The Strength of Mac Lane Set Theory

Total Page:16

File Type:pdf, Size:1020Kb

The Strength of Mac Lane Set Theory The Strength of Mac Lane Set Theory A. R. D. MATHIAS D´epartement de Math´ematiques et Informatique Universit´e de la R´eunion To Saunders Mac Lane on his ninetieth birthday Abstract AUNDERS MAC LANE has drawn attention many times, particularly in his book Mathematics: Form and S Function, to the system ZBQC of set theory of which the axioms are Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the principle, TCo, of Transitive Containment, we shall refer as MAC. His system is naturally related to systems derived from topos-theoretic notions concerning the category of sets, and is, as Mac Lane emphasizes, one that is adequate for much of mathematics. In this paper we show that the consistency strength of Mac Lane's system is not increased by adding the axioms of Kripke{Platek set theory and even the Axiom of Constructibility to Mac Lane's axioms; our method requires a close study of Axiom H, which was proposed by Mitchell; we digress to apply these methods to subsystems of Zermelo set theory Z, and obtain an apparently new proof that Z is not finitely axiomatisable; we study Friedman's strengthening KPP + AC of KP + MAC, and the Forster{Kaye subsystem KF of MAC, and use forcing over ill-founded models and forcing to establish independence results concerning MAC and KPP ; we show, again using ill-founded models, that KPP + V = L proves the consistency of KPP ; turning to systems that are type-theoretic in spirit or in fact, we show by arguments of Coret and Boffa that KF proves a weak form of Stratified Collection, and that MAC + KP is a conservative extension of MAC for stratified sentences, from which we deduce that MAC proves a strong stratified version of KP; we analyse the known equiconsistency of MAC with the simple theory of types and give Lake's proof that an instance of Mathematical Induction is unprovable in Mac Lane's system; we study a simple set theoretic assertion | namely that there exists an infinite set of infinite sets, no two of which have the same cardinal | and use it to establish the failure of the full schema of Stratified Collection in Z; and we determine the point of failure of various other schemata in MAC. The paper closes with some philosophical remarks. Mathematics Subject Classification (2000): Primary: 03A30, 03B15, 03B30, 03C30, 03E35, 03E40, 03E45, 03H05. Secondary: 03A05, 03B70, 03C62, 03C70, 18A15. key words and phrases: Mac Lane set theory, Kripke{Platek set theory, Axiom H spectacles, Mostowski's principle, constructibility, forcing over non-standard models, power-admissible set, Forster{Kaye set theory, stratifiable formula, conservative extension, simple theory of types, failure of collection, failure of induction. Postal address: D´epartement de Math´ematiques et Informatique, Universit´e de la R´eunion, BP 7151, F 97715 St Denis de la R´eunion, Messagerie 9, France outre-mer. Electronic address: [email protected] THE STRENGTH OF MAC LANE SET THEORY ii Table of Contents Section Paragraph Page Page 0 Introduction 4 1 Adding Foundation and Transitive Containment 10 2 Adding Axiom H 14 3 Examination of Axiom H 20 4 Adding KPL to M 24 The simulation of G¨odel's L in the system M by L-strings along well-orderings 24 On elementary submodels 26 G¨odel's operations 28 Condensation for L-strings 30 The construction of G¨odel's L in the system M + H by transitised factored L-strings 31 The construction of G¨odel's L in the system M + H: a direct argument 31 5 The increasing strength of subsystems of Z 33 Proof of Axiom H in KLZ0 33 Σ_ k hulls 34 The minimality axiom 36 A weak fine-structural lemma 37 Consistency proofs for fragments of KLMZ 38 Proving Σk Separation in L 41 A strong fine-structural lemma 41 6 Two independence results and a consistency proof 45 The Takahashi hierarchy 45 Takahashi's reductions 48 Equivalence of KPP and KPs(P) 50 Development of KPP and KPR 52 Well-founded parts of ill-founded models 54 A transitive model of KPP + AC in which every ordinal is recursive 57 A transitive model of KPP + AC + 8κ9κ+ with a long well-ordering of the continuum 58 7 Stratifiable formulæ 60 An embedding elementary for stratifiable formulæ 61 Stratifiable schemata provable in MAC 62 Coret's argument in KF and MAC 62 8 The simple theory of types 64 The system TST 64 The interpretation of TST in KF 65 A direct limit of types: the method of Forster and Kaye 65 Kemeny's Princeton Thesis of 1949 72 Completing the circles 75 9 Limitations of MAC and Z 76 Failure of stratifiable Π1 Collection in Z 76 P Failure of ∆0 and Π1 Replacement in Z 77 Failure of Induction and other schemata in MAC 78 An algebraic illustration 80 Peroration 81 10 Envoi 82 Further reading 84 Acknowledgments 85 Bibliography 86 iii A. R. D. MATHIAS Chart of the set-theoretic systems considered y n dn mt n x Ext ? fx; yg x x r y P(x) Sep Foun TCo ! Choice Repl Coll V=L ON=@! Ax H RAS S0 X X X SX X 6 S1 X X X X X X P P 8 KF X X X X [X] X a-∆0[a-∆0 ] [a-∆0 ] P P M0 X X X X [X] X ∆0[∆0 ] [a-∆0 ] P P 1 M1 X X X X [X] X ∆0[∆0 ] set X [a-∆0 ] P P 8 KFI X X X X [X] X a-∆0[a-∆0 ] AxInf [a-∆0 ] P M X X X X [X] X ∆0[∆0 ] set X X P 10 ZBQC X X X X [X] X ∆0[∆0 ] set X X AC P M X X X X [X] X ∆0[∆0 , a-Σ1] set X X X [oa-Σ1] 10 MOST X X X X [X] X Σ1 set[Σ1; Π1] X X X [Σ1] ∆0[s-Σ1] [X] KP X X X X [X] ∆0[∆1] Π1 [X] ∆0[Σ1] KPI X X X X [X] ∆0[∆1] Π1 [X] X ∆0[Σ1] 4 KPL X X X X [X] ∆0[∆1] Π1 [X] X [X] ∆0[Σ1] X 6 KPR X X X X [X] [X] ∆0[∆1] Π1 [X] X ∆0[Σ1] X P P P P P 6 KP X X X X [X] X ∆0[∆1 ] Π1 [X] X ∆0 [Σ1 ] [X] 5 Zk X X X X [X] X Σk set X 5 KZk X X X X [X] X Σk Π1[Σk; Πk] [X] X ∆0[(s)-Σ1] [k > 1] 5 KLZk X X X X [X] X Σk Π1[Σk; Πk] [X] X [X] ∆0[s-Σ1] X [k > 0] 5 KLMZk X X X X [X] X Σk Π1[Σk; Πk] [X] X [X] ∆0[s-Σ1] X X [k > 2] 7 Z X X X X [X] X full set X [strat] ZC X X X X [X] X full set X X [strat] 5 KLMZ X X X X [X] X full Π1[full] [X] X [X] [strat] ∆0[s-Σ1] X X [X] ZF X X X X [X] X full set[full] [X] X [full] X [•] [X] [X] ZFC X X X X [X] X full set[full] [X] X X [full] X [•] [X] [X] Notes 1. Unexplained terms are defined in the text of the paper. Most systems are introduced in section 0. Under x is given the number of a later section where the given system is discussed. 2. The entries [X] and [•] mean respectively that the statement is derivable or refutable in the given system; not all facts of this nature appear in the chart. 3. In M0, TCo implies the existence of the transitive closure of a set. 4. The equivalence AC () WO of the Axiom of Choice and the Well-ordering Principle is provable in M0, using the power set axiom and the existence of Cartesian products. 5. Save for KFI, those systems with an axiom of infinity take it as asserting the existence of the infinite von Neumann ordinal !. AxInf is the statement that there is a Dedekind infinite set. 6. s-Σ1 collection is strong Σ1 collection; it and Axiom H are provable in KZk for k > 1, and in KLZk for k > 0. Σ1 collection is provable in KZ0; indeed in KP. 7. a-Σ1 means stratified Σ1; o-Σ1 means strong Σ1; oa-Σ1 collection means strong stratified Σ1 collection. 8. RAS is the assertion that 8ζ fx j %(x) < ζg 2 V , where %(x) is the set-theoretical rank of x. 9. Quine's New Foundations, NF, is mentioned briefly in sections 0 and 7, and two versions|TSTI, TST; TKTI, TKT|of the simple theory of types with and without infinity are discussed in section 8. THE STRENGTH OF MAC LANE SET THEORY 4 0: Introduction We describe here the scope and results of this paper in the semi-formal style, customary among logicians, that makes no visual distinction between levels of language; at the end of this introduction we shall summarise certain more rigorous conventions that will be used, with occasional relaxations, in later sections. Our underlying logic is classical throughout the paper. We suppose that set theory is formalised with two primitive notions, 2 and =, a class-forming operator f j : : : g, and apart from the usual quantifiers 8 and 9, restricted quantifiers 8x :2 y and 9x :2 y , (in which x and y are distinct variables) for which the following axioms are provided.
Recommended publications
  • Chapter 1 Preliminaries
    Chapter 1 Preliminaries 1.1 First-order theories In this section we recall some basic definitions and facts about first-order theories. Most proofs are postponed to the end of the chapter, as exercises for the reader. 1.1.1 Definitions Definition 1.1 (First-order theory) —A first-order theory T is defined by: A first-order language L , whose terms (notation: t, u, etc.) and formulas (notation: φ, • ψ, etc.) are constructed from a fixed set of function symbols (notation: f , g, h, etc.) and of predicate symbols (notation: P, Q, R, etc.) using the following grammar: Terms t ::= x f (t1,..., tk) | Formulas φ, ψ ::= t1 = t2 P(t1,..., tk) φ | | > | ⊥ | ¬ φ ψ φ ψ φ ψ x φ x φ | ⇒ | ∧ | ∨ | ∀ | ∃ (assuming that each use of a function symbol f or of a predicate symbol P matches its arity). As usual, we call a constant symbol any function symbol of arity 0. A set of closed formulas of the language L , written Ax(T ), whose elements are called • the axioms of the theory T . Given a closed formula φ of the language of T , we say that φ is derivable in T —or that φ is a theorem of T —and write T φ when there are finitely many axioms φ , . , φ Ax(T ) such ` 1 n ∈ that the sequent φ , . , φ φ (or the formula φ φ φ) is derivable in a deduction 1 n ` 1 ∧ · · · ∧ n ⇒ system for classical logic. The set of all theorems of T is written Th(T ). Conventions 1.2 (1) In this course, we only work with first-order theories with equality.
    [Show full text]
  • A Taste of Set Theory for Philosophers
    Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics.
    [Show full text]
  • Epistemological Consequences of the Incompleteness Theorems
    Epistemological Consequences of the Incompleteness Theorems Giuseppe Raguní UCAM - Universidad Católica de Murcia, Avenida Jerónimos 135, Guadalupe 30107, Murcia, Spain - [email protected] After highlighting the cases in which the semantics of a language cannot be mechanically reproduced (in which case it is called inherent), the main episte- mological consequences of the first incompleteness Theorem for the two funda- mental arithmetical theories are shown: the non-mechanizability for the truths of the first-order arithmetic and the peculiarities for the model of the second- order arithmetic. Finally, the common epistemological interpretation of the second incompleteness Theorem is corrected, proposing the new Metatheorem of undemonstrability of internal consistency. KEYWORDS: semantics, languages, epistemology, paradoxes, arithmetic, in- completeness, first-order, second-order, consistency. 1 Semantics in the Languages Consider an arbitrary language that, as normally, makes use of a countable1 number of characters. Combining these characters in certain ways, are formed some fundamental strings that we call terms of the language: those collected in a dictionary. When the terms are semantically interpreted, i. e. a certain meaning is assigned to them, we have their distinction in adjectives, nouns, verbs, etc. Then, a proper grammar establishes the rules arXiv:1602.03390v1 [math.GM] 13 Jan 2016 of formation of sentences. While the terms are finite, the combinations of grammatically allowed terms form an infinite-countable amount of possible sentences. In a non-trivial language, the meaning associated to each term, and thus to each ex- pression that contains it, is not always unique. The same sentence can enunciate different things, so representing different propositions.
    [Show full text]
  • Automated ZFC Theorem Proving with E
    Automated ZFC Theorem Proving with E John Hester Department of Mathematics, University of Florida, Gainesville, Florida, USA https://people.clas.ufl.edu/hesterj/ [email protected] Abstract. I introduce an approach for automated reasoning in first or- der set theories that are not finitely axiomatizable, such as ZFC, and describe its implementation alongside the automated theorem proving software E. I then compare the results of proof search in the class based set theory NBG with those of ZFC. Keywords: ZFC · ATP · E. 1 Introduction Historically, automated reasoning in first order set theories has faced a fun- damental problem in the axiomatizations. Some theories such as ZFC widely considered as candidates for the foundations of mathematics are not finitely axiomatizable. Axiom schemas such as the schema of comprehension and the schema of replacement in ZFC are infinite, and so cannot be entirely incorpo- rated in to the prover at the beginning of a proof search. Indeed, there is no finite axiomatization of ZFC [1]. As a result, when reasoning about sufficiently strong set theories that could no longer be considered naive, some have taken the alternative approach of using extensions of ZFC that admit objects such as proper classes as first order objects, but this is not without its problems for the individual interested in proving set-theoretic propositions. As an alternative, I have programmed an extension to the automated the- orem prover E [2] that generates instances of parameter free replacement and comprehension from well formuled formulas of ZFC that are passed to it, when eligible, and adds them to the proof state while the prover is running.
    [Show full text]
  • Arxiv:1804.02439V1
    DATHEMATICS: A META-ISOMORPHIC VERSION OF ‘STANDARD’ MATHEMATICS BASED ON PROPER CLASSES DANNY ARLEN DE JESUS´ GOMEZ-RAM´ ´IREZ ABSTRACT. We show that the (typical) quantitative considerations about proper (as too big) and small classes are just tangential facts regarding the consistency of Zermelo-Fraenkel Set Theory with Choice. Effectively, we will construct a first-order logic theory D-ZFC (Dual theory of ZFC) strictly based on (a particular sub-collection of) proper classes with a corresponding spe- cial membership relation, such that ZFC and D-ZFC are meta-isomorphic frameworks (together with a more general dualization theorem). More specifically, for any standard formal definition, axiom and theorem that can be described and deduced in ZFC, there exists a corresponding ‘dual’ ver- sion in D-ZFC and vice versa. Finally, we prove the meta-fact that (classic) mathematics (i.e. theories grounded on ZFC) and dathematics (i.e. dual theories grounded on D-ZFC) are meta-isomorphic. This shows that proper classes are as suitable (primitive notions) as sets for building a foundational framework for mathematics. Mathematical Subject Classification (2010): 03B10, 03E99 Keywords: proper classes, NBG Set Theory, equiconsistency, meta-isomorphism. INTRODUCTION At the beginning of the twentieth century there was a particular interest among mathematicians and logicians in finding a general, coherent and con- sistent formal framework for mathematics. One of the main reasons for this was the discovery of paradoxes in Cantor’s Naive Set Theory and related sys- tems, e.g., Russell’s, Cantor’s, Burati-Forti’s, Richard’s, Berry’s and Grelling’s paradoxes [12], [4], [14], [3], [6] and [11].
    [Show full text]
  • (Aka “Geometric”) Iff It Is Axiomatised by “Coherent Implications”
    GEOMETRISATION OF FIRST-ORDER LOGIC ROY DYCKHOFF AND SARA NEGRI Abstract. That every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem's argument from 1920 for his \Normal Form" theorem. \Geometric" being the infinitary version of \coherent", it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms. x1. Introduction. A theory is \coherent" (aka \geometric") iff it is axiomatised by \coherent implications", i.e. formulae of a certain simple syntactic form (given in Defini- tion 2.4). That every first-order theory has a coherent conservative extension is regarded by some as obvious (and trivial) and by others (including ourselves) as non- obvious, remarkable and valuable; it is neither well-enough known nor easily found in the literature. We came upon the result (and our first proof) while clarifying an argument from our paper [17].
    [Show full text]
  • John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
    John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”.
    [Show full text]
  • 1.4 Theories
    1.4 Theories Before we start to work with one of the most central notions of mathematical logic – that of a theory – it will be useful to make some observations about countable sets. Lemma 1.3. 1. A set X is countable iff there is a surjection ψ : N X. 2. If X is countable and Y X then Y is countable. 3. If X and Y are countable, then X Y is countable. 4. If X and Y are countable, then X ¢ Y is countable. k 5. If X is countable and k 1 then X is countable. ä 6. If Xi is countable for each i È N, then Xi is countable. iÈN 7. If X is countable, then ä Xk is countable. k ÈN Ø Ù Proof. 1. If X is countably infinite note that every bijection is a surjection. If X x0,...,xn Õ Ô Õ is finite, let ψ Ôi xi for 0 i n and ψ j xn for j n. For the other direction, Ô Õ Ô Õ Ô Õ Ù let ψ be a surjection, then X is Øψ 0 , ψ 1 , ψ 2 ,... and removing duplicates from the Ô ÕÕ Ô N sequence ψ i i¥0 yields a bijective ϕ : X. È 2. Obvious if Y is finite. Otherwise, let ϕ : N X be a bijection and let y0 Y . Define " Õ Ô Õ È ϕÔn if ϕ n Y ψ : N Y,n y0 otherwise which is a surjection. 3. Let ϕ : N X and ψ : N Y be bijections.
    [Show full text]
  • Lipics-FSCD-2021-29.Pdf (0.9
    On the Logical Strength of Confluence and Normalisation for Cyclic Proofs Anupam Das ! Ï University of Birmingham, UK Abstract In this work we address the logical strength of confluence and normalisation for non-wellfounded typing derivations, in the tradition of “cyclic proof theory” . We present a circular version CT of Gödel’ s system T, with the aim of comparing the relative expressivity of the theories CT and T. We approach this problem by formalising rewriting-theoretic results such as confluence and normalisation for the underlying “coterm” rewriting system of CT within fragments of second-order arithmetic. We establish confluence of CT within the theory RCA0, a conservative extension of primitive recursive arithmetic and IΣ1. This allows us to recast type structures of hereditarily recursive operations as “coterm” models of T. We show that these also form models of CT, by formalising a totality argument for circular typing derivations within suitable fragments of second-order arithmetic. Relying on well-known proof mining results, we thus obtain an interpretation of CT into T; in fact, more precisely, we interpret level-n-CT into level-(n + 1)-T, an optimum result in terms of abstraction complexity. A direct consequence of these model-theoretic results is weak normalisation for CT. As further results, we also show strong normalisation for CT and continuity of functionals computed by its type 2 coterms. 2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory of computation → Proof theory; Theory of computation → Higher order logic; Theory of computation → Lambda calculus Keywords and phrases confluence, normalisation, system T, circular proofs, reverse mathematics, type structures Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.29 Related Version This work is based on part of the following preprint, where related results, proofs and examples may be found.
    [Show full text]
  • Coll041-Endmatter.Pdf
    http://dx.doi.org/10.1090/coll/041 AMERICAN MATHEMATICAL SOCIETY COLLOQUIUM PUBLICATIONS VOLUME 41 A FORMALIZATION OF SET THEORY WITHOUT VARIABLES BY ALFRED TARSKI and STEVEN GIVANT AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1985 Mathematics Subject Classification. Primar y 03B; Secondary 03B30 , 03C05, 03E30, 03G15. Library o f Congres s Cataloging-in-Publicatio n Dat a Tarski, Alfred . A formalization o f se t theor y withou t variables . (Colloquium publications , ISS N 0065-9258; v. 41) Bibliography: p. Includes indexes. 1. Se t theory. 2 . Logic , Symboli c an d mathematical . I . Givant, Steve n R . II. Title. III. Series: Colloquium publications (American Mathematical Society) ; v. 41. QA248.T37 198 7 511.3'2 2 86-2216 8 ISBN 0-8218-1041-3 (alk . paper ) Copyright © 198 7 b y th e America n Mathematica l Societ y Reprinted wit h correction s 198 8 All rights reserve d excep t thos e grante d t o th e Unite d State s Governmen t This boo k ma y no t b e reproduce d i n an y for m withou t th e permissio n o f th e publishe r The pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . @ Contents Section interdependenc e diagram s vii Preface x i Chapter 1 . Th e Formalis m £ o f Predicate Logi c 1 1.1. Preliminarie s 1 1.2.
    [Show full text]
  • Inseparability and Conservative Extensions of Description Logic Ontologies: a Survey
    Inseparability and Conservative Extensions of Description Logic Ontologies: A Survey Elena Botoeva1, Boris Konev2, Carsten Lutz3, Vladislav Ryzhikov1, Frank Wolter2, and Michael Zakharyaschev4 1 Free University of Bozen-Bolzano, Italy fbotoeva,[email protected] 2 University of Liverpool, UK fkonev,[email protected] 3 University of Bremen, Germany [email protected] 4 Birkbeck, University of London, UK [email protected] Abstract. The question whether an ontology can safely be replaced by another, possibly simpler, one is fundamental for many ontology engi- neering and maintenance tasks. It underpins, for example, ontology ver- sioning, ontology modularization, forgetting, and knowledge exchange. What `safe replacement' means depends on the intended application of the ontology. If, for example, it is used to query data, then the answers to any relevant ontology-mediated query should be the same over any relevant data set; if, in contrast, the ontology is used for conceptual reasoning, then the entailed subsumptions between concept expressions should coincide. This gives rise to different notions of ontology insep- arability such as query inseparability and concept inseparability, which generalize corresponding notions of conservative extensions. We survey results on various notions of inseparability in the context of descrip- tion logic ontologies, discussing their applications, useful model-theoretic characterizations, algorithms for determining whether two ontologies are inseparable (and, sometimes, for computing the difference between them if they are not), and the computational complexity of this problem. 1 Introduction Description logic (DL) ontologies provide a common vocabulary for a domain of interest together with a formal modeling of the semantics of the vocabulary items (concept names and role names).
    [Show full text]
  • Equivalents to the Axiom of Choice and Their Uses A
    EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper.
    [Show full text]