More Model Theory Notes Miscellaneous Information, Loosely Organized
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Seven Virtues of Simple Type Theory
The Seven Virtues of Simple Type Theory William M. Farmer∗ McMaster University 26 November 2006 Abstract Simple type theory, also known as higher-order logic, is a natural ex- tension of first-order logic which is simple, elegant, highly expressive, and practical. This paper surveys the virtues of simple type theory and attempts to show that simple type theory is an attractive alterna- tive to first-order logic for practical-minded scientists, engineers, and mathematicians. It recommends that simple type theory be incorpo- rated into introductory logic courses offered by mathematics depart- ments and into the undergraduate curricula for computer science and software engineering students. 1 Introduction Mathematicians are committed to rigorous reasoning, but they usually shy away from formal logic. However, when mathematicians really need a for- mal logic—e.g., to teach their students the rules of quantification, to pin down exactly what a “property” is, or to formalize set theory—they almost invariably choose some form of first-order logic. Taking the lead of mathe- maticians, scientists and engineers usually choose first-order logic whenever they need a formal logic to express mathematical models precisely or to study the logical consequences of theories and specifications carefully. In science and engineering as well as in mathematics, first-order logic reigns supreme! A formal logic can be a theoretical tool for studying rigorous reasoning and a practical tool for performing rigorous reasoning. Today mathemati- cians sometimes use formal logics as theoretical tools, but they very rarely ∗ Address: Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada. -
Constructive Models of Uncountably Categorical Theories
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 12, Pages 3711{3719 S 0002-9939(99)04920-5 Article electronically published on May 6, 1999 CONSTRUCTIVE MODELS OF UNCOUNTABLY CATEGORICAL THEORIES BERNHARD HERWIG, STEFFEN LEMPP, AND MARTIN ZIEGLER (Communicated by Carl G. Jockusch, Jr.) Abstract. We construct a strongly minimal (and thus uncountably categori- cal) but not totally categorical theory in a finite language of binary predicates whose only constructive (or recursive) model is the prime model. 0. Introduction Effective (or recursive) model theory studies the degree to which constructions in model theory and algebra can be made effective. A presentation of a count- able model is an isomorphic copy with universe N = !.Aneffective (or computable,orMrecursive) presentation isN one where all the relations, functions, and constants on are given by uniformly computable functions. Now, for a count- able model N of a first-order theory T , there are various degrees to which the constructionM of can be made effective: We call the model constructive (or recursive,orcomputableM ) if it has an effective presentation, orM equivalently if its open diagram (i.e., the collection of all quantifier-free sentences true in ( ;a)a M (in some presentation) is computable (or recursive)). We call the modelM decid-∈ able if its elementary diagram (i.e., the collection of all first-order sentencesM true in ( ;a)a M,insome presentation) is decidable (i.e., computable). Obviously, anyM decidable∈ model is constructive, but the converse fails. In fact, the study of constructive models is much harder than the study of decidable models since, in the former case, much less is known about the first-order theory. -
Beyond First Order Logic: from Number of Structures to Structure of Numbers Part Ii
Bulletin of the Iranian Mathematical Society Vol. XX No. X (201X), pp XX-XX. BEYOND FIRST ORDER LOGIC: FROM NUMBER OF STRUCTURES TO STRUCTURE OF NUMBERS PART II JOHN BALDWIN, TAPANI HYTTINEN AND MEERI KESÄLÄ Communicated by Abstract. The paper studies the history and recent developments in non-elementary model theory focusing in the framework of ab- stract elementary classes. We discuss the role of syntax and seman- tics and the motivation to generalize first order model theory to non-elementary frameworks and illuminate the study with concrete examples of classes of models. This second part continues to study the question of catecoricity transfer and counting the number of structures of certain cardi- nality. We discuss more thoroughly the role of countable models, search for a non-elementary counterpart for the concept of com- pleteness and present two examples: One example answers a ques- tion asked by David Kueker and the other investigates models of Peano Arihmetic and the relation of an elementary end-extension in the terms of an abstract elementary class. Beyond First Order Logic: From number of structures to structure of numbers Part I studied the basic concepts in non-elementary model theory, such as syntax and semantics, the languages Lλκ and the notion of a complete theory in first order logic (i.e. in the language L!!), which determines an elementary class of structures. Classes of structures which cannot be axiomatized as the models of a first-order theory, but might have some other ’logical’ unifying attribute, are called non-elementary. MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50. -
Chapter 1 Preliminaries
Chapter 1 Preliminaries 1.1 First-order theories In this section we recall some basic definitions and facts about first-order theories. Most proofs are postponed to the end of the chapter, as exercises for the reader. 1.1.1 Definitions Definition 1.1 (First-order theory) —A first-order theory T is defined by: A first-order language L , whose terms (notation: t, u, etc.) and formulas (notation: φ, • ψ, etc.) are constructed from a fixed set of function symbols (notation: f , g, h, etc.) and of predicate symbols (notation: P, Q, R, etc.) using the following grammar: Terms t ::= x f (t1,..., tk) | Formulas φ, ψ ::= t1 = t2 P(t1,..., tk) φ | | > | ⊥ | ¬ φ ψ φ ψ φ ψ x φ x φ | ⇒ | ∧ | ∨ | ∀ | ∃ (assuming that each use of a function symbol f or of a predicate symbol P matches its arity). As usual, we call a constant symbol any function symbol of arity 0. A set of closed formulas of the language L , written Ax(T ), whose elements are called • the axioms of the theory T . Given a closed formula φ of the language of T , we say that φ is derivable in T —or that φ is a theorem of T —and write T φ when there are finitely many axioms φ , . , φ Ax(T ) such ` 1 n ∈ that the sequent φ , . , φ φ (or the formula φ φ φ) is derivable in a deduction 1 n ` 1 ∧ · · · ∧ n ⇒ system for classical logic. The set of all theorems of T is written Th(T ). Conventions 1.2 (1) In this course, we only work with first-order theories with equality. -
Notices of the American Mathematical Society
OF THE AMERICAN MATHEMATICAL SOCIETY ISSU! NO. 116 OF THE AMERICAN MATHEMATICAL SOCIETY Edited by Everett Pitcher and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings ••••••••••••••••••••••••••••••••••.• 874 Program of the Meeting in Cambridge, Massachusetts •••.•.••••..•• 875 Abstracts for the Meeting- Pages 947-953 PRELIMINARY ANNOUNCEMENTS OF MEETINGS •••••••••••••••••.•• 878 AN APPEAL FOR PRESERVATION OF ARCHIVAL MATERIALS .•••••••••• 888 CAN MATHEMATICS BE SAVED? ••••••••••.••••••••..•.•••••••.. 89 0 DOCTORATES CONFERRED IN 1968-1969 ••••••••••••••.••••••.•••• 895 VISITING MATHEMATICIANS .•••••••••••••••••••••••••..•••••.. 925 ANNUAL SALARY SURVEY ••••••••••••.••••.••••.•.•.••••••.•• 933 PERSONAL ITEMS •••••••••••••••••••••••••••••...•••••••••• 936 MEMORANDA TO MEMBERS Audio Recordings of Mathematical Lectures ••••••••..•••••.•••.• 940 Travel Grants. International Congress of Mathematicians ••..•.•••••.• 940 Symposia Information Center ••••.•• o o • o ••••• o o •••• 0 •••••••• 940 Colloquium Lectures •••••••••••••••••••••••.• 0 ••••••••••• 941 Mathematical Sciences E'mployment Register .•.••••••..•. o • o ••••• 941 Retired Mathematicians ••••• 0 •••••••• 0 ••••••••••••••••• 0 •• 942 MOS Reprints .•••••• o •• o ••••••••••••••••••••••• o •••••• 942 NEWS ITEMS AND ANNOUNCEMENTS •••••. o •••••••••••••••• 877, 932, 943 ABSTRACTS PRESENTED TO THE SOCIETY •••••.••••.•.•.••..•..•• 947 RESERVATION FORM. o •••••••••••••••••••••••••••••••••••••• 1000 MEETINGS Calendar of Meetings NOTE: This Calendar lists all of the meetings which have -
Automated ZFC Theorem Proving with E
Automated ZFC Theorem Proving with E John Hester Department of Mathematics, University of Florida, Gainesville, Florida, USA https://people.clas.ufl.edu/hesterj/ [email protected] Abstract. I introduce an approach for automated reasoning in first or- der set theories that are not finitely axiomatizable, such as ZFC, and describe its implementation alongside the automated theorem proving software E. I then compare the results of proof search in the class based set theory NBG with those of ZFC. Keywords: ZFC · ATP · E. 1 Introduction Historically, automated reasoning in first order set theories has faced a fun- damental problem in the axiomatizations. Some theories such as ZFC widely considered as candidates for the foundations of mathematics are not finitely axiomatizable. Axiom schemas such as the schema of comprehension and the schema of replacement in ZFC are infinite, and so cannot be entirely incorpo- rated in to the prover at the beginning of a proof search. Indeed, there is no finite axiomatization of ZFC [1]. As a result, when reasoning about sufficiently strong set theories that could no longer be considered naive, some have taken the alternative approach of using extensions of ZFC that admit objects such as proper classes as first order objects, but this is not without its problems for the individual interested in proving set-theoretic propositions. As an alternative, I have programmed an extension to the automated the- orem prover E [2] that generates instances of parameter free replacement and comprehension from well formuled formulas of ZFC that are passed to it, when eligible, and adds them to the proof state while the prover is running. -
(Aka “Geometric”) Iff It Is Axiomatised by “Coherent Implications”
GEOMETRISATION OF FIRST-ORDER LOGIC ROY DYCKHOFF AND SARA NEGRI Abstract. That every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem's argument from 1920 for his \Normal Form" theorem. \Geometric" being the infinitary version of \coherent", it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms. x1. Introduction. A theory is \coherent" (aka \geometric") iff it is axiomatised by \coherent implications", i.e. formulae of a certain simple syntactic form (given in Defini- tion 2.4). That every first-order theory has a coherent conservative extension is regarded by some as obvious (and trivial) and by others (including ourselves) as non- obvious, remarkable and valuable; it is neither well-enough known nor easily found in the literature. We came upon the result (and our first proof) while clarifying an argument from our paper [17]. -
1.4 Theories
1.4 Theories Before we start to work with one of the most central notions of mathematical logic – that of a theory – it will be useful to make some observations about countable sets. Lemma 1.3. 1. A set X is countable iff there is a surjection ψ : N X. 2. If X is countable and Y X then Y is countable. 3. If X and Y are countable, then X Y is countable. 4. If X and Y are countable, then X ¢ Y is countable. k 5. If X is countable and k 1 then X is countable. ä 6. If Xi is countable for each i È N, then Xi is countable. iÈN 7. If X is countable, then ä Xk is countable. k ÈN Ø Ù Proof. 1. If X is countably infinite note that every bijection is a surjection. If X x0,...,xn Õ Ô Õ is finite, let ψ Ôi xi for 0 i n and ψ j xn for j n. For the other direction, Ô Õ Ô Õ Ô Õ Ù let ψ be a surjection, then X is Øψ 0 , ψ 1 , ψ 2 ,... and removing duplicates from the Ô ÕÕ Ô N sequence ψ i i¥0 yields a bijective ϕ : X. È 2. Obvious if Y is finite. Otherwise, let ϕ : N X be a bijection and let y0 Y . Define " Õ Ô Õ È ϕÔn if ϕ n Y ψ : N Y,n y0 otherwise which is a surjection. 3. Let ϕ : N X and ψ : N Y be bijections. -
Ultraproducts and Elementary Classes *
MATHEMATICS ULTRAPRODUCTS AND ELEMENTARY CLASSES * BY H. JEROME KEISLER (Communicated by Prof. A. HEYTING at the meeting of May 27, 1961 INTRODUCTION In the theory of models of the first order predicate logic with identity we study the relationship between notions from logic and purely mathe matical objects, called relational systems, or (first order) structures, m, consisting of a set A and a sequence of relations on A corresponding to the predicate symbols of the logic. In such studies some of the most useful methods are those which permit us to form structures which have certain semantical properties. For example, the completeness theorem permits us to form a structure which satisfies a given consistent set of sentences. A more recent tool is the reduced product operation, which is particularly simple and direct from the mathematical point of view. Speaking very roughly, a reduced product Iliei ill:i/D of the structures mi, i El, is formed by first taking their direct product and then forming the quotient system determined in a certain way by the filter D on the index set 1. If D is an ultrafilter we have an ultraproduct (or prime reduced product), and if each m:i coincides with a fixed system ill: we have a reduced power, or ultrapower, ill: I j D. Ultraproducts have recently been applied to obtain new, comparatively direct mathematical proofs and at the same time stronger forms of a number of theorems in model theory. An outstanding example is the proof of the compactness theorem outlined in [33]. They have also been used to obtain several completely new results in the theory of models (for example, see [35]). -
Product of Invariant Types Modulo Domination–Equivalence
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by White Rose Research Online Archive for Mathematical Logic https://doi.org/10.1007/s00153-019-00676-9 Mathematical Logic Product of invariant types modulo domination–equivalence Rosario Mennuni1 Received: 31 October 2018 / Accepted: 19 April 2019 © The Author(s) 2019 Abstract We investigate the interaction between the product of invariant types and domination– equivalence. We present a theory where the latter is not a congruence with respect to the former, provide sufficient conditions for it to be, and study the resulting quotient when it is. Keywords Domination · Domination–equivalence · Equidominance · Product of invariant types Mathematics Subject Classification 03C45 To a sufficiently saturated model of a first-order theory one can associate a semigroup, that of global invariant types with the tensor product ⊗. This can be endowed with two equivalence relations, called domination–equivalence and equidominance.This paper studies the resulting quotients, starting from sufficient conditions for ⊗ to be well-defined on them. We show, correcting a remark in [3], that this need not be always the case. Let S(U) be the space of types in any finite number of variables over a model U of a first-order theory that is κ-saturated and κ-strongly homogeneous for some large κ. For any set A ⊆ U, one has a natural action on S(U) by the group Aut(U/A) of automorphisms of U that fix A pointwise. The space Sinv(U) of global invariant types consists of those elements of S(U) which, for some small A, are fixed points of the action Aut(U/A) S(U). -
Stable Theories
Sh:1 STABLE THEORIES BY S. SHELAH* ABSTRACT We study Kr(~,) = sup {I S(A)] : ]A[ < ~,) and extend some results for totally transcendental theroies to the case of stable theories. We then inves- tigate categoricity of elementary and pseudo-elementary classes. 0. Introduction In this article we shall generalize Morley's theorems in [2] to more general languages. In Section 1 we define our notations. In Theorems 2.1, 2.2. we in essence prove the following theorem: every first- order theory T of arbitrary infinite cardinality satisfies one of the possibilities: 1) for all Z, I A] -- z ~ I S(A)[ -<__z + 2 ITI, (where S(A) is the set of complete consistent types over a subset A of a model of T). 2) for all •, I AI--x I S(A I =<x ~T~, and there exists A such that I AI--z, IS(A) I _>- z "o. 3) for all Z there exists A, such that [A[ = Z, IS(A)] > IAI. Theories which satisfy 1 or 2 are called stable and are similar in some respects to totally transcendental theories. In the rest of Section 2 we define a generalization of Morley's rank of transcendence, and prove some theorems about it. Theorems whose proofs are similar to the proofs of the analogous theorems in Morley [2], are not proven here, and instead the number of the analogous theorem in Morley [2] is mentioned. In Section 3, theorems about the existence of sets of indiscernibles and prime models on sets are proved. * This paper is a part of the author's doctoral dissertation written at the Hebrew University of Jerusalem, under the kind guidance of Profeossr M. -
Notes on Mathematical Logic David W. Kueker
Notes on Mathematical Logic David W. Kueker University of Maryland, College Park E-mail address: [email protected] URL: http://www-users.math.umd.edu/~dwk/ Contents Chapter 0. Introduction: What Is Logic? 1 Part 1. Elementary Logic 5 Chapter 1. Sentential Logic 7 0. Introduction 7 1. Sentences of Sentential Logic 8 2. Truth Assignments 11 3. Logical Consequence 13 4. Compactness 17 5. Formal Deductions 19 6. Exercises 20 20 Chapter 2. First-Order Logic 23 0. Introduction 23 1. Formulas of First Order Logic 24 2. Structures for First Order Logic 28 3. Logical Consequence and Validity 33 4. Formal Deductions 37 5. Theories and Their Models 42 6. Exercises 46 46 Chapter 3. The Completeness Theorem 49 0. Introduction 49 1. Henkin Sets and Their Models 49 2. Constructing Henkin Sets 52 3. Consequences of the Completeness Theorem 54 4. Completeness Categoricity, Quantifier Elimination 57 5. Exercises 58 58 Part 2. Model Theory 59 Chapter 4. Some Methods in Model Theory 61 0. Introduction 61 1. Realizing and Omitting Types 61 2. Elementary Extensions and Chains 66 3. The Back-and-Forth Method 69 i ii CONTENTS 4. Exercises 71 71 Chapter 5. Countable Models of Complete Theories 73 0. Introduction 73 1. Prime Models 73 2. Universal and Saturated Models 75 3. Theories with Just Finitely Many Countable Models 77 4. Exercises 79 79 Chapter 6. Further Topics in Model Theory 81 0. Introduction 81 1. Interpolation and Definability 81 2. Saturated Models 84 3. Skolem Functions and Indescernables 87 4. Some Applications 91 5.