Standard X-Ray Diffraction Powder Patterns NATIONAL BUREAU of STANDARDS

Total Page:16

File Type:pdf, Size:1020Kb

Standard X-Ray Diffraction Powder Patterns NATIONAL BUREAU of STANDARDS NBS MONOGRAPH 25—SECTION 1 9 CO Q U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Standard X-ray Diffraction Powder Patterns NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essentia! services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities^ — Radiation Research — Chemical Physics — Analytical Chemistry — Materials Science THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser- vices to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers: Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing Engineering — Building Technology — Fire Research — Chemical Engineering^ THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers: Programming Science and Technology — Computer Systems Engineering. 'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234. 'Some divisions within the center are located at Boulder, CO 80303. standard X-ray Diffraction Powder Patterns Section 1 9 — Data for 51 Substances Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, and Nikos P. Pyrros International Centre for Diffraction Data 1601 Park Lane Swarthmore, PA 19081 and Camden R. Hubbard National Measurement Laboratory National Bureau of Standards Washington, DC 20234 International Centre for Diffraction Data U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige. Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler. Director Issued Decennber 1982 Library of Congress Catalog Card Number: 53-61386 National Bureau of Standards Monograph 25 Section 19— Data for 51 Substances Natl. Bur. Stand. (U.S.), Monogr. 25— Sec. 19, 118 pages (Dec. 1982) CODEN: NBSMA6 U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1982 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 Price 55.50 (Add 25 percent for other than U.S. mailing) , , , , , CONTENTS Page Page Introduction 1 Potassium strontium phosphate, KSrP04 71 Experimental patterns: Silver telluride (hessite) , Ag2Te ... 73 Sodium barium phosphate, NaBaP04 .... 75 Aluminum yttrium oxide, AIYO3 7 Sodium strontium phosphate, Aluminum yttrium oxide, Al2Y40g .... 9 NaSrP04 77 Aluminum yttrium oxide, AI5Y3O12 ••• 11 Sodium titanium phosphate, Ammonium cadmium phosphate hydrate, NaTi2(P04)3 79 NH4CdP04-H20 13 Sodium zirconium phosphate, Barium aluminum titanium oxide, NaZr2(P04)3 81 BaAlgTiOia 14 Yttrium chromium oxide, YCrOg 83 Barium aluminum titanium oxide, Zinc arsenate hydrate (koettigite) BagAlioTiOao 16 Zn3(As04)2*8H20 85 Barium boride, BaBg 18 Zinc sulfate hydrate (gunningite) Barium neodyiliium titanium oxide, ZnS04-H20 86 BaNd2Ti50i4 19 Bariiun tungsten oxide, BagWOg 21 Calculated pattern: Beryllium carbide, Be2C 23 Cadmium iodide, a-Cdl2 24 Phenobarbital hydrate, Calcium aluminum oxide hydrate, Ci2Hi2N203-H20 88 Ca4Al60i3-3H20 25 Calcium aluminum silicate hydrate, Cumulative indices chabazite, Ca2Al4Sig024*12H20 27 Calcium silicate (larnite), (Circular 539, Volumes 1-10 and Monograph 25, p-Ca2Si04 29 Sections 1-19 inclusive) Calcium silicon fluoride hydrate, CaSiF6-2H20 31 1. Inorganic 90 Cesium iodide, Cslg 33 2. Organic formula 106 Cesiiim molybdenum oxide, CS2M03O10 •• 35 3. Organic name 109 Chromium boride, CrB2 37 4. Mineral 112 Chromium niobium oxide, CrNb04 38 Cobalt arsenate hydrate (erythrite) Co3(As04)2-8H20 39 Cobalt phosphate hydrate, Co3(P04)2-8H20 40 Erbium iron, ErFe2 42 Ethylenediamine Hydrochloride, C2H8N2-2HC1 43 Ethylenediaminetetraacetic Acid, C10H12N2O8 45 Hafnium nitride, HfN .. 46 p-Iodobenzoic Acid, C7H5IO2 47 Iron aluminum oxide (hercynite), FeAl204 48 Iron antimony oxide, FeSb04 49 Iron chromium oxide (chromite) FeCr204 50 Lithium zirconium oxide, Li2Zr03 .... 51 Magnesium arsenate hydrate (hoernesite) , Mg3(As04)2 •8H2O 53 Magnesium phosjphate (farringtonite) Mg3(P04)2 55 Manganese tartrate, C4H4Mn06 57 Molybdenum silicide, MosSis 59 Nickel arsenate hydrate (annabergite) Ni3(As04)2-8H20 60 Nickel molybdenum oxide, NiMo04 62 Nickel phosphate hydrate, Ni3(P04)2-8H20 64 Nickel sulfate hydrate (nickel-hexa- hydrite), p-NiS04-6H20 65 Niobium, Nb 67 Potassium barium phosphate, KBaP04 68 Potassium calcium phosphate, KCaP04 70 iii . STANDARD X-RAY DIFFRACTION POWDER PATTERNS Publications Available Previous work has been published as a book entitled Powder Diffraction Data from the Joint Committee on Powder Diffraction Standards Associateship at the National Bureau of Standards (1976) (obtainable from the publisher: JCPDS-- International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081, price furnished on request). The volume is sold with an accompanying search manual, and contains 9A9 card images of patterns of experimental data, published originally as Circular 539 (vols. 1-10) and Mono- graph 25, Sections 1-12, and most of Section 13. Individual copies of the Circular and Monograph are still available and may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. If a publication listed below is identified with a number, use this number in ordering. All are available in photocopy or microfiche; the price is not fixed and will be furnished on request. NBS Publication Order Number NBS Publication Order Number Circular 539, Volume 1 PB 178 902 Monograph 25, Section 1 PB 178 429 Volume 2 PB 178 903 Section 2 PB 178 430 Volume 3 PB 178 904 Section 3 PB 178 431 Volume 4 PB 178 905 Section 4 (order by section #) Volume 5 PB 178 906 Section 5 " Volume 6 PB 178 907 Section 6 " " Volume 7 PB 178 908 Section 7 Volume 8 PB 178 909 Section 8 PB 194 872 Volume 9 PB 178 910 Section 9 COM 72-50002 Volume 10 PB 178 911 Section 10 COM 72-51079 Section 11 COM 74-50183 Section 12 COM 75-50162 Section 13 PB 254 073 Section 14 PB 272 372 Section 15 PB 287 182 Also, until the present supply is exhausted, the following issues are for sale from the Superinten- dent of Documents, U.S. Government Printing Office, Washington, DC 20402. Order by given catalog number, and add 25% to the price, for other than U.S. mailing. Catalog Number Price Section 12 SN 003-003-01376-5 $1.50 Section 14 SN 003-003-01842-2 2.75 Section 15 SN 003-003-01986-1 4.00 Section 16 SN 003-003-02128-8 5.00 Section 17 SN 003-003-02253-5 4.50 Section 18 SN 003-003-02370-1 5.50 ERRATA Circular 539 Volume 8, p. 67: A least squares refinement of the d's gives results: a=6. 8837(2), c=6. 0197(5). Several of the hkJK's need to be changed for angles higher than 100°. Monograph 25 Section 11. P- 18: Density should be 2.197. P- 56: Density should be 2.733. Section 17, p. The correct formula for a? is: i 2 - <i>,) P- 32 Z should be 4. P- 34 Density should be 1.608. Section 18, P- 3 Figure 2 is upside down. P- 9 The value c/b should be 0.3548, and the calculated
Recommended publications
  • Parental Brine Evolution in the Chilean Nitrate Deposits (Pedro De Valdivia, II Region De Antofagasta) : Mineralogical and Petro
    Third ISAG, S1 Malo (France), 17-19/9/1996 707 PARENTAL BRINE EVOLUTION IN THE CHILEAN NITRATE DEPOSITS (Pedro de Valdivia, I1 Regi6n de Antofagasta). MINERALOGICAL AND PETROGRAPHIC DATA Marta VEGA(l), G. CHONG(') and Juan J. PUEy0t2). ('1 Departamento de Ciencias Geol6gicas. Universidad Cat6lica del Norte. Avda.Angamos, 0610. Casilla 1280. Antofagasta. (2) Facultat de Geologia. Universitat de Barcelona. Zona Universitaria de Pedralbes. 08028 Barcelona . KEYWORDS: nitrates, iodates, saline minerals, paragenesis, porosity, brine evolution. INTRODUCTION The Chilean nitrate deposits have been formed by complex paragenesis of saline minerals (locally named caliche) that infill the porosity of rocks ranging in age from Paleozoic to Cenozoic. Minerals which are normally extremely rare - nitrates, nitrate-sulphates, iodates and iodate-sulphates - are common in the Chilean nitrates. Located in the Atacama Desert (North Chile; between 19'30' and 2.5'30' S latitude, and 69'30' and 70'30' W longitude), the deposits follow an irregular N-S swathe, a few km wide (reaching a maximum of several tens of km). The distribution of the deposits parallels the contact between the Coastal Range and the Central Depression. The nitrate (and saline) ores can infill either cracks (joints, fractures) in the country rocks (volcanic, intrusive or sedimentary), porosity in breccias and conglomerates from alluvial fans and pediments, or porosity created by previous alteration processes. Ericksen (1981) divided the different styles of occurrence as deposits in rock and sedimentary deposits. Deposits in rock are characterized by Old alluvial sediments Fig. 1. Distribution of worked nitrate areas in the Pedro de Valdivia area. See the relationships between the nitrate deposits and tertiary alluvial sediments on the NW alluvial fans.
    [Show full text]
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • Bismuth Antimony Telluride
    ci al S ence Mahajan et al., J Material Sci Eng 2018, 7:4 ri s te & a E M n DOI: 10.4172/2169-0022.1000479 f g o i n l e a e n r r i n u g o Journal of Material Sciences & Engineering J ISSN: 2169-0022 Research Article Article OpenOpen Access Access Study and Characterization of Thermoelectric Material (TE) Bismuth Antimony Telluride Aniruddha Mahajan1*, Manik Deosarkar1 and Rajendra Panmand2 1Chemical Engineering Department, Vishwakarma Institute of Technology, Pune, India 2Centre for Materials Electronics and Technology (C-MET), Dr. Homi Bhabha Road, Pune, India Abstract Thermoelectric materials are used to convert the heat to electricity with no moving parts, in the present work an attempt has been made to prepare it for power generation function. Bismuth antimony telluride nanopowders were prepared by using mechanochemical method. Three different materials; Bismuth Telluride, (Bi0.75Sb0.25)2Te 3 and (Bi0.5Sb0.5)2Te 3 were synthesized. XRD and TEM analysis was carried out to confirm the results. The particle size of the material was determined by using FESEM analysis. The two alloys of Bismuth Telluride such prepared were converted in the pellet form using vacuum hydraulic pressure and their Seebeck coefficients were determined to test the material suitability for its use as a thermoelectric device. Their power factor measurement and Hall effect measurements were carried out at room temperature. Keywords: Bismuth telluride; Mechanochemical method; energy in one form into another. Use of TE solid materials Applications Nanoparticals; Seebeck coefficients in heat pump and refrigeration is well known [14] and it is now expanded such as cooled seats in luxury automobiles [15].
    [Show full text]
  • Potassium Nitrate
    Common Name: POTASSIUM NITRATE CAS Number: 7757-79-1 RTK Substance number: 1574 DOT Number: UN 1486 Date: March 1998 Revision: November 2004 --------------------------------------------------------------------------- --------------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS * Potassium Nitrate can affect you when breathed in. No occupational exposure limits have been established for * Contact can cause eye and skin irritation. Potassium Nitrate. This does not mean that this substance is * Breathing Potassium Nitrate can irritate the nose and not harmful. Safe work practices should always be followed. throat causing sneezing and coughing. * High levels can interfere with the ability of the blood to WAYS OF REDUCING EXPOSURE carry Oxygen causing headache, fatigue, dizziness, and a * Where possible, enclose operations and use local exhaust blue color to the skin and lips (methemoglobinemia). ventilation at the site of chemical release. If local exhaust Higher levels can cause trouble breathing, collapse and ventilation or enclosure is not used, respirators should be even death. worn. * Potassium Nitrate may affect the kidneys and cause * Wear protective work clothing. anemia. * Wash thoroughly immediately after exposure to Potassium Nitrate. IDENTIFICATION * Post hazard and warning information in the work area. In Potassium Nitrate is a transparent, white or colorless, addition, as part of an ongoing education and training crystalline (sand-like) powder or solid with a sharp, salty effort, communicate all information on the health and taste. It is used to make explosives, matches, fertilizer, safety hazards of Potassium Nitrate to potentially fireworks, glass and rocket fuel. exposed workers. REASON FOR CITATION * Potassium Nitrate is on the Hazardous Substance List because it is cited by DOT. * Definitions are provided on page 5.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta Et Al
    USOO74491.61B2 (12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta et al. (45) Date of Patent: Nov. 11, 2008 (54) PRODUCTION OF LITHIUM COMPOUNDS 4,207,297 A * 6/1980 Brown et al. ............. 423,179.5 DIRECTLY FROM LITHIUM CONTAINING 4,243,641 A * 1/1981 Ishimori et al. .......... 423/179.5 BRINES 4.261,960 A * 4/1981 Boryta ............. ... 423,179.5 4,271,131. A * 6/1981 Brown et al. ...... ... 423,179.5 4,274,834. A 6/1981 Brown et al. .............. 23,302 R (75) Inventors: Daniel Alfred Boryta, Cherryville, NC 4,463,209 A * 7/1984 Kursewicz et al. .......... 585/467 (US); Teresita Frianeza Kullberg, 4,465,659 A * 8/1984 Cambridge et al. ......... 423,495 Gastonia, NC (US); Anthony Michael 4,588,565 A * 5/1986 Schultze et al. .......... 423,179.5 Thurston, Edmond, OK (US) 4,747.917 A * 5/1988 Reynolds et al. ............ 205,512 4,859,343 A * 8/1989 Frianeza-Kullberg (73) Assignee: Chemetall Foote Corporation, Kings et al. .......................... 210,679 Mountain, NC (US) 4,980,136 A * 12/1990 Brown et al. ... 423,179.5 5,049,233 A 9, 1991 Davis .......................... 216.93 (*) Notice: Subject to any disclaimer, the term of this 5,219,550 A * 6/1993 Brown et al. ............. 423 (419.1 patent is extended or adjusted under 35 5,599,516 A * 2/1997 Bauman et al. .......... 423/179.5 U.S.C. 154(b) by 0 days. 5,939,038 A * 8/1999 Wilkomirsky ............... 423,276 5.993,759 A * 1 1/1999 Wilkomirsky ...........
    [Show full text]
  • March 12Th CONTENT
    Issue 05, February 27th – March 12th CONTENT Introduction During the first two weeks of March we saw important alliances 1between car manufacturers for the development and supply of Batteries electric vehicles. Daimler AG will cooperate with BYD in China and Vehicles and Mitsubishi Motors will work with PSA Peugeot – Citroen in Europe. These announcements represent an important step BYD and Daimler will develop an for electrifying transportation; however going forward requires Electric Vehicle for the Chinese market many issues that still need to be solved. As a society we have Celgard announced expansion of assumed that it is “possible” to replace (in some way) oil for production capacity in Korea electricity, but the question is if we have figured out where and Misubishi Motors and PSA Peugeot how we could obtain this electricity. Once this issue is solved (at Citroen reached final agreement a “reasonable” price and in an environmental friendly way), Sanyo will supply a lithium ion battery the next step is the efficient distribution of this electricity. We system for traffic signals in Japan have seen some companies that are developing interesting business models, but we are far from a mass implementation. LG Chemical will build Volt battery Summarizing, the question that arises is: are we (as a society) plant in Michigan prepared for electrifying transportation? Regarding lithium, a key raw material for batteries used in electric vehicles, it is important to highlight that most of the projects that have been announced in the last years are in an early stage of development. Anyway, the trend is clear: in less than three years around 20 new Companies have announced more than 40 new lithium projects.
    [Show full text]
  • The Secondary Phosphate Minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): Substitutions of Triphylite and Montebrasite Scholz, R.; Chaves, M
    The secondary phosphate minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): substitutions of triphylite and montebrasite Scholz, R.; Chaves, M. L. S. C.; Belotti, F. M.; Filho, M. Cândido; Filho, L. Autor(es): A. D. Menezes; Silveira, C. Publicado por: Imprensa da Universidade de Coimbra URL persistente: URI:http://hdl.handle.net/10316.2/31441 DOI: DOI:http://dx.doi.org/10.14195/978-989-26-0534-0_27 Accessed : 2-Oct-2021 20:21:49 A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. pombalina.uc.pt digitalis.uc.pt 9 789892 605111 Série Documentos A presente obra reúne um conjunto de contribuições apresentadas no I Congresso Imprensa da Universidade de Coimbra Internacional de Geociências na CPLP, que decorreu de 14 a 16 de maio de 2012 no Coimbra University Press Auditório da Reitoria da Universidade de Coimbra.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Tourmaline Reference Materials for the in Situ Analysis of Oxygen and Lithium Isotope Ratio Compositions
    Vol. 45 — N° 1 03 P.97 – 119 21 Tourmaline Reference Materials for the In Situ Analysis of Oxygen and Lithium Isotope Ratio Compositions Michael Wiedenbeck (1)*, Robert B. Trumbull (1), Martin Rosner (2),AdrianBoyce (3), John H. Fournelle (4),IanA.Franchi (5),RalfHalama (6),ChrisHarris (7),JackH.Lacey (8), Horst Marschall (9) , Anette Meixner (10),AndreasPack (11), Philip A.E. Pogge von Strandmann (9), Michael J. Spicuzza (4),JohnW.Valley (4) and Franziska D.H. Wilke (1) (1) GFZ German Research Centre for Geosciences, Potsdam 14473, Germany (2) Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA (3) Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK (4) Department of Geoscience, University of Wisconsin, Madison, WI, 53706, USA (5) School of Physical Sciences, Open University, Milton Keynes MK7 6AA, UK (6) Department of Geology, University of Maryland, College Park, MD, 20742, USA (7) Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa (8) National Environmental Isotope Facility, British Geological Survey, Keyworth NG12 5GG, UK (9) Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK (10) Faculty of Geosciences & MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany (11) Geowissenschaftliches Zentrum, Universitat¨ Gottingen,¨ Gottingen¨ 37077, Germany (12) Present address: IsoAnalysis UG, Berlin 12489, Germany (13) Present address: School of Geography, Geology and Environment, Keele University, Keele ST5 5BG, UK (14) Present address: Institut fur¨ Geowissenschaften, Goethe-Universitat,¨ Frankfurt am Main 60438, Germany (15) Present address: Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, London WC1E 6BS, UK * Corresponding author.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • The Minerals and Rocks of the Earth 5A: the Minerals- Special Mineralogy
    Lesson 5 cont’d: The Minerals and Rocks of the Earth 5a: The minerals- special mineralogy A. M. C. Şengör In the previous lectures concerning the materials of the earth, we studied the most important silicates. We did so, because they make up more than 80% of our planet. We said, if we know them, we know much about our planet. However, on the surface or near-surface areas of the earth 75% is covered by sedimentary rocks, almost 1/3 of which are not silicates. These are the carbonate rocks such as limestones, dolomites (Americans call them dolostones, which is inappropriate, because dolomite is the name of a person {Dolomieu}, after which the mineral dolomite, the rock dolomite and the Dolomite Mountains in Italy have been named; it is like calling the Dolomite Mountains Dolo Mountains!). Another important category of rocks, including parts of the carbonates, are the evaporites including halides and sulfates. So we need to look at the minerals forming these rocks too. Some of the iron oxides are important, because they are magnetic and impart magnetic properties on rocks. Some hydroxides are important weathering products. This final part of Lesson 5 will be devoted to a description of the most important of the carbonate, sulfate, halide and the iron oxide minerals, although they play a very little rôle in the total earth volume. Despite that, they play a critical rôle on the surface of the earth and some of them are also major climate controllers. The carbonate minerals are those containing the carbonate ion -2 CO3 The are divided into the following classes: 1.
    [Show full text]