6 The Sorites paradox .................................. 17 6 Paradoxes of Rationality 18 6.1 Surprise Exam ..................................... 18 6.2 Prisoners’ Dilemma ..................................
    [Show full text]
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • Arxiv:1804.02439V1
    DATHEMATICS: A META-ISOMORPHIC VERSION OF ‘STANDARD’ MATHEMATICS BASED ON PROPER CLASSES DANNY ARLEN DE JESUS´ GOMEZ-RAM´ ´IREZ ABSTRACT. We show that the (typical) quantitative considerations about proper (as too big) and small classes are just tangential facts regarding the consistency of Zermelo-Fraenkel Set Theory with Choice. Effectively, we will construct a first-order logic theory D-ZFC (Dual theory of ZFC) strictly based on (a particular sub-collection of) proper classes with a corresponding spe- cial membership relation, such that ZFC and D-ZFC are meta-isomorphic frameworks (together with a more general dualization theorem). More specifically, for any standard formal definition, axiom and theorem that can be described and deduced in ZFC, there exists a corresponding ‘dual’ ver- sion in D-ZFC and vice versa. Finally, we prove the meta-fact that (classic) mathematics (i.e. theories grounded on ZFC) and dathematics (i.e. dual theories grounded on D-ZFC) are meta-isomorphic. This shows that proper classes are as suitable (primitive notions) as sets for building a foundational framework for mathematics. Mathematical Subject Classification (2010): 03B10, 03E99 Keywords: proper classes, NBG Set Theory, equiconsistency, meta-isomorphism. INTRODUCTION At the beginning of the twentieth century there was a particular interest among mathematicians and logicians in finding a general, coherent and con- sistent formal framework for mathematics. One of the main reasons for this was the discovery of paradoxes in Cantor’s Naive Set Theory and related sys- tems, e.g., Russell’s, Cantor’s, Burati-Forti’s, Richard’s, Berry’s and Grelling’s paradoxes [12], [4], [14], [3], [6] and [11].
    [Show full text]
  • Set-Theoretic Foundations1
    To appear in A. Caicedo et al, eds., Foundations of Mathematics, (Providence, RI: AMS). Set-theoretic Foundations1 It’s more or less standard orthodoxy these days that set theory - - ZFC, extended by large cardinals -- provides a foundation for classical mathematics. Oddly enough, it’s less clear what ‘providing a foundation’ comes to. Still, there are those who argue strenuously that category theory would do this job better than set theory does, or even that set theory can’t do it at all, and that category theory can. There are also those insist that set theory should be understood, not as the study of a single universe, V, purportedly described by ZFC + LCs, but as the study of a so-called ‘multiverse’ of set-theoretic universes -- while retaining its foundational role. I won’t pretend to sort out all these complex and contentious matters, but I do hope to compile a few relevant observations that might help bring illumination somewhat closer to hand. 1 It’s an honor to be included in this 60th birthday tribute to Hugh Woodin, who’s done so much to further, and often enough to re-orient, research on the fundamentals of contemporary set theory. I’m grateful to the organizers for this opportunity, and especially, to Professor Woodin for his many contributions. 2 I. Foundational uses of set theory The most common characterization of set theory’s foundational role, the characterization found in textbooks, is illustrated in the opening sentences of Kunen’s classic book on forcing: Set theory is the foundation of mathematics. All mathematical concepts are defined in terms of the primitive notions of set and membership.
    [Show full text]
  • (Aka “Geometric”) Iff It Is Axiomatised by “Coherent Implications”
    GEOMETRISATION OF FIRST-ORDER LOGIC ROY DYCKHOFF AND SARA NEGRI Abstract. That every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem's argument from 1920 for his \Normal Form" theorem. \Geometric" being the infinitary version of \coherent", it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms. x1. Introduction. A theory is \coherent" (aka \geometric") iff it is axiomatised by \coherent implications", i.e. formulae of a certain simple syntactic form (given in Defini- tion 2.4). That every first-order theory has a coherent conservative extension is regarded by some as obvious (and trivial) and by others (including ourselves) as non- obvious, remarkable and valuable; it is neither well-enough known nor easily found in the literature. We came upon the result (and our first proof) while clarifying an argument from our paper [17].
    [Show full text]
  • Singular Cardinals: from Hausdorff's Gaps to Shelah's Pcf Theory
    SINGULAR CARDINALS: FROM HAUSDORFF’S GAPS TO SHELAH’S PCF THEORY Menachem Kojman 1 PREFACE The mathematical subject of singular cardinals is young and many of the math- ematicians who made important contributions to it are still active. This makes writing a history of singular cardinals a somewhat riskier mission than writing the history of, say, Babylonian arithmetic. Yet exactly the discussions with some of the people who created the 20th century history of singular cardinals made the writing of this article fascinating. I am indebted to Moti Gitik, Ronald Jensen, Istv´an Juh´asz, Menachem Magidor and Saharon Shelah for the time and effort they spent on helping me understand the development of the subject and for many illuminations they provided. A lot of what I thought about the history of singular cardinals had to change as a result of these discussions. Special thanks are due to Istv´an Juh´asz, for his patient reading for me from the Russian text of Alexandrov and Urysohn’s Memoirs, to Salma Kuhlmann, who directed me to the definition of singular cardinals in Hausdorff’s writing, and to Stefan Geschke, who helped me with the German texts I needed to read and sometimes translate. I am also indebted to the Hausdorff project in Bonn, for publishing a beautiful annotated volume of Hausdorff’s monumental Grundz¨uge der Mengenlehre and for Springer Verlag, for rushing to me a free copy of this book; many important details about the early history of the subject were drawn from this volume. The wonderful library and archive of the Institute Mittag-Leffler are a treasure for anyone interested in mathematics at the turn of the 20th century; a particularly pleasant duty for me is to thank the institute for hosting me during my visit in September of 2009, which allowed me to verify various details in the early research literature, as well as providing me the company of many set theorists and model theorists who are interested in the subject.
    [Show full text]
  • Are Large Cardinal Axioms Restrictive?
    Are Large Cardinal Axioms Restrictive? Neil Barton∗ 24 June 2020y Abstract The independence phenomenon in set theory, while perva- sive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality prin- ciples depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. I argue, however, that large cardi- nals are still important axioms of set theory and can play many of their usual foundational roles. Introduction Large cardinal axioms are widely viewed as some of the best candi- dates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical con- sequences for questions independent from ZFC (such as consistency statements and Projective Determinacy1), and appear natural to the ∗Fachbereich Philosophie, University of Konstanz. E-mail: neil.barton@uni- konstanz.de. yI would like to thank David Aspero,´ David Fernandez-Bret´ on,´ Monroe Eskew, Sy-David Friedman, Victoria Gitman, Luca Incurvati, Michael Potter, Chris Scam- bler, Giorgio Venturi, Matteo Viale, Kameryn Williams and audiences in Cambridge, New York, Konstanz, and Sao˜ Paulo for helpful discussion. Two anonymous ref- erees also provided helpful comments, and I am grateful for their input. I am also very grateful for the generous support of the FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme) and the VolkswagenStiftung through the project Forcing: Conceptual Change in the Foundations of Mathematics.
    [Show full text]
  • Geometry and Categoricity∗
    Geometry and Categoricity∗ John T. Baldwiny University of Illinois at Chicago July 5, 2010 1 Introduction The introduction of strongly minimal sets [BL71, Mar66] began the idea of the analysis of models of categorical first order theories in terms of combinatorial geometries. This analysis was made much more precise in Zilber’s early work (collected in [Zil91]). Shelah introduced the idea of studying certain classes of stable theories by a notion of independence, which generalizes a combinatorial geometry, and characterizes models as being prime over certain independent trees of elements. Zilber’s work on finite axiomatizability of totally categorical first order theories led to the development of geometric stability theory. We discuss some of the many applications of stability theory to algebraic geometry (focusing on the role of infinitary logic). And we conclude by noting the connections with non-commutative geometry. This paper is a kind of Whig history- tying into a (I hope) coherent and apparently forward moving narrative what were in fact a number of independent and sometimes conflicting themes. This paper developed from talk at the Boris-fest in 2010. But I have tried here to show how the ideas of Shelah and Zilber complement each other in the development of model theory. Their analysis led to frameworks which generalize first order logic in several ways. First they are led to consider more powerful logics and then to more ‘mathematical’ investigations of classes of structures satisfying appropriate properties. We refer to [Bal09] for expositions of many of the results; that’s why that book was written. It contains full historical references.
    [Show full text]
  • Ineffability Within the Limits of Abstraction Alone
    Ineffability within the Limits of Abstraction Alone Stewart Shapiro and Gabriel Uzquiano 1 Abstraction and iteration The purpose of this article is to assess the prospects for a Scottish neo-logicist foundation for a set theory. The gold standard would be a theory as rich and useful as the dominant one, ZFC, Zermelo-Fraenkel set theory with choice, perhaps aug- mented with large cardinal principles. Although the present paper is self-contained, we draw upon recent work in [32] in which we explore the power of a reasonably pure principle of reflection. To establish terminology, the Scottish neo-logicist program is to develop branches of mathematics using abstraction principles in the form: xα = xβ $ α ∼ β where the variables α and β range over items of a certain sort, x is an operator taking items of this sort to objects, and ∼ is an equivalence relation on this sort of item. The standard exemplar, of course, is Hume’s principle: #F = #G ≡ F ≈ G where, as usual, F ≈ G is an abbreviation of the second-order statement that there is a one-one correspondence from F onto G. Hume’s principle, is the main support for what is regarded as a success-story for the Scottish neo-logicist program, at least by its advocates. The search is on to develop more powerful mathematical theories on a similar basis. As witnessed by this volume and a significant portion of the contemporary liter- ature in the philosophy of mathematics, Scottish neo-logicism remains controver- sial, even for arithmetic. There are, for example, issues of Caesar and Bad Com- pany to deal with.
    [Show full text]
  • Coll041-Endmatter.Pdf
    http://dx.doi.org/10.1090/coll/041 AMERICAN MATHEMATICAL SOCIETY COLLOQUIUM PUBLICATIONS VOLUME 41 A FORMALIZATION OF SET THEORY WITHOUT VARIABLES BY ALFRED TARSKI and STEVEN GIVANT AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1985 Mathematics Subject Classification. Primar y 03B; Secondary 03B30 , 03C05, 03E30, 03G15. Library o f Congres s Cataloging-in-Publicatio n Dat a Tarski, Alfred . A formalization o f se t theor y withou t variables . (Colloquium publications , ISS N 0065-9258; v. 41) Bibliography: p. Includes indexes. 1. Se t theory. 2 . Logic , Symboli c an d mathematical . I . Givant, Steve n R . II. Title. III. Series: Colloquium publications (American Mathematical Society) ; v. 41. QA248.T37 198 7 511.3'2 2 86-2216 8 ISBN 0-8218-1041-3 (alk . paper ) Copyright © 198 7 b y th e America n Mathematica l Societ y Reprinted wit h correction s 198 8 All rights reserve d excep t thos e grante d t o th e Unite d State s Governmen t This boo k ma y no t b e reproduce d i n an y for m withou t th e permissio n o f th e publishe r The pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . @ Contents Section interdependenc e diagram s vii Preface x i Chapter 1 . Th e Formalis m £ o f Predicate Logi c 1 1.1. Preliminarie s 1 1.2.
    [Show full text]
  • The Z of ZF and ZFC and ZF¬C
    From SIAM News , Volume 41, Number 1, January/February 2008 The Z of ZF and ZFC and ZF ¬C Ernst Zermelo: An Approach to His Life and Work. By Heinz-Dieter Ebbinghaus, Springer, New York, 2007, 356 pages, $64.95. The Z, of course, is Ernst Zermelo (1871–1953). The F, in case you had forgotten, is Abraham Fraenkel (1891–1965), and the C is the notorious Axiom of Choice. The book under review, by a prominent logician at the University of Freiburg, is a splendid in-depth biography of a complex man, a treatment that shies away neither from personal details nor from the mathematical details of Zermelo’s creations. BOOK R EV IEW Zermelo was a Berliner whose early scientific work was in applied By Philip J. Davis mathematics: His PhD thesis (1894) was in the calculus of variations. He had thought about this topic for at least ten additional years when, in 1904, in collaboration with Hans Hahn, he wrote an article on the subject for the famous Enzyclopedia der Mathematische Wissenschaften . In point of fact, though he is remembered today primarily for his axiomatization of set theory, he never really gave up applications. In his Habilitation thesis (1899), Zermelo was arguing with Ludwig Boltzmann about the foun - dations of the kinetic theory of heat. Around 1929, he was working on the problem of the path of an airplane going in minimal time from A to B at constant speed but against a distribution of winds. This was a problem that engaged Levi-Civita, von Mises, Carathéodory, Philipp Frank, and even more recent investigators.
    [Show full text]