Lorenzen Between Gentzen and Schütte
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1803.01386V4 [Math.HO] 25 Jun 2021
2009 SEKI http://wirth.bplaced.net/seki.html ISSN 1860-5931 arXiv:1803.01386v4 [math.HO] 25 Jun 2021 A Most Interesting Draft for Hilbert and Bernays’ “Grundlagen der Mathematik” that never found its way into any publi- Working-Paper cation, and 2 CVof Gisbert Hasenjaeger Claus-Peter Wirth Dept. of Computer Sci., Saarland Univ., 66123 Saarbrücken, Germany [email protected] SEKI Working-Paper SWP–2017–01 SEKI SEKI is published by the following institutions: German Research Center for Artificial Intelligence (DFKI GmbH), Germany • Robert Hooke Str.5, D–28359 Bremen • Trippstadter Str. 122, D–67663 Kaiserslautern • Campus D 3 2, D–66123 Saarbrücken Jacobs University Bremen, School of Engineering & Science, Campus Ring 1, D–28759 Bremen, Germany Universität des Saarlandes, FR 6.2 Informatik, Campus, D–66123 Saarbrücken, Germany SEKI Editor: Claus-Peter Wirth E-mail: [email protected] WWW: http://wirth.bplaced.net Please send surface mail exclusively to: DFKI Bremen GmbH Safe and Secure Cognitive Systems Cartesium Enrique Schmidt Str. 5 D–28359 Bremen Germany This SEKI Working-Paper was internally reviewed by: Wilfried Sieg, Carnegie Mellon Univ., Dept. of Philosophy Baker Hall 161, 5000 Forbes Avenue Pittsburgh, PA 15213 E-mail: [email protected] WWW: https://www.cmu.edu/dietrich/philosophy/people/faculty/sieg.html A Most Interesting Draft for Hilbert and Bernays’ “Grundlagen der Mathematik” that never found its way into any publication, and two CV of Gisbert Hasenjaeger Claus-Peter Wirth Dept. of Computer Sci., Saarland Univ., 66123 Saarbrücken, Germany [email protected] First Published: March 4, 2018 Thoroughly rev. & largely extd. (title, §§ 2, 3, and 4, CV, Bibliography, &c.): Jan. -
Lorenzen's Proof of Consistency for Elementary Number Theory [With An
Lorenzen’s proof of consistency for elementary number theory Thierry Coquand Computer science and engineering department, University of Gothenburg, Sweden, [email protected]. Stefan Neuwirth Laboratoire de mathématiques de Besançon, Université Bourgogne Franche-Comté, France, [email protected]. Abstract We present a manuscript of Paul Lorenzen that provides a proof of con- sistency for elementary number theory as an application of the construc- tion of the free countably complete pseudocomplemented semilattice over a preordered set. This manuscript rests in the Oskar-Becker-Nachlass at the Philosophisches Archiv of Universität Konstanz, file OB 5-3b-5. It has probably been written between March and May 1944. We also com- pare this proof to Gentzen’s and Novikov’s, and provide a translation of the manuscript. arXiv:2006.08996v1 [math.HO] 16 Jun 2020 Keywords: Paul Lorenzen, consistency of elementary number the- ory, free countably complete pseudocomplemented semilattice, inductive definition, ω-rule. We present a manuscript of Paul Lorenzen that arguably dates back to 1944 and provide an edition and a translation, with the kind permission of Lorenzen’s daughter, Jutta Reinhardt. It provides a constructive proof of consistency for elementary number theory by showing that it is a part of a trivially consistent cut-free calculus. The proof resorts only to the inductive definition of formulas and theorems. More precisely, Lorenzen proves the admissibility of cut by double induction, on the complexity of the cut formula and of the derivations, without using any ordinal assignment, contrary to the presentation of cut elimination in most standard texts on proof theory. -
What Is Mathematics: Gödel's Theorem and Around. by Karlis
1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27 -
Beth and Scholz∗
Moral Integrity during a Difficult Period: Beth and Scholz∗ [Philosophia Scientiae (Nancy) 3 (4) (1998/1999), 151-173. Special issue: Un logicien consciencieux. La philosophie de Evert Willem Beth.] Volker Peckhaus Institut f¨urPhilosophie der Universit¨atErlangen-N¨urnberg Bismarckstr. 1, D{91054 Erlangen E-mail: [email protected] February 7, 2000 1 Introduction Willem Evert Beth started his academic career as a philosopher of mathe- matics in the mid 1930's, and it should be noted that his approach to this subject at the borderline between philosophy and mathematics was more philosophical than mathematical. It was an ambivalent time, but extremely exciting for scientists working in the area. In their recollections logicians of the time called it the \heroic era." The era lasted, as Georg Henrik von Wright was convinced (von Wright 1993, 21), from 1879 to 1934. This pe- riod was marked by Gottlob Frege's Begriffsschrift (Frege 1879) and the first volume of David Hilbert and Paul Bernays's Grundlagen der Mathematik (Hilbert and Bernays 1934). It was, according to von Wright, relieved by an epoch which began with two incidents being themselves of heroic greatness (26): Kurt G¨odel'sresults concerning the incompleteness of formalized lan- guages and Alfred Tarski's semantic theory of truth. Hans Hermes, on the ∗Lecture delivered on 22nd April, 1998 at the conference \Evert Willem Beth and His Philosophical Friends: From Bernays to Boche´nski"(22nd to 24th April, 1998) in M´er´eville,France. I would like to thank Henk Visser (Haarlem) for his invaluable help in providing documents from the Beth papers, Kai F. -
The Fall and Original Sin of Set Theory
Article The Fall and Original Sin of Set Theory Danie Strauss https://orcid.org/0000-0002-2397-9181 North-West University [email protected] Abstract Hermann Weyl published a brief survey as preface to a review of The Philosophy of Bertrand Russell in 1946. In this survey he used the phrase, “The Fall and Original Sin of Set Theory.” Investigating the background of this remark will require that we pay attention to a number of issues within the foundations of mathematics. For example: Did God make the integers—as Kronecker alleged? Is mathematics set theory? Attention will also be given to axiomatic set theory and relevant ontic pre-conditions, such as the difference between number and number symbols, to number as “an aspect of objective reality” (Gödel), integers and induction (Skolem) as well as to the question if infinity—as endlessness—could be completed. In 1831 Gauss objected to viewing the infinite as something completed, which is not allowed in mathematics. It will be argued that the actual infinite is rather connected to what is present “at once,” as an infinite totality. By the year 1900 mathematicians believed that mathematics had reached absolute rigour, but unfortunately the rest of the twentieth century witnessed the opposite. The axiom of infinity ruined the expectations of logicism—mathematics cannot be reduced to logic. The intuitionism of Brouwer, Weyl and others launched a devastating attack on classical analysis, further inspired by the outcome of Gödel’s famous proof of 1931, in which he has shown that a formal mathematical system is inconsistent or incomplete. -
Interdisciplinary Works in Logic, Epistemology, Psychology and Linguistics Dialogue, Rationality, and Formalism Logic, Argumentation & Reasoning
Logic, Argumentation & Reasoning 3 Manuel Rebuschi Martine Batt Gerhard Heinzmann Franck Lihoreau Michel Musiol Alain Trognon Editors Interdisciplinary Works in Logic, Epistemology, Psychology and Linguistics Dialogue, Rationality, and Formalism Logic, Argumentation & Reasoning Interdisciplinary Perspectives from the Humanities and Social Sciences Volume 3 Series Editor Shahid Rahman For further volumes: http://www.springer.com/series/11547 Logic, Argumentation & Reasoning The Series is developed in partnership with the Maison Européenne des Sciences de l’Homme et de la Société (MESHS) at Nord - Pas de Calais and the UMR-STL: 8163 (CNRS). Aims & Scope: The scientific objectives of the series, where humanities and social sciences are conceived as building interdisciplinary interfaces, are: This series publishes volumes that link practices in the Humanities and Social Sciences, with theories in Logic, Argumentation and Reasoning, such as: Decision theory and action theory, Argumentation Theories in: cognitive sciences, economy, sociology, law, logic, philosophy of sciences. The series is open towards research from the Analytic and the Continental traditions, and has four main focus areas: Pragmatic models and studies that develop a dynamic approach to reasoning in which argumentation is structured as an interaction or as a game, in which two or more participants play moves defined by the type of argumentation in question, communication, language and techniques of argumentation: studies between the practical and theoretical dimen- sions of argumentation, as well as the relationships between argumentation and other modes of communication, reception, persuasion and power: studies in which reasoning practice is considered from the point of view of its capacity to produce conviction of persuasion, and focusing on understanding what makes an argument performative, Diachronic transformations of reasoning practices studies that emphasize the invention and renewal of reasoning forms, with respect to its performance and its effectiveness. -
Existence, Meaning and the Law of Excluded Middle. a Dialogical Approach to Hermann Weyl's Philosophical Considerations
Existence, Meaning and the Law of Excluded Middle. A dialogical approach to Hermann Weyl’s philosophical considerations Zoe Mcconaughey To cite this version: Zoe Mcconaughey. Existence, Meaning and the Law of Excluded Middle. A dialogical approach to Hermann Weyl’s philosophical considerations. Klesis - Revue philosophique, Klesis, 2020, ”Le tiers exclu” à travers les âges, 46. hal-03036825 HAL Id: hal-03036825 https://hal.archives-ouvertes.fr/hal-03036825 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Klēsis – 2020 : 46 – « Le tiers exclu » à travers les âges EXISTENCE, MEANING AND THE LAW OF EXCLUDED MIDDLE. A DIALOGICAL APPROACH TO HERMANN WEYL’S PHILOSOPHICAL CONSIDERATIONS Zoe McConaughey (Université de Lille, UMR 8163 STL, and UQÀM)1 Abstract Intuitionistic logic is often presented as a proof-based approach to logic, where truth is defined as having a proof. I shall stress another dimension which is also important: that of the constitution of meaning. This dimension of meaning does not reduce to proof, be it actual or potential, as standard presentations of intuitionistic logic put it. The law of ex- cluded middle sits right at the junction between these two dimensions, proof and mean- ing: in intuitionistic logic, there is no proof for the law of excluded middle, but the law of excluded middle is a proposition that does have meaning. -
Philosophy of Science in Germany, 1992–2012: Survey-Based Overview and Quantitative Analysis
CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library J Gen Philos Sci (2014) 45:71–160 DOI 10.1007/s10838-014-9270-8 REPORT Philosophy of Science in Germany, 1992–2012: Survey-Based Overview and Quantitative Analysis Matthias Unterhuber • Alexander Gebharter • Gerhard Schurz Published online: 9 November 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract An overview of the German philosophy of science community is given for the years 1992–2012, based on a survey in which 159 philosophers of science in Germany par- ticipated. To this end, the institutional background of the German philosophy of science community is examined in terms of journals, centers, and associations. Furthermore, a quali- tative description and a quantitative analysis of our survey results are presented. Quantitative estimates are given for: (a) academic positions, (b) research foci, (c) philosophers’ of science most important publications, and (d) externally funded projects, where for (c) all survey participants had indicated their five most important publications in philosophy of science. In addition, the survey results for (a)–(c) are also qualitatively described, as they are interesting in their own right. With respect to (a), we estimated the gender distribution among academic positions. Concerning (c), we quantified philosophers’ of science preference for (i) journals and publishers, (ii) publication format, (iii) language, and (iv) coauthorship for their most important publications. With regard to research projects, we determined their (i) prevalence, (ii) length, and (iii) trend (an increase in number?) as well as their most frequent (iv) research foci and (v) funding organizations. -
Fall and Original Sin of Set Theory.Pdf
Article The Fall and Original Sin of Set Theory Danie Strauss https://orcid.org/0000-0002-2397-9181 North-West University [email protected] Abstract Hermann Weyl published a brief survey as preface to a review of The Philosophy of Bertrand Russell in 1946. In this survey he used the phrase, “The Fall and Original Sin of Set Theory.” Investigating the background of this remark will require that we pay attention to a number of issues within the foundations of mathematics. For example: Did God make the integers—as Kronecker alleged? Is mathematics set theory? Attention will also be given to axiomatic set theory and relevant ontic pre- conditions, such as the difference between number and number symbols, to number as “an aspect of objective reality” (Gödel), integers and induction (Skolem) as well as to the question if infinity—as endlessness—could be completed. In 1831 Gauss objected to viewing the infinite as something completed, which is not allowed in mathematics. It will be argued that the actual infinite is rather connected to what is present “at once,” as an infinite totality. By the year 1900 mathematicians believed that mathematics had reached absolute rigour, but unfortunately the rest of the twentieth century witnessed the opposite. The axiom of infinity ruined the expectations of logicism—mathematics cannot be reduced to logic. The intuitionism of Brouwer, Weyl and others launched a devastating attack on classical analysis, further inspired by the outcome of Gödel’s famous proof of 1931, in which he has shown that a formal mathematical system is inconsistent or incomplete. -
Constructive Type Theory and the Dialogical Turn
Shahid Rahman and Nicolas Clerbout CONSTRUCTIVE TYPE THEORY AND THE DIALOGICAL TURN A New Start /or Erlangen Constructivism 1 1 INTRODUCTION: KUNO LORENZ AND THE DIALOGICAL TURN Since the times of the ancient Greeks - where the agora emerged as the first public space for discussion and decision-making on diverse and serious mat ters - and after the crucial influence of the Sophists, of Plato and of Aristotle, dialectical reasoning has won a place in our understanding of science and the constitution of a society which it has kept ever since. In arecent paper, M. Marion and H. Rückert (2012), who for the first time since the early papers by Kuno Lorenz and Jürgen Mittelstraß (1966, 1967)2 take up the historic roots of the theory of meaning underlying dialogical logic, have shown how the notion of quantified expressions of Aristotle's syllogistic was based on certain specific rules for dialectical games of the Topics (8, 2, 157a 34, and 8, 160b).3 However, after Aristotle, the theory of inference and dialectical-reasoning theory followed different paths, and with the separation of logic and argu mentation the dynamic aspects of logic were lost. Furthermore, during the years immediately following the failure of the logical positivism project the 1 The present paper is part of an ongoing project in the context of the Maison Europeenne des Sciences de I'Homme et de La Societe (MESHS) Nord-Pas-de-Calais program »Argumentation, Decision, Action« (ADA) and the associated ANR-DFG project JuriLog. 2 Reprinted in Lorenz 20l0b. 3 According to the paper, such rules of the Topics established how to challenge a universal quantifier by »building a counterexample«, and how to defend it. -
“Algebraic and Logistic Investigations on Free Lattices” (1951)
An introduction to Lorenzen’s “Algebraic and logistic investigations on free lattices” (1951) Thierry Coquand Stefan Neuwirth Lorenzen’s “Algebraische und logistische Untersuchungen über freie Verbände” appeared in 1951 in The journal of symbolic logic. These “Investigations” have immediately been recognised as a landmark in the history of infinitary proof theory, but their approach and method of proof have not been incorporated into the corpus of proof theory.1 We propose a translation (Lorenzen 2017) and this introduction with the intent of giving a new impetus to their reception. We also propose a translation of a preliminary manuscript as an appendix (see section 2). The “Investigations” are best known for providing a constructive proof of con- sistency for ramified type theory without axiom of reducibility. They do so by showing that it is a part of a trivially consistent “inductive calculus” that de- scribes our knowledge of arithmetic without detour. The proof resorts only to the inductive definition of formulas and theorems. They propose furthermore a definition of a semilattice, of a distributive lattice, of a pseudocomplemented semilattice, and of a countably complete boolean lattice as deductive calculuses, and show how to present them for constructing the re- arXiv:1711.06139v1 [math.LO] 14 Nov 2017 spective free object over a given preordered set. They illustrate that lattice theory is a bridge between algebra and logic. The preliminary manuscript contains already the main ideas and applies them to a constructive proof of consistency for elementary number theory. 1. The beginnings. In 1938, Paul Lorenzen defends his Ph.D. thesis under the supervision of Helmut Hasse at Göttingen, an “Abstract foundation of the multiplicative ideal theory”, i.e. -
Logic's Lost Genius
HISTORY OF MATHEMATICS • VOLUME 33 Logic’s Lost Genius The Life of Gerhard Gentzen Eckart Menzler-Trott American Mathematical Society • London Mathematical Society Logic’s Lost Genius The Life of Gerhard Gentzen https://doi.org/10.1090/hmath/033 HISTORY OF MATHEMATICS VOLUME 33 Logic’s Lost Genius The Life of Gerhard Gentzen Eckart Menzler-Trott Translated by Craig Smorynski ´ and Edward Griffor Editorial Board American Mathematical Society London Mathematical Society Joseph W. Dauben Alex D. D. Craik Peter Duren Jeremy J. Gray Karen Parshall, Chair Robin Wilson, Chair MichaelI.Rosen This work was originally published in German by Birkh¨auser Verlag under the title Gentzens Problem c 2001. The present translation was created under license for the American Mathematical Society and is published by permission. Photo of Gentzen in hat courtesy of the Archives of the Mathematisches Forschungsinstitut Oberwolfach. Reprinted with permission. 2010 Mathematics Subject Classification. Primary 01A60. For additional information and updates on this book, visit www.ams.org/bookpages/hmath-33 Library of Congress Cataloging-in-Publication Data Menzler-Trott, Eckart. [Gentzens Problem. English] Logic’s lost genius : the life of Gerhard Gentzen / Eckart Menzler-Trott ; translated by Craig Smory´nski and Edward Griffor. p. cm. (History of mathematics ; v. 33) ISBN 978-0-8218-3550-0 (alk. paper) 1. Gentzen, Gerhard. 2. Mathematicians—Germany—Biography. 3. Logic, Symbolic and mathematical. I. Title. QA29 .G467M46 2007 510.92—dc22 2007060550 AMS softcover ISBN: 978-1-4704-2812-9 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research.