An Introduction to Ramsey Theory Fast Functions, Infinity, and Metamathematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Logical Approach to Asymptotic Combinatorics I. First Order Properties
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ADVANCES IN MATI-EMATlCS 65, 65-96 (1987) A Logical Approach to Asymptotic Combinatorics I. First Order Properties KEVIN J. COMPTON ’ Wesleyan University, Middletown, Connecticut 06457 INTRODUCTION We shall present a general framework for dealing with an extensive set of problems from asymptotic combinatorics; this framework provides methods for determining the probability that a large, finite structure, ran- domly chosen from a given class, will have a given property. Our main concern is the asymptotic probability: the limiting value as the size of the structure increases. For example, a common problem in elementary probability texts is to show that the asymptotic probabity that a per- mutation will have no fixed point is l/e. We shall say nothing about the closely related problem of determining rates of convergence, although the methods presented here may extend to such problems. To develop a general approach we must fix a language for specifying properties of structures. Thus, our approach is logical; logic is the branch of mathematics that deals with problems of language. In this paper we con- sider properties expressible in the language of first order logic and speak of probabilities of first order sentences rather than properties. In the sequel to this paper we consider properties expressible in the more general language of monadic second order logic. Clearly, we must restrict the classes of structures we consider in order for questions about asymptotic probabilities to be meaningful and significant. Therefore, we choose to consider only classes closed under disjoint unions and components (see Sect. -
Notes on Mathematical Logic David W. Kueker
Notes on Mathematical Logic David W. Kueker University of Maryland, College Park E-mail address: [email protected] URL: http://www-users.math.umd.edu/~dwk/ Contents Chapter 0. Introduction: What Is Logic? 1 Part 1. Elementary Logic 5 Chapter 1. Sentential Logic 7 0. Introduction 7 1. Sentences of Sentential Logic 8 2. Truth Assignments 11 3. Logical Consequence 13 4. Compactness 17 5. Formal Deductions 19 6. Exercises 20 20 Chapter 2. First-Order Logic 23 0. Introduction 23 1. Formulas of First Order Logic 24 2. Structures for First Order Logic 28 3. Logical Consequence and Validity 33 4. Formal Deductions 37 5. Theories and Their Models 42 6. Exercises 46 46 Chapter 3. The Completeness Theorem 49 0. Introduction 49 1. Henkin Sets and Their Models 49 2. Constructing Henkin Sets 52 3. Consequences of the Completeness Theorem 54 4. Completeness Categoricity, Quantifier Elimination 57 5. Exercises 58 58 Part 2. Model Theory 59 Chapter 4. Some Methods in Model Theory 61 0. Introduction 61 1. Realizing and Omitting Types 61 2. Elementary Extensions and Chains 66 3. The Back-and-Forth Method 69 i ii CONTENTS 4. Exercises 71 71 Chapter 5. Countable Models of Complete Theories 73 0. Introduction 73 1. Prime Models 73 2. Universal and Saturated Models 75 3. Theories with Just Finitely Many Countable Models 77 4. Exercises 79 79 Chapter 6. Further Topics in Model Theory 81 0. Introduction 81 1. Interpolation and Definability 81 2. Saturated Models 84 3. Skolem Functions and Indescernables 87 4. Some Applications 91 5. -
Interactions of Computational Complexity Theory and Mathematics
Interactions of Computational Complexity Theory and Mathematics Avi Wigderson October 22, 2017 Abstract [This paper is a (self contained) chapter in a new book on computational complexity theory, called Mathematics and Computation, whose draft is available at https://www.math.ias.edu/avi/book]. We survey some concrete interaction areas between computational complexity theory and different fields of mathematics. We hope to demonstrate here that hardly any area of modern mathematics is untouched by the computational connection (which in some cases is completely natural and in others may seem quite surprising). In my view, the breadth, depth, beauty and novelty of these connections is inspiring, and speaks to a great potential of future interactions (which indeed, are quickly expanding). We aim for variety. We give short, simple descriptions (without proofs or much technical detail) of ideas, motivations, results and connections; this will hopefully entice the reader to dig deeper. Each vignette focuses only on a single topic within a large mathematical filed. We cover the following: • Number Theory: Primality testing • Combinatorial Geometry: Point-line incidences • Operator Theory: The Kadison-Singer problem • Metric Geometry: Distortion of embeddings • Group Theory: Generation and random generation • Statistical Physics: Monte-Carlo Markov chains • Analysis and Probability: Noise stability • Lattice Theory: Short vectors • Invariant Theory: Actions on matrix tuples 1 1 introduction The Theory of Computation (ToC) lays out the mathematical foundations of computer science. I am often asked if ToC is a branch of Mathematics, or of Computer Science. The answer is easy: it is clearly both (and in fact, much more). Ever since Turing's 1936 definition of the Turing machine, we have had a formal mathematical model of computation that enables the rigorous mathematical study of computational tasks, algorithms to solve them, and the resources these require. -
Hyperoperations and Nopt Structures
Hyperoperations and Nopt Structures Alister Wilson Abstract (Beta version) The concept of formal power towers by analogy to formal power series is introduced. Bracketing patterns for combining hyperoperations are pictured. Nopt structures are introduced by reference to Nept structures. Briefly speaking, Nept structures are a notation that help picturing the seed(m)-Ackermann number sequence by reference to exponential function and multitudinous nestings thereof. A systematic structure is observed and described. Keywords: Large numbers, formal power towers, Nopt structures. 1 Contents i Acknowledgements 3 ii List of Figures and Tables 3 I Introduction 4 II Philosophical Considerations 5 III Bracketing patterns and hyperoperations 8 3.1 Some Examples 8 3.2 Top-down versus bottom-up 9 3.3 Bracketing patterns and binary operations 10 3.4 Bracketing patterns with exponentiation and tetration 12 3.5 Bracketing and 4 consecutive hyperoperations 15 3.6 A quick look at the start of the Grzegorczyk hierarchy 17 3.7 Reconsidering top-down and bottom-up 18 IV Nopt Structures 20 4.1 Introduction to Nept and Nopt structures 20 4.2 Defining Nopts from Nepts 21 4.3 Seed Values: “n” and “theta ) n” 24 4.4 A method for generating Nopt structures 25 4.5 Magnitude inequalities inside Nopt structures 32 V Applying Nopt Structures 33 5.1 The gi-sequence and g-subscript towers 33 5.2 Nopt structures and Conway chained arrows 35 VI Glossary 39 VII Further Reading and Weblinks 42 2 i Acknowledgements I’d like to express my gratitude to Wikipedia for supplying an enormous range of high quality mathematics articles. -
Middleware and Application Management Architecture
Middleware and Application Management Architecture vorgelegt vom Diplom-Informatiker Sven van der Meer aus Berlin von der Fakultät IV – Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Gorlatch Berichter: Prof. Dr. Dr. h.c. Radu Popescu-Zeletin Berichter: Prof. Dr. Kurt Geihs Tag der wissenschaftlichen Aussprache: 25.09.2002 Berlin 2002 D 83 Middleware and Application Management Architecture Sven van der Meer Berlin 2002 Preface Abstract This thesis describes a new approach for the integrated management of distributed networks, services, and applications. The main objective of this approach is the realization of software, systems, and services that address composability, scalability, reliability, and robustness as well as autonomous self-adaptation. It focuses on middleware for management, control, and use of fully distributed resources. The term integra- tion refers to the task of unifying existing instrumentations for middleware and management, not their replacement. The rationale of this work stems from the fact, that the current situation of middleware and management systems can be described with the term interworking. The actually needed integration of management and middleware concepts is still an open issue. However, identified trends in communications and computing demand for integrated concepts rather than the definition of new interworking scenarios. Distributed applications need to be prepared to be used and operated in a stable, secure, and efficient way. Middleware and service platforms are employed to solve this task. To guarantee this objective for a long-time operation, the systems needs to be controlled, administered, and maintained in its entirety, supporting the general aim of the system, and for each individual component, to ensure that each part of the system functions perfectly. -
A Survey of Recursive Analysis and Moore's Notion of Real Computation
A Survey of Recursive Analysis and Moore’s Notion of Real Computation Walid Gomaa INRIA Nancy Grand-Est Research Centre, France, Faculty of Engineering, Alexandria University, Egypt [email protected] Abstract The theory of analog computation aims at modeling computational systems that evolve in a continuous manner. Unlike the situation with the discrete setting there is no unified theory of analog computation. There are several proposed theories, some of them seem quite orthogonal. Some theories can be considered as generalizations of the Turing machine theory and classical recursion theory. Among such are recursive analysis and Moore’s class of recursive real functions. Recursive analysis was introduced by A. Turing [1936], A. Grzegorczyk [1955], and D. Lacombe [1955]. Real computation in this context is viewed as effective (in the sense of Turing machine theory) convergence of sequences of rational numbers. In 1996 Moore introduced a function algebra that captures his notion of real computation; it consists of some basic functions and their closure under composition, integration and zero- finding. Though this class is inherently unphysical, much work have been directed at stratifying, restricting, and comparing it with other theories of real computation such as recursive analysis and the GPAC. In this article we give a detailed exposition of recursive analysis and Moore’s class and the relationships between them. 1 Introduction Analog computation is a computational paradigm that attempts to model systems whose internal states are continuous rather than discrete. Unlike the case of discrete computation, which has enjoyed a kind of uniformity and conceptual universality, there have been several approaches to analog computations some of which are not even comparable. -
Model Completeness and Relative Decidability
Model Completeness and Relative Decidability Jennifer Chubb, Russell Miller,∗ & Reed Solomon March 5, 2019 Abstract We study the implications of model completeness of a theory for the effectiveness of presentations of models of that theory. It is im- mediate that for a computable model A of a computably enumerable, model complete theory, the entire elementary diagram E(A) must be decidable. We prove that indeed a c.e. theory T is model complete if and only if there is a uniform procedure that succeeds in deciding E(A) from the atomic diagram ∆(A) for all countable models A of T . Moreover, if every presentation of a single isomorphism type A has this property of relative decidability, then there must be a procedure with succeeds uniformly for all presentations of an expansion (A,~a) by finitely many new constants. We end with a conjecture about the situation when all models of a theory are relatively decidable. 1 Introduction The broad goal of computable model theory is to investigate the effective arXiv:1903.00734v1 [math.LO] 2 Mar 2019 aspects of model theory. Here we will carry out exactly this process with the model-theoretic concept of model completeness. This notion is well-known and has been widely studied in model theory, but to our knowledge there has never been any thorough examination of its implications for computability in structures with the domain ω. We now rectify this omission, and find natural and satisfactory equivalents for the basic notion of model completeness of a first-order theory. Our two principal results are each readily stated: that a ∗The second author was supported by NSF grant # DMS-1362206, Simons Foundation grant # 581896, and several PSC-CUNY research awards. -
More Model Theory Notes Miscellaneous Information, Loosely Organized
More Model Theory Notes Miscellaneous information, loosely organized. 1. Kinds of Models A countable homogeneous model M is one such that, for any partial elementary map f : A ! M with A ⊆ M finite, and any a 2 M, f extends to a partial elementary map A [ fag ! M. As a consequence, any partial elementary map to M is extendible to an automorphism of M. Atomic models (see below) are homogeneous. A prime model of T is one that elementarily embeds into every other model of T of the same cardinality. Any theory with fewer than continuum-many types has a prime model, and if a theory has a prime model, it is unique up to isomorphism. Prime models are homogeneous. On the other end, a model is universal if every other model of its size elementarily embeds into it. Recall a type is a set of formulas with the same tuple of free variables; generally to be called a type we require consistency. The type of an element or tuple from a model is all the formulas it satisfies. One might think of the type of an element as a sort of identity card for automorphisms: automorphisms of a model preserve types. A complete type is the analogue of a complete theory, one where every formula of the appropriate free variables or its negation appears. Types of elements and tuples are always complete. A type is principal if there is one formula in the type that implies all the rest; principal complete types are often called isolated. A trivial example of an isolated type is that generated by the formula x = c where c is any constant in the language, or x = t(¯c) where t is any composition of appropriate-arity functions andc ¯ is a tuple of constants. -
0.1 Axt, Loop Program, and Grzegorczyk Hier- Archies
1 0.1 Axt, Loop Program, and Grzegorczyk Hier- archies Computable functions can have some quite complex definitions. For example, a loop programmable function might be given via a loop program that has depth of nesting of the loop-end pair, say, equal to 200. Now this is complex! Or a function might be given via an arbitrarily complex sequence of primitive recursions, with the restriction that the computed function is majorized by some known function, for all values of the input (for the concept of majorization see Subsection on the Ackermann function.). But does such definitional|and therefore, \static"|complexity have any bearing on the computational|dynamic|complexity of the function? We will see that it does, and we will connect definitional and computational complexities quantitatively. Our study will be restricted to the class PR that we will subdivide into an infinite sequence of increasingly more inclusive subclasses, Si. A so-called hierarchy of classes of functions. 0.1.0.1 Definition. A sequence (Si)i≥0 of subsets of PR is a primitive recur- sive hierarchy provided all of the following hold: (1) Si ⊆ Si+1, for all i ≥ 0 S (2) PR = i≥0 Si. The hierarchy is proper or nontrivial iff Si 6= Si+1, for all but finitely many i. If f 2 Si then we say that its level in the hierarchy is ≤ i. If f 2 Si+1 − Si, then its level is equal to i + 1. The first hierarchy that we will define is due to Axt and Heinermann [[5] and [1]]. -
Applications and Combinatorics in Algebraic Geometry Frank Sottile Summary
Applications and Combinatorics in Algebraic Geometry Frank Sottile Summary Algebraic Geometry is a deep and well-established field within pure mathematics that is increasingly finding applications outside of mathematics. These applications in turn are the source of new questions and challenges for the subject. Many applications flow from and contribute to the more combinatorial and computational parts of algebraic geometry, and this often involves real-number or positivity questions. The scientific development of this area devoted to applications of algebraic geometry is facilitated by the sociological development of administrative structures and meetings, and by the development of human resources through the training and education of younger researchers. One goal of this project is to deepen the dialog between algebraic geometry and its appli- cations. This will be accomplished by supporting the research of Sottile in applications of algebraic geometry and in its application-friendly areas of combinatorial and computational algebraic geometry. It will be accomplished in a completely different way by supporting Sottile’s activities as an officer within SIAM and as an organizer of scientific meetings. Yet a third way to accomplish this goal will be through Sottile’s training and mentoring of graduate students, postdocs, and junior collaborators. The intellectual merits of this project include the development of applications of al- gebraic geometry and of combinatorial and combinatorial aspects of algebraic geometry. Specifically, Sottile will work to develop the theory and properties of orbitopes from the perspective of convex algebraic geometry, continue to investigate linear precision in geo- metric modeling, and apply the quantum Schubert calculus to linear systems theory. -
Combinatorics and Graph Theory I (Math 688)
Combinatorics and Graph Theory I (Math 688). Problems and Solutions. May 17, 2006 PREFACE Most of the problems in this document are the problems suggested as home- work in a graduate course Combinatorics and Graph Theory I (Math 688) taught by me at the University of Delaware in Fall, 2000. Later I added several more problems and solutions. Most of the solutions were prepared by me, but some are based on the ones given by students from the class, and from subsequent classes. I tried to acknowledge all those, and I apologize in advance if I missed someone. The course focused on Enumeration and Matching Theory. Many problems related to enumeration are taken from a 1984-85 course given by Herbert S. Wilf at the University of Pennsylvania. I would like to thank all students who took the course. Their friendly criti- cism and questions motivated some of the problems. I am especially thankful to Frank Fiedler and David Kravitz. To Frank – for sharing with me LaTeX files of his solutions and allowing me to use them. I did it several times. To David – for the technical help with the preparation of this version. Hopefully all solutions included in this document are correct, but the whole set is by no means polished. I will appreciate all comments. Please send them to [email protected]. – Felix Lazebnik 1 Problem 1. In how many 4–digit numbers abcd (a, b, c, d are the digits, a 6= 0) (i) a < b < c < d? (ii) a > b > c > d? Solution. (i) Notice that there exists a bijection between the set of our numbers and the set of all 4–subsets of the set {1, 2,..., 9}. -
Hierarchies of Recursive Functions
Leibniz Universitat¨ Hannover Institut f¨urtheoretische Informatik Bachelor Thesis Hierarchies of recursive functions Maurice Chandoo February 21, 2013 Erkl¨arung Hiermit versichere ich, dass ich diese Arbeit selbst¨andigverfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. i Dedicated to my dear grandmother Anna-Maria Kniejska ii Contents 1 Preface 1 2 Class of primitve recursive functions PR 2 2.1 Primitive Recursion class PR ..................2 2.2 Course-of-value Recursion class PRcov .............4 2.3 Nested Recursion class PRnes ..................5 2.4 Recursive Depth . .6 2.5 Recursive Relations . .6 2.6 Equivalence of PR and PRcov .................. 10 2.7 Equivalence of PR and PRnes .................. 12 2.8 Loop programs . 14 2.9 Grzegorczyk Hierarchy . 19 2.10 Recursive depth Hierarchy . 22 2.11 Turing Machine Simulation . 24 3 Multiple and µ-recursion 27 3.1 Multiple Recursion class MR .................. 27 3.2 µ-Recursion class µR ....................... 32 3.3 Synopsis . 34 List of literature 35 iii 1 Preface I would like to give a more or less exhaustive overview on different kinds of recursive functions and hierarchies which characterize these functions by their computational power. For instance, it will become apparent that primitve recursion is more than sufficiently powerful for expressing algorithms for the majority of known decidable ”real world” problems. This comes along with the hunch that it is quite difficult to come up with a suitable problem of which the characteristic function is not primitive recursive therefore being a possible candidate for exploiting the more powerful multiple recursion. At the end the Turing complete µ-recursion is introduced.