Exploration of Structure-Property Relationships

Total Page:16

File Type:pdf, Size:1020Kb

Exploration of Structure-Property Relationships CRYSTALLOGRAPHY IN SWITZERLAND 562 CHIMIA 2001,55, No, 6 Chimia 55 (2001) 562-569 © Schweizerische Chemische Gesellschaft ISSN 0009-4293 Exploration of Structure-Property Relationships J(jrgen Schreuer* Abstract: Electrostriction and elasticity provide highly sensitive probes forthe exploration of structure-property relationships. With the aid of modern high-resolution capacitive dilatometers reliable linear and quadratic electrostrictive constants can be determined. The unusual thickness dependence of the converse piezoelectric effect in a-quartz and the electrostrictive behavior of the alkali halides are presented as examples. The close correlations between elastic properties and crystal structures are reflected by several heuristic and empirical rules. Resonant ultrasound spectroscopy (RUS)belongs to the most promising methods for the determination of elastic constants in the acoustic frequency regime. The potential of RUS for the simultaneous investigation of elastic and electrostrictive properties including electromechanical coupling effects is discussed. Keywords: Crystal physics' Elasticity' Electrostriction . Piezoelectricity' Structure-property relationships 1. Introduction was the advent of modern computers that known crystal structure. In the case of eventually made ab initio calculations higher order effects the situation is even Since the establishment of the first lattice feasible. A detailed overview of compu- more dramatic. Among the different rea- theoretical models about 100 years ago, tational methods in crystallography and sons for the large discrepancy between the interpretation of structure-property mineralogy has been recently given by importance and experimental knowledge relationships ranks among the most im- Winkler [1]. of macroscopic physical properties, the portant tasks in solid-state sciences. Besides the fascination for this devel- lack of high quality crystals of sufficient Models possessing high predictive power opment one should bear in mind that the size is certainly the most important. Ad- can help, for instance, to provide struc- interpretation of properties is not exclu- ded hindrances against a broader investi- tural and physical data of solids under sively the ability to predict properties gation of crystal properties are the high extreme conditions which are not acces- from first principles, but rather to reveal technical effort for development and sible by experiment, and to tailor new the relations between chemical composi- maintenance of the mostly self-made ex- materials with special properties. The tion, structure and properties of a broad perimental set-ups, and the high expendi- different modeling approaches either variety of crystalline materials. In this ture of time on preparation and measure- make use of transferable force fields de- context one has to face the following ment of samples. termined by certain adjustable parame- questions: (i) Is the present amount of As second order derivatives of ther- ters or rely on first principles calcula- available experimental data sufficient for modynamical potentials the elastic stiff- tions. While the advantage of empirical the derivation of general relations and nesses are directly connected with quan- models lies in their high computational rules? (ii) Which important properties tities in which the lattice energy per unit efficiency, the often poor accuracy and will not be easily accessible by calcula- volume is involved. The Christoffel de- the limited availability of transferable po- tions in the near future? (iii) Is there a terminants combine the elasticity tensor tentials make the use of quantum me- great difference between a crystal de- with the propagation velocities of sound chanical methods desirable. Although the scribed by computer simulation and a waves and related properties such as De- basic concepts were developed in the real macroscopic individual? These top- bye temperature, thermal conductivity, twenties and thirties of the last century, it ics have been controversially discussed thermal expansion (Griineisen relation), on two workshops [2] organized by the melting temperature (Lindemann formu- Laboratory of Crystallography of the la), infrared resonance frequencies and ETH Zurich. In order to illustrate the mo- dielectric behavior. Therefore a general tivation for our own research in the field qualitative interpretation of elastic prop- 'Correspondence: Dr. J. Schreuer of crystal physics, I would like to address erties - in some favorable cases also Laboratorium fOr Kristallographie these questions brief!y. nearly quantitative - will open access to ETH Zurich Sonneggstr. 5 To date the complete sets of elastic such other properties. With regard to pos- CH-B092 Zurich constants of about 2000 crystal species sible applications, additionally piezo- Tel.: +41 1 6323752 are known. At a first glance this seems to electric properties and electromechanical Fax: +41 1 6321133 E-Mail: [email protected] be a remarkable number. In fact it is less coupling effects are of considerable inter- http://www.kristalf.ethz.ch/LFK than 1% of the crystalline materials with est. Higher order effects provide access CRYSTALLOGRAPHY IN SWITZERLAND 563 CHIMIA 2001,55, NO.6 to the anharmonicity of lattice potentials. Table 1.Typical values for longitudinal deformations.1l of a sample with thickness J == 1mm caused For small and high symmetry structures by thermal expansion, linear and quadratic electrostriction, respectively. calculations from first principles nowa- Property days yield elastic constants which agree Value Force Induced change in length to within a few percent with experimental data [3], However, these calculations are thermal expansion a' II == 50 . 10·8K·1 T == 1K ill == 50 nrn still restricted to the athermal limit. linear electrostriction d'lI) == 2 10 12rnV1 E = 106Vm-1 J1 == 2 nm Moreover, the consideration of tempera- 21 ture effects will remain nearly impossible quadratic electrostriction d'lllI= 5· 10· m2y-2 E = 106Vm-' .jJ = 0.005 nm in the foreseeable future. The answer to the third question is definitely 'Yes'. On the one hand, it is can be neglected in first approximation. the lack of reliable experimental data the intrinsically impossible to obtain a real The interest in quadratic electrostriction interpretation of quadratic electrostric- crystal without defects (the surface is the is further stimulated by their fundamental tion has stagnated in the last decades. Just worst possible defect). On the other hand, relation to some non-linear optical effects recently two research groups, one in the certain electrical and optical properties such as stimulated Brillouin scattering Netherlands [7] and the second in Ger- are known to be strongly influenced by and quadratic electrooptic effects (Kerr many/Switzerland [8], studied the sourc- point defects and dislocations. For many effect). es of several disturbing effects and devel- properties no systematic study of their The mechanical strains Eij induced by oped apparative tools which allow for the dependence on different types of defects an electric field E with components Ek successful investigation of quadratic has been performed at all. Deviations are described phenomenologically by the electrostrictive properties. from the periodic structure are currently Taylor series expansion not tractable by computational methods. 2.1. Experimental Approach: High- Even with a supreme effort only a negli- resolution Capacitive Dilatometer gible, probably non-representative part Among the different approaches to of a real macroscopic crystal, which con- where the coefficients dijb dijkl etc. de- the determination of quadratic electro- sists of about 1023 atoms, can be mod- note the corresponding first, second and strictive constants ([8] and references eled. higher order electrostrictive material therein) the direct strain measurements Therefore, our work focuses on the properties. employing dilatometers based on the fre- improvement and development of dy- The components dijb often referred to quency-modulation technique are the namic methods for the experimental in- as converse piezoelectric constants, form most promising. vestigation of electromechanical proper- a polar third-rank tensor. Therefore, line- The heart of our capacitive dilatome- ties of small samples. Employing these ar electro striction can only occur in crys- ter [8] (Fig. 1) consists of an oscillator techniques we study the elastic and elec- tals with a non-centrosymmetric point with basic frequency in the range be- trostrictive properties of crystals as a symmetry group (PSG), with the excep- tween 60 and 110 MHz. The two elec- function of external forces and of their tion of PSG 43. Linear electrostrictive ef- trodes of the frequency-controlling ca- real structure. fects are in the order of 1O-12mY-l(Table 1) pacitor are supported by transducer rods and can be easily measured employing which are connected with the sample and optical or electromechanical dilatometers with a reference crystal, respectively. 2. Electrostrictive Effects [6]. Due to the important technical appli- Thus, a periodic longitudinal deforma- cations of piezoelectric materials (piezo- tion of one of the crystals leads to a mod- The best criterion to test lattice theo- electric actuators, sensors, oscillators, ulation of the high-frequency signal of retical models is proof of their predictive switches, frequency filters etc.) most of the oscillator. The modulation is elec- power. One of the rare examples where a the recent
Recommended publications
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta Et Al
    USOO74491.61B2 (12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta et al. (45) Date of Patent: Nov. 11, 2008 (54) PRODUCTION OF LITHIUM COMPOUNDS 4,207,297 A * 6/1980 Brown et al. ............. 423,179.5 DIRECTLY FROM LITHIUM CONTAINING 4,243,641 A * 1/1981 Ishimori et al. .......... 423/179.5 BRINES 4.261,960 A * 4/1981 Boryta ............. ... 423,179.5 4,271,131. A * 6/1981 Brown et al. ...... ... 423,179.5 4,274,834. A 6/1981 Brown et al. .............. 23,302 R (75) Inventors: Daniel Alfred Boryta, Cherryville, NC 4,463,209 A * 7/1984 Kursewicz et al. .......... 585/467 (US); Teresita Frianeza Kullberg, 4,465,659 A * 8/1984 Cambridge et al. ......... 423,495 Gastonia, NC (US); Anthony Michael 4,588,565 A * 5/1986 Schultze et al. .......... 423,179.5 Thurston, Edmond, OK (US) 4,747.917 A * 5/1988 Reynolds et al. ............ 205,512 4,859,343 A * 8/1989 Frianeza-Kullberg (73) Assignee: Chemetall Foote Corporation, Kings et al. .......................... 210,679 Mountain, NC (US) 4,980,136 A * 12/1990 Brown et al. ... 423,179.5 5,049,233 A 9, 1991 Davis .......................... 216.93 (*) Notice: Subject to any disclaimer, the term of this 5,219,550 A * 6/1993 Brown et al. ............. 423 (419.1 patent is extended or adjusted under 35 5,599,516 A * 2/1997 Bauman et al. .......... 423/179.5 U.S.C. 154(b) by 0 days. 5,939,038 A * 8/1999 Wilkomirsky ............... 423,276 5.993,759 A * 1 1/1999 Wilkomirsky ...........
    [Show full text]
  • The Secondary Phosphate Minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): Substitutions of Triphylite and Montebrasite Scholz, R.; Chaves, M
    The secondary phosphate minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): substitutions of triphylite and montebrasite Scholz, R.; Chaves, M. L. S. C.; Belotti, F. M.; Filho, M. Cândido; Filho, L. Autor(es): A. D. Menezes; Silveira, C. Publicado por: Imprensa da Universidade de Coimbra URL persistente: URI:http://hdl.handle.net/10316.2/31441 DOI: DOI:http://dx.doi.org/10.14195/978-989-26-0534-0_27 Accessed : 2-Oct-2021 20:21:49 A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. pombalina.uc.pt digitalis.uc.pt 9 789892 605111 Série Documentos A presente obra reúne um conjunto de contribuições apresentadas no I Congresso Imprensa da Universidade de Coimbra Internacional de Geociências na CPLP, que decorreu de 14 a 16 de maio de 2012 no Coimbra University Press Auditório da Reitoria da Universidade de Coimbra.
    [Show full text]
  • Evaluation of Aqueous Systems
    268 Lithium Iodate COMPONENTS: EVALUATOR: H. Miyamoto (1) Lithium Iodate; LiI03; [13765-03-2] Niigata University Niigata, Japan (2) Water; H20; [7732-18-5] and M. Salomon US Army ET & DL Fort Monmouth, NJ, USA February, 1986 CRITICAL EVALUATION: THE BINARY SYSTEM Solubility data for LiI03 in water have been reported in 37 publications (1-34, 44-46). At 298.2 K Shklovskaya et al. (5,7,8,11,14-20,22,23,25,27,28,44) reported the identical solubility of 43.82 mass %, and although the work spans a period of 10 years (1974-1983), it is not possible to determine the number of independent measurements in these 18 publi­ cations. The solubility of 43.30 mass % at 298.2 K reported in (24) is distinctly lower than all other findings and is therefore rejected. Unezawa et al. (33) reported the solubility to be about 76 g/lOO g H20 (43.2 mass %) over the temperature range of 278-343 K, and although this is an interesting result its qualitative nature led us to conclude that it should not be compiled. However the importance of this paper is that the authors identified the stable solid phase at room temperature as hexagonal LiI03 (i.e. the a-phase) which is consistent with other quantitative data as discussed below. A graphical summary of the solubility of LiI03 in water is given in the polytherm figure below. In all cases the equilibrated solid phase is the anhydrous salt. 370 350 330 T/K 310 290 270-I------.r-----.-----..----......----------. 42 43 44 45 46 47 48 mass % Figure 1.
    [Show full text]
  • Handbook on the Physics and Chemistry of Rare Earths Volume 9 Elsevier, 1987
    Handbook on the Physics and Chemistry of Rare Earths volume 9 Elsevier, 1987 Edited by: Karl A. Gschneidner, Jr. and LeRoy Eyring ISBN: 978-0-444-87045-2 by kmno4 Handbook on the Physics and Chemistry of Rare Earths, edited by K.A. Gschneidner, Jr. and L. Eyring © Elsevier Science Publishers B.V., 1987 PREFACE Karl A. GSCHNEIDNER, Jr., and LeRoy EYRING o These elements perplex us in our rearches [sic], baffle us in our speculations, and haunt us in our very dreams. They stretch like an unknown sea before us- mocking, mystifying, and murmuring strange revelations and possibilities. Sir William Crookes (February 16, 1887) There are those who feel that the rare earth elements are destined to play an even greater role in our "high-tech" society in the future than they have in the past. This judgement is based upon the trend of increasing applications resulting from the electronic structures of these materials that lead to their unusual optical, magnetic, electrical and chemical properties so adaptable to the demands now being placed on materials. The "Handbook" seeks to provide topical reviews and compilations of critically reviewed data to aid in the design and fabrication of the required new materials. Four additional chapters in this tradition are the contents of this volume. The development of lasers containing rare earth species sparked an interest in glasses containing these elements. Reisfeld and J0rgensen discuss excited-state phenomena in vitreous rare-earth-containing substances. The description of the chemistry and crystal chemistry of complex inorganic compounds of the rare earths is continued by Niinist6 and Leskelfi from the previous volume.
    [Show full text]
  • PDF Card 3-320 [Dow Chemical Co., Midland, 1 .3805 1 006 67.83 Michigan] 1 .3672 6 300 68.58
    standard X-ray Diffraction Powder Patterns ^v^iSection 10-Data for 84 Substances ^•2. — Howard E. Swanson, Howard F. McMurdie, Marlene C. Morris lliloise H. Evans, and Boris Paretzkin Assisted by Johan H. deGroot and Simon J. Carmel Institute for Materials Research -y.J National Bureau of Standards ' Washington, D.C. 20234 U.S. DEPARTMENT OF COMMERCE, Refer G. Peterson, Secretary NATIONAL BUREAU OF STANDARDS, Lawrence M. Kushner, AcUng Director, Issued November 1972 Library of Congress Catalog Card Number: 53—61386 National Bureau of Standards Monograph 25 Section 10—Data for 84 Substances Nat. Bur. Stand. (U.S.), Monogr. 25— Sec. 10,161 pages (Nov. 1972) CODEN: NBSMA6 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.44: 25/Sec. 10). Price $2.00 CONTENTS Page Page Introduction 1 Zinc manganese oxide (hetaerolite), ZnMn20^ 61 Experimental patterns: Zinc tin oxide, Zn2Sn04 62 Ammonium aluminum sulfate, NH^AKSO^)^ 5 Calculated patterns: Ammonium copper bromide hydrate, (NH^)2CuBr^"2H20 .. 6 Barium bromide, BaBr2 63 Ammonium iodate, NH^IOj 7 Barium iodide, Bal2 66 Ammonium iron sulfate, NH^Fe(S0^)2 8 Boron oxide, B2O3 phase 1 70 Ammonium magnesium aluminum fluoride, NH^IVIgAIFg ... 9 Calcium iron silicate hydroxide, julgoldite, Barium bromide fluoride, BaBrF 10 Ca2Fe3Si30jo(OH,0)2(OH)2 72 Barium chloride fluoride, BaCIF 11 Calcium malate hydrate, CaC4H405-2H20 76 Barium sulfate (barite), BaSO^ (revised). 12 Cesium lithium cobalt cyanide, CsLiCo(CN)g 79 Cadmium
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0233042 A1 Boryta Et Al
    US 20080233042A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0233042 A1 Boryta et al. (43) Pub. Date: Sep. 25, 2008 (54) PRODUCTION OF LITHIUM COMPOUNDS 11/332,134, filed on Jan. 13, 2006, now Pat. No. 7,214, DIRECTLY FROM LITHIUM CONTAINING 355, which is a division of application No. 10/395,984, BRINES filed on Mar. 25, 2003, now Pat. No. 7,157,065, which is a continuation-in-part of application No. 09/707, (76) Inventors: Daniel Alfred Boryta, Cherryville, 427, filed on Nov. 7, 2000, now Pat. No. 6,936,229, NC (US); Teresita Frianeza which is a division of application No. 09/353,185, filed Kullberg, Gastonia, NC (US); on Jul. 14, 1999, now Pat. No. 6,207,126. Anthony Michael Thurston, Edmond, OK (US) Publication Classification Correspondence Address: (51) Int. C. FULBRIGHT & JAWORSKI, LLP C22B 26/10 (2006.01) 666 FIFTHAVE NEW YORK, NY 10103-3198 (US) (52) U.S. Cl. ..................................................... 423/499.3 (21) Appl. No.: 12/114,054 (57) ABSTRACT (22) Filed: May 2, 2008 Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concen Related U.S. Application Data trated to about 6.0 wt % lithium are disclosed. Methods and (60) Continuation of application No. 1 1/706027, filed on apparatus for direct recovery of technical grade lithium chlo Feb. 14, 2007, which is a division of application No. ride from the concentrated brine are also disclosed. Patent Application Publication Sep. 25, 2008 Sheet 1 of 7 US 2008/0233042 A1 LITHIUM CARBONATE PROCESSFLOW DIAGRAM (A) 2 CD SOLID SODAASH 4 3 Mg MUD \ SAS 6 FROM C5 5 REACTOR LIQUOR MOTHER LIOUOR WASH FILTER (10) BRINE + WASHFILTRATE 0.5 - 1.2% Li 2ND STAGE 12 REACTOR FILTER Li2CO3 REACTOR 18 FILTER MOTHER LIQUOR (19) WASH WATER FLTRATE PROCESS BLEED WET LITHIUM CARBONATE9 21 DRYER WET Li2CO3 22 TO B1 TECH GRADE Li2CO3 FIG.
    [Show full text]
  • Local Peralkalinity in Peraluminous Granitic Pegmatites. I. Evidence
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7790. http://www.minsocam.org/ Revision 1 1 Local peralkalinity in peraluminous granitic pegmatites. I. Evidence 2 from whewellite and hydrogen carbonate in fluid inclusions 3 YONGCHAO LIU1,2, CHRISTIAN SCHMIDT2,*, AND JIANKANG LI1 4 1MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, 5 Chinese Academy of Geological Sciences, Beijing 100037, China 6 2GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 7 *Corresponding author: [email protected] 8 9 ABSTRACT 10 Fluid inclusions in pegmatite minerals were studied using Raman spectroscopy to 11 determine the carbon species. Carbon dioxide is very abundant in the aqueous liquid and vapor − 12 phases. Occasionally, CH4 was found in the vapor. In the aqueous liquid, HCO3 was detected in 13 fluid inclusions in tantalite-(Mn) from the Morrua Mine and in late-stage quartz from the Muiâne 14 pegmatite and the Naipa Mine, all in the Alto Ligonha District, Mozambique. Moreover, we 15 observed a carbonate (calcite group) in fluid inclusions in garnet from the Naipa Mine and in 16 beryl from the Morrua Mine, both in the Alto Ligonha District, Mozambique, and a calcite-group 17 carbonate and whewellite [CaC2O4∙H2O] in fluid inclusions in topaz from Khoroshiv, Ukraine. 18 The occurrence of oxalate is interpreted to be due to a reaction of some form of carbon (possibly 19 CO or bitumen) with a peralkaline fluid.
    [Show full text]
  • COMPUTER SIMULATION STUDIES of ... -.:University of Limpopo
    COMPUTER SIMULATION STUDIES OF SPINEL LiMn2O4 AND SPINEL LiNiXMn2-XO4 (0≤x≤2) By KEMERIDGE TUMELO MALALTJI Thesis Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy In Physics in the FACULTY OF SCIENCES AND AGRICULTURE (School of Physical and Mineral Sciences) at the UNIVERSITY OF LIMPOPO SUPERVISOR: Prof. R.R. Maphanga CO- SUPERVISORS: Prof. P.E. Ngoepe (Dated: 29 October 2019) Declaration I, Kemeridge Tumelo Malatji confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. I agree that the Library may lend or copy this dissertation on request. Signature: Date: 29/10/2019 Name: Mr K.T. Malatji ii Abstract LiMn2O4 spinel (LMO) is a promising cathode material for secondary lithium-ion batteries which, despite its high average voltage of lithium intercalation, suffers crystal symmetry lowering due to the Jahn-Teller active six-fold Mn3+ cations. Although Ni has been proposed as a suitable substitutional dopant to improve the energy density of LiMn2O4 and enhance the average lithium intercalation voltage, the thermodynamics of Ni incorporation and its effect on the electrochemical properties of this spinel are not fully understood. Firstly, structural, electronic and mechanical properties of spinel LiMn2O4 and LiNixMn2-xO4 have been calculated out using density functional theory employing the pseudo-potential plane-wave approach within the generalised gradient approximation, together with Virtual Cluster Approximation. The structural properties included equilibrium lattice parameters; electronic properties cover both total and partial density of states and mechanical properties investigated elastic properties of all systems.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Studies on the Growth and Characterization of Some Optical Crystals
    STUDIES ON THE GROWTH AND CHARACTERIZATION OF SOME OPTICAL CRYSTALS Thesis of the research work submitted to Bharathidasan University, Thiruchirappalli in partial fulfillment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY IN PHYSICS Submitted by P.PARAMASIVAM Under the Supervision of Dr. C. RAMACHANDRA RAJA, Ph.D., Associate Professor in Physics POSTGRADUATE & RESEARCH DEPARTMENT OF PHYSICS GOVERNMENT ARTS COLLEGE (AUTONOMOUS) KUMBAKONAM - 612001 TAMIL NADU, INDIA FEBRUARY – 2012 Dr. C. Ramachandra Raja, Ph.D., Associate Professor in Physics, Department of Physics, Government Arts College (Autonomous), Phone : +91 4364221751 Kumbakonam – 612001, CelL: +91 9976696277 Tamil Nadu, India. Email: [email protected] CERTIFICATE This is to certify that the thesis entitled “STUDIES ON THE GROWTH AND CHARACTERIZATION OF SOME OPTICAL CRYSTALS” submitted by Mr. P.PARAMASIVAM is a bonafide record of the research work done by him during the period of study from 2004 to 2011 under my supervision in the Department of Physics, Government Arts College (Autonomous), Kumbakonam and that the thesis has not previously formed the basis for the award of any Degree, Diploma, Associateship, Fellowship or any other similar title. This thesis represents an independent work on the part of candidate. Kumbakonam C. Ramachandra Raja (Research Supervisor) Mr. P.Paramasivam, Research Scholar (Part - Time), Department of Physics, Government Arts College (Autonomous), Kumbakonam – 612001, Tamil Nadu, India. DECLARATION I hereby declare that the work presented in this thesis entitled “STUDIES ON THE GROWTH AND CHARACTERISATION OF SOME OPTICAL CRYSTALS” has been originally carried out by me under the guidance and supervision of Dr.C.Ramachandra Raja, Associate Professor, Department of Physics, Government Arts College (Autonomous), Kumbakonam.
    [Show full text]
  • The Journal of ^ Y Volume 26 No
    Gemmolog^^ The Journal of ^ y Volume 26 No. 8 October 1999 fj J The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 020 7404 3334 Fax: 020 7404 8843 e-mail: [email protected] Website: www.gagtl.ac.uk/gagtl. President: Professor R.A. Howie Vice-Presidents: E.M. Bruton, A.E. Farn, D.G. Kent, R.K. Mitchell Honorary Fellows: Chen Zhonghui, R.A. Howie, R.T. Liddicoat Jnr, K. Nassau Honorary Life Members: H. Bank, D.J. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, N.W. Deeks, R.R. Harding, I. Mercer, J. Monnickendam, M J. O'Donoghue, E. Stern, I. Thomson, V.P. Watson Members' Council: A.J. Allnutt, P. Dwyer-Hickey, S.A. Everitt, A.G. Good, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, PG. Read, R. Shepherd, P.J. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West -1. Knight, Scottish - B. Jackson Examiners: A.J. Allnutt, MSc, Ph.D., FGA, L. Bartlett, B.Sc, MPhiL, FGA, DGA, E.M. Bruton, FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Howe, FGA, DGA, B. Jackson, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, M. Newton, B.Sc, D.Phil., C.J.E. Oldershaw, B.Sc (Hons), FGA, H.L. Plumb, B.Sc, FGA, DGA, R.D. Ross, B.Sc, FGA, DGA, PA.
    [Show full text]