(12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta Et Al USOO74491.61B2 (12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta et al. (45) Date of Patent: Nov. 11, 2008 (54) PRODUCTION OF LITHIUM COMPOUNDS 4,207,297 A * 6/1980 Brown et al. ............. 423,179.5 DIRECTLY FROM LITHIUM CONTAINING 4,243,641 A * 1/1981 Ishimori et al. .......... 423/179.5 BRINES 4.261,960 A * 4/1981 Boryta ............. ... 423,179.5 4,271,131. A * 6/1981 Brown et al. ...... ... 423,179.5 4,274,834. A 6/1981 Brown et al. .............. 23,302 R (75) Inventors: Daniel Alfred Boryta, Cherryville, NC 4,463,209 A * 7/1984 Kursewicz et al. .......... 585/467 (US); Teresita Frianeza Kullberg, 4,465,659 A * 8/1984 Cambridge et al. ......... 423,495 Gastonia, NC (US); Anthony Michael 4,588,565 A * 5/1986 Schultze et al. .......... 423,179.5 Thurston, Edmond, OK (US) 4,747.917 A * 5/1988 Reynolds et al. ............ 205,512 4,859,343 A * 8/1989 Frianeza-Kullberg (73) Assignee: Chemetall Foote Corporation, Kings et al. .......................... 210,679 Mountain, NC (US) 4,980,136 A * 12/1990 Brown et al. ... 423,179.5 5,049,233 A 9, 1991 Davis .......................... 216.93 (*) Notice: Subject to any disclaimer, the term of this 5,219,550 A * 6/1993 Brown et al. ............. 423 (419.1 patent is extended or adjusted under 35 5,599,516 A * 2/1997 Bauman et al. .......... 423/179.5 U.S.C. 154(b) by 0 days. 5,939,038 A * 8/1999 Wilkomirsky ............... 423,276 5.993,759 A * 1 1/1999 Wilkomirsky ............ 423,179.5 6,048,507 A * 4/2000 AmouZegar et al. ...... 423,179.5 (21) Appl. No.: 11/706,027 6,143.260 A * 1 1/2000 Boryta .................... 423,179.5 6,207,126 B1* 3/2001 Boryta et al. ..... ... 423,499.3 (22) Filed: Feb. 14, 2007 6,497.850 B1* 12/2002 Boryta et al. ..... ... 423,179.5 6,592,832 B1* 7/2003 Friedrich et al. ......... 423/179.5 (65) Prior Publication Data 6,921,522 B2 * 7/2005 Boryta et al. ..... ... 423,499.3 US 2007/O 148077 A1 Jun. 28, 2007 6,936.229 B1* 8/2005 Boryta et al. ............... 422,187 7,157,065 B2 * 1/2007 Boryta et al. ............... 423 (421 7,214,355 B2 * 5/2007 Boryta et al. ..... ... 423,179.5 Related U.S. Application Data 2001/0028871 A1* 10, 2001 Harrison et al. ............. 423 (421 (60) Division of application No. 1 1/332,134, filed on Jan. 13, 2006, now Pat. No. 7,214,355, which is a division FOREIGN PATENT DOCUMENTS of application No. 10/395.984, filed on Mar. 25, 2003, CL 550-95 * 7/1998 now Pat. No. 7,157,065, which is a continuation-in DE 257 245 * 6, 1988 part of application No. 09/707.427, filed on Nov. 7, DE 1954.1 558 A1 * 5, 1997 2000, now Pat. No. 6,936,229, which is a division of WO WO94, 1928O A1 * 9, 1994 application No. 09/353,185, filed on Jul. 14, 1999, now WO WO99,29624 A1 * 6, 1999 Pat. No. 6,207,126. OTHER PUBLICATIONS (60) Provisional application No. 60/100,340, filed on Sep. The English abstract of the article titled “Production of high-purity 14, 1998, provisional application No. 60/093,024, silicon for semiconductors. I. Production of boron free silicon rods filed on Jul. 16, 1998. from silicon tetrachloride and lithium aluminum hydride.” by P. Roman et al., Revistade Chimie (Bucharest, Romania), 11, pp. 464 (51) Int. Cl. 468, (1960), ISSN: 0034-7752.* COLD I5/04 (2006.01) (52) U.S. Cl. ..................... 423/1795; 423/197; 423/202 * cited by examiner (58) Field of Classification Search .............. 423/179.5, Primary Examiner Timothy CVanoy 423/197,202 (74) Attorney, Agent, or Firm Fulbright & Jaworski L.L.P. See application file for complete search history. (57) ABSTRACT (56) References Cited U.S. PATENT DOCUMENTS Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concen 2,516,109 A * 7/1950 Ellestad et al. .............. 423, 193 trated to about 6.0 wt % lithium are disclosed. Methods and 2,793.934. A * 5/1957 Cunningham ... ... 423,179.5 apparatus for direct recovery of technical grade lithium chlo 3,112,171 A * 1 1/1963 Archambault...... ... 423,179.5 ride from the concentrated brine are also disclosed. 3,857,920 A * 12/1974 Grantham et al. ........ 423/179.5 4,036,718 A * 7/1977 Brown et al. ................ 522,156 4,124,684. A * 1 1/1978 Olivier et al. ............ 423,179.5 1 Claim, 7 Drawing Sheets U.S. Patent Nov. 11, 2008 Sheet 1 of 7 US 7.449,161 B2 LITHIUM CARBONATE PROCESS FLOW DIAGRAM (A) 2 CD SOLID SODAASH 4 3 Mg MUD SAS 6% RAFFINATE 6 FROM C5 5 1ST STAGE MOTHER REACTOR QUOR MOTHER LOUOR WASH (10) BRENE + WASHFLTRATE 0.5 - 1.2% Li 2ND STAGE 12 REACTOR Mg(OH)2 & CaCO3 MUD (7) MOTHER LOUOR (19) WASH WATER FLTRATE PROCESS BLEED WET LITHIUM CARBONATE9 21 DRYER WET Li2CO3 22 TO B1 TECH GRADE Li2CO3 FIG. 1 U.S. Patent Nov. 11, 2008 Sheet 2 of 7 US 7.449,161 B2 LOWSODIUMLITHIUM CARBONATE PROCESS FLOW DIAGRAM (B) WET Li2CO3 3 FROM A20 1 LITHIUM 2 BICARBONATE Li2CO3 SPARGER T SLURRY TANK 12 REACTOR & SETTLER O CO2 MAKE-UP is is is . 10 Li2CO3 MOTHER CO2 RECYCLE (1) PRECIPITATION QBLEED TO TANK A15 7 MOTHER RECYCLE MAXISACK PACKAGING FIG. 2 U.S. Patent Nov. 11, 2008 Sheet 3 of 7 US 7.449,161 B2 DIRECT LITHIUM CHLORIDE PROCESS FLOW DIAGRAM (C) 1 3 RAFFINATE LME FEED LMING TANK FEED 6 4 FLTRATE Ca/Mg MUDS TANK FILTER TANK TO A4 COOLNG FIRST STAGE REACTOR Li 2CO3 PLANT 9 11 FILTER NaCl SOLDS WATER 10 18 HCI BaCl2 FROM B8 LiOH H2O PURIFICATION LOWSODIUM Li2C2O4 12 i2CO3 + HC FILTER 13 pHADJUSTMENT 16 14 OPTIONAL LiC CRYSTALLIZERI WASH CENTRFUGE 15 17 TECH & LOW Na DRYER LiC PRODUCT FIG. 3 U.S. Patent Nov. 11, 2008 Sheet 4 of 7 US 7.449,161 B2 CO2 MAKE UP WET Li2CO3 CO2 CRYSTAL RECYCLE HEAT EXCHANGER 2b LiHCO SOLUTION MIXER PRE HEATED COO T LIHCO3 0-35°C ( SOLUTION HEAT 70-95C wit/ HOT DEONIZED HoO 95°C 2 MLBLEED FOR Na WET Li2CO3 WASHFILTRATE TODRYER TO #1 + #2 Li2CO3 PLANT BEL FILTER WASH HIGH PURITY Li2CO3 < 9ppm Na FIG. 4 U.S. Patent Nov. 11, 2008 Sheet 5 Of 7 US 7.449,161 B2 LOWSODIUM Li2CO3 Li2COFINES + WATER OR WET CAKE SLURRY 4.5% SODS l CO2 ABSORPTION COLUMN MOTHER LQUOR RECYCLE LiHCO3 SOLUTION DEONZED WASH WATER l Li2CO3 E-> FILTRATION -->WET CAKE MOTHER (>8PPM Na ON QUOR DRY BASIS) BLEED TOL2CO3 PLANT BEL FILTER WASHFLTRATE FIG. 5 U.S. Patent Nov. 11, 2008 Sheet 6 of 7 US 7.449,161 B2 Li2CO3/CO2REACTION PILOT PLANT WITH SIEVE TRAY COLUMN 75 CO2 TO - AC VENT LiCO-WATER SLURRY MESH DX T3 C T4 4' s T3 3"DIA. COLUMN WITH (24) CARTRIDGE SEVE TRAYS — 4' T1 om H T2 (2)|X o 1. TL a . X FIG 6 LiHCO3 SOLUTION CO2 U.S. Patent Nov. 11, 2008 Sheet 7 Of 7 US 7.449,161 B2 LicO/CO REACTION PILOT PLANT WITH SCHEIBELCOLUMN Y N. CO2 O O STAGES99 HE VENT LCO-WATER SLURRY T X T4 STAGEs X --- T3 3" D.A. SCHEBEL COLUMN X T1 /N om DKN1 GO X l?. T E M T2 SX Ctw. LiHCO3 SOLUTION CO2 FIG. 7 US 7,449,161 B2 1. 2 PRODUCTION OF LITHIUM COMPOUNDS Individual applications require that these ion impurities be DIRECTLY FROM LITHIUM CONTAINING reduced to specific maximum levels and a number of pro BRINES cesses have been described for removing these impurities. For example, U.S. Pat. No. 5.219,550 to Brown and Boryta This application is a divisional application of U.S. Ser. No. 5 describes a method for producing chemical grade lithium 1 1/332,134 filed Jan. 13, 2006, now U.S. Pat. No. 7,214,355, carbonate from natural lithium containing brine by first which is a divisional application of U.S. Ser. No. 10/395,984 removing most of the components from the brine by concen filed Mar. 25, 2003, now U.S. Pat. No. 7,157,065, which is a trating utilizing Solar evaporation techniques. Concentrating continuation-in-part of U.S. Ser. No. 09/707.427 filed Nov. 7, the brine with respect to lithium by solar evaporation causes 2000, now U.S. Pat. No. 6,936,229. which is a divisional 10 most of the unwanted components to precipitate from the application of U.S. Ser. No. 09/353,135 filed Jul. 14, 1999, brine, i.e., salt out. Boron, which concentrates with the now U.S. Pat. No. 6,207,126. lithium, is Subsequently removed using an extraction process. This application claims priority under 35 U.S.C. S 119(e) from U.S. Provisional Application Nos. 60/100,340 filed Sep. The remaining magnesium is removed by adding a base to 14, 1998 and 60/093,024 filed Jul 16, 1998. precipitate magnesium carbonate and/or magnesium hydrox 15 ide, and the lithium is finally precipitated from the purified BACKGROUND AND SUMMARY OF THE brine as lithium carbonate by the addition of soda ash. Other INVENTION processes related to the above process are disclosed in U.S. Pat. Nos. 4,036,718; 4,243,392; and 4,261,960.
Recommended publications
  • The Secondary Phosphate Minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): Substitutions of Triphylite and Montebrasite Scholz, R.; Chaves, M
    The secondary phosphate minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): substitutions of triphylite and montebrasite Scholz, R.; Chaves, M. L. S. C.; Belotti, F. M.; Filho, M. Cândido; Filho, L. Autor(es): A. D. Menezes; Silveira, C. Publicado por: Imprensa da Universidade de Coimbra URL persistente: URI:http://hdl.handle.net/10316.2/31441 DOI: DOI:http://dx.doi.org/10.14195/978-989-26-0534-0_27 Accessed : 2-Oct-2021 20:21:49 A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. pombalina.uc.pt digitalis.uc.pt 9 789892 605111 Série Documentos A presente obra reúne um conjunto de contribuições apresentadas no I Congresso Imprensa da Universidade de Coimbra Internacional de Geociências na CPLP, que decorreu de 14 a 16 de maio de 2012 no Coimbra University Press Auditório da Reitoria da Universidade de Coimbra.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0233042 A1 Boryta Et Al
    US 20080233042A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0233042 A1 Boryta et al. (43) Pub. Date: Sep. 25, 2008 (54) PRODUCTION OF LITHIUM COMPOUNDS 11/332,134, filed on Jan. 13, 2006, now Pat. No. 7,214, DIRECTLY FROM LITHIUM CONTAINING 355, which is a division of application No. 10/395,984, BRINES filed on Mar. 25, 2003, now Pat. No. 7,157,065, which is a continuation-in-part of application No. 09/707, (76) Inventors: Daniel Alfred Boryta, Cherryville, 427, filed on Nov. 7, 2000, now Pat. No. 6,936,229, NC (US); Teresita Frianeza which is a division of application No. 09/353,185, filed Kullberg, Gastonia, NC (US); on Jul. 14, 1999, now Pat. No. 6,207,126. Anthony Michael Thurston, Edmond, OK (US) Publication Classification Correspondence Address: (51) Int. C. FULBRIGHT & JAWORSKI, LLP C22B 26/10 (2006.01) 666 FIFTHAVE NEW YORK, NY 10103-3198 (US) (52) U.S. Cl. ..................................................... 423/499.3 (21) Appl. No.: 12/114,054 (57) ABSTRACT (22) Filed: May 2, 2008 Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concen Related U.S. Application Data trated to about 6.0 wt % lithium are disclosed. Methods and (60) Continuation of application No. 1 1/706027, filed on apparatus for direct recovery of technical grade lithium chlo Feb. 14, 2007, which is a division of application No. ride from the concentrated brine are also disclosed. Patent Application Publication Sep. 25, 2008 Sheet 1 of 7 US 2008/0233042 A1 LITHIUM CARBONATE PROCESSFLOW DIAGRAM (A) 2 CD SOLID SODAASH 4 3 Mg MUD \ SAS 6 FROM C5 5 REACTOR LIQUOR MOTHER LIOUOR WASH FILTER (10) BRINE + WASHFILTRATE 0.5 - 1.2% Li 2ND STAGE 12 REACTOR FILTER Li2CO3 REACTOR 18 FILTER MOTHER LIQUOR (19) WASH WATER FLTRATE PROCESS BLEED WET LITHIUM CARBONATE9 21 DRYER WET Li2CO3 22 TO B1 TECH GRADE Li2CO3 FIG.
    [Show full text]
  • Pfs Update Confirms Potential of Low-Cost Lithium Hydroxide Production
    For immediate release 17 June 2019 EUROPEAN METALS HOLDINGS LIMITED PFS UPDATE CONFIRMS POTENTIAL OF LOW-COST LITHIUM HYDROXIDE PRODUCTION European Metals Holdings Limited (“European Metals” or “the Company”) is pleased to announce the results from the successful update of the process flowsheet previously developed to enable the production of lithium hydroxide (LiOH.H2O). This work has been completed in conjunction with test-work confirming the production of battery grade lithium hydroxide from Cinovec ore. These results significantly enhance the forecast economics of the Cinovec Project. HIGHLIGHTS (all $ figures in this release are US Dollars and increases refer to the 2017 PFS Lithium Carbonate study): • Net estimated overall cost of production post credits: $3,435 / tonne LiOH.H2O • Project Net Present Value (“NPV”) increases 105% to: $1.108B (post tax, 8%) • Internal Rate of Return (“IRR”) increased 37% to 28.8% (post tax) • Total Capital Cost: $482.6M • Annual production of Battery Grade Lithium Hydroxide: 25,267 tonnes • Studies are based on only 9.3% of reported Indicated Mineral Resource and a mine life of 21 years processing an average of 1.68 Mtpa ore • The process used to produce lithium hydroxide allows for the staging of lithium carbonate and then lithium hydroxide production to minimize capital and startup risk and enables the production of either battery grade lithium hydroxide or carbonate as markets demand European Metals Managing Director Keith Coughlan said, “I am very pleased to report to shareholders on the completion of this update to our 2017 Preliminary Feasibility Study for the Cinovec project which adds significantly to the already robust forecast economics for the project.
    [Show full text]
  • Local Peralkalinity in Peraluminous Granitic Pegmatites. I. Evidence
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7790. http://www.minsocam.org/ Revision 1 1 Local peralkalinity in peraluminous granitic pegmatites. I. Evidence 2 from whewellite and hydrogen carbonate in fluid inclusions 3 YONGCHAO LIU1,2, CHRISTIAN SCHMIDT2,*, AND JIANKANG LI1 4 1MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, 5 Chinese Academy of Geological Sciences, Beijing 100037, China 6 2GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 7 *Corresponding author: [email protected] 8 9 ABSTRACT 10 Fluid inclusions in pegmatite minerals were studied using Raman spectroscopy to 11 determine the carbon species. Carbon dioxide is very abundant in the aqueous liquid and vapor − 12 phases. Occasionally, CH4 was found in the vapor. In the aqueous liquid, HCO3 was detected in 13 fluid inclusions in tantalite-(Mn) from the Morrua Mine and in late-stage quartz from the Muiâne 14 pegmatite and the Naipa Mine, all in the Alto Ligonha District, Mozambique. Moreover, we 15 observed a carbonate (calcite group) in fluid inclusions in garnet from the Naipa Mine and in 16 beryl from the Morrua Mine, both in the Alto Ligonha District, Mozambique, and a calcite-group 17 carbonate and whewellite [CaC2O4∙H2O] in fluid inclusions in topaz from Khoroshiv, Ukraine. 18 The occurrence of oxalate is interpreted to be due to a reaction of some form of carbon (possibly 19 CO or bitumen) with a peralkaline fluid.
    [Show full text]
  • Sonora Project)
    SONORA LITHIUM PROJECT FS TECHNICAL REPORT TECHNICAL REPORT ON THE FEASIBILITY STUDY FOR THE SONORA LITHIUM PROJECT, MEXICO January 2018 January 2018 Prepared For Bacanora Minerals Ltd Prepared by Ausenco Services Pty Ltd 144 Montague Rd South Brisbane Australia Effective Date: December 12, 2017 Issue Date: January 25, 2018 101304-FS-0004-Tech Report rev 0.docx SONORA LITHIUM PROJECT FS TECHNICAL REPORT CERTIFICATE OF QUALIFIED PERSON I, Joel A. Carrasco, P.E., do hereby certify thhat: 1. I am a Principal Engineer, Solum Consulting Group, 350 S Jackson st. #454 Denver, Colorado 80209 USA. 2. This certificate applies to the technical report titled “Technical Report on the Feasibility Study for the Sonora Lithium Project, Mexico, January 2018” (the “Technical Report”), prepared for Bacanora Minerals Limited; 3. The Effective Date of the Technical Report is 12 December 2017. 4. I am a graduate of Texas Tech Univerrsity, Texas with a Bachelor of Scieence degree in Civil Engineering. I have worked as a Civil Engineer continuously for a total off 15 years since my graduation from University. My relevant experience has been working as Project Manager for multi-national engineering companies on feasibility studies and engineering designs of tailings facilities; 5. I am registered as a Professional Engineer in the State of Arizona (Licence # 52000). 6. I havve read the definition of “Qualified Person” set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experrience, I fulfil the requirements to bee a “Qualified Person” for the purposes of NI 43-101.
    [Show full text]
  • COMPUTER SIMULATION STUDIES of ... -.:University of Limpopo
    COMPUTER SIMULATION STUDIES OF SPINEL LiMn2O4 AND SPINEL LiNiXMn2-XO4 (0≤x≤2) By KEMERIDGE TUMELO MALALTJI Thesis Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy In Physics in the FACULTY OF SCIENCES AND AGRICULTURE (School of Physical and Mineral Sciences) at the UNIVERSITY OF LIMPOPO SUPERVISOR: Prof. R.R. Maphanga CO- SUPERVISORS: Prof. P.E. Ngoepe (Dated: 29 October 2019) Declaration I, Kemeridge Tumelo Malatji confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. I agree that the Library may lend or copy this dissertation on request. Signature: Date: 29/10/2019 Name: Mr K.T. Malatji ii Abstract LiMn2O4 spinel (LMO) is a promising cathode material for secondary lithium-ion batteries which, despite its high average voltage of lithium intercalation, suffers crystal symmetry lowering due to the Jahn-Teller active six-fold Mn3+ cations. Although Ni has been proposed as a suitable substitutional dopant to improve the energy density of LiMn2O4 and enhance the average lithium intercalation voltage, the thermodynamics of Ni incorporation and its effect on the electrochemical properties of this spinel are not fully understood. Firstly, structural, electronic and mechanical properties of spinel LiMn2O4 and LiNixMn2-xO4 have been calculated out using density functional theory employing the pseudo-potential plane-wave approach within the generalised gradient approximation, together with Virtual Cluster Approximation. The structural properties included equilibrium lattice parameters; electronic properties cover both total and partial density of states and mechanical properties investigated elastic properties of all systems.
    [Show full text]
  • The Journal of ^ Y Volume 26 No
    Gemmolog^^ The Journal of ^ y Volume 26 No. 8 October 1999 fj J The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 020 7404 3334 Fax: 020 7404 8843 e-mail: [email protected] Website: www.gagtl.ac.uk/gagtl. President: Professor R.A. Howie Vice-Presidents: E.M. Bruton, A.E. Farn, D.G. Kent, R.K. Mitchell Honorary Fellows: Chen Zhonghui, R.A. Howie, R.T. Liddicoat Jnr, K. Nassau Honorary Life Members: H. Bank, D.J. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, N.W. Deeks, R.R. Harding, I. Mercer, J. Monnickendam, M J. O'Donoghue, E. Stern, I. Thomson, V.P. Watson Members' Council: A.J. Allnutt, P. Dwyer-Hickey, S.A. Everitt, A.G. Good, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, PG. Read, R. Shepherd, P.J. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West -1. Knight, Scottish - B. Jackson Examiners: A.J. Allnutt, MSc, Ph.D., FGA, L. Bartlett, B.Sc, MPhiL, FGA, DGA, E.M. Bruton, FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Howe, FGA, DGA, B. Jackson, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, M. Newton, B.Sc, D.Phil., C.J.E. Oldershaw, B.Sc (Hons), FGA, H.L. Plumb, B.Sc, FGA, DGA, R.D. Ross, B.Sc, FGA, DGA, PA.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns NATIONAL BUREAU of STANDARDS
    NBS MONOGRAPH 25—SECTION 1 9 CO Q U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Standard X-ray Diffraction Powder Patterns NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essentia! services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,722,004 B2 Wu Et Al
    USOO8722004B2 (12) United States Patent (10) Patent No.: US 8,722,004 B2 Wu et al. (45) Date of Patent: May 13, 2014 (54) METHOD FOR THE PREPARATION OFA 6,730,281 B2 * 5/2004 Barker et al. ................. 423.306 LITHIUM PHOSPHATE COMPOUND WITH 2006/0147365 A1* 7, 2006 Okada et al. ... ... 423.306 2006/0257307 A1* 11/2006 Yang ........... ... 423.306 AN OLIVINE CRYSTAL STRUCTURE 2008, 0008938 A1* 1/2008 Wu et al. ... 429,221 2010.0059.706 A1 3/2010 Dai et al. ................... 252, 1821 (75) Inventors: Mark Y. Wu, Wujie Township, Yilan County (TW); Cheng-Yu Hsieh, Wujie FOREIGN PATENT DOCUMENTS Township, Yilan County (TW); Chih-Hao Chiu, Wujie Township, Yilan TW I254.031 5, 2006 County (TW) TW I29263.5 1, 2008 (73) Assignee: Phosage, Inc., Yilan County (TW) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Shiraishi et al., “Formation of impurities on phospho-olivine patent is extended or adjusted under 35 LiFePO4 during hydrothermal synthesis,” Journal of Power Sources, U.S.C. 154(b) by 710 days. 2005, pp. 555-558, vol. 146. (21) Appl. No.: 12/478,387 * cited by examiner (22) Filed: Jun. 4, 2009 Primary Examiner — Melvin C Mayes (65) Prior Publication Data Assistant Examiner — Colette Nguyen US 2010/O2O2951A1 Aug. 12, 2010 (74) Attorney, Agent, or Firm — Muncy, Geissler, Olds & Lowe, P.C. (30) Foreign Application Priority Data (57) ABSTRACT Feb. 12, 2009 (TW) ............................... 98104490 A The present invention relates to a method for the preparation (51) Int. Cl. of a lithium phosphate compound with an olivine crystal COB 25/26 (2006.01) structure, which has a chemical formula of Li, M.M'PO, (52) U.S.
    [Show full text]
  • NI 43-101 Technical Report Preliminary Economic Assessment of the Whabouchi Lithium Deposit and Hydromet Plant
    NI 43-101 Technical Report Preliminary Economic Assessment of the Whabouchi Lithium Deposit and Hydromet Plant Prepared for Nemaska Lithium Inc. Prepared by André Laferrière, P. Geo. SGS Canada Inc. Yves Dessureault, Eng. Patrice Live, Eng. BBA Inc. Nicolas Skiadas, Eng. Noël Journeaux, P. Geo., Eng. Journeaux Assoc. Gary H.K. Pearse, M.Sc., P. Eng. Equapolar Consultants Limited Ann Lamontagne, Eng. Lamont Inc. Isabelle Larouche, Eng. Alain Michaud, Eng. Michel Bilodeau, Eng. Céline Charbonneau, Eng. M. Sc. Effective Date: October 2, 2012 Issue Date: November 16, 2012 Revised Date: February 27, 2013 Equapolar Consultants Limited Project Number: 2012-014 Nemaska Lithium Inc. NI 43-101 Technical Report Preliminary Economic Assessment Prepared for Nemaska Lithium Inc. 450, Gare-du-Palais Street, 1st floor Quebec (Quebec) G1K 3X2 Canada Prepared by: Met-Chem Canada Inc. 555, boul. René-Lévesque Ouest, 3e étage Montréal (Québec) H2Z 1B1 February 2013 QPF-009-12/B P:\2012-014\Texte\Rapports\Ni 43-101\Main Report\2012-014 Nemaska NI 43-101 Rev FINAL1.doc Nemaska Lithium Inc. NI 43-101 Technical Report Preliminary Economic Assessment IMPORTANT NOTICE This Report was prepared as a National Instrument 43-101 Technical Report for Nemaska Lithium Inc. (“Nemaska”) by Met-Chem Canada Inc. (“Met-Chem”). The quality of information, conclusions and estimates contained herein is consistent with the level of effort involved in Met-Chem’s services, based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this Report. This Report is intended for use by Nemaska subject to the terms and conditions of its contract with Met-Chem.
    [Show full text]
  • Technological Gaps Inhibiting the Exploitation of Crms Primary Resources
    SCRREEN Coordination and Support Action (CSA) This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730227. Start date : 2016-11-01 Duration : 38 Months www.scrreen.eu Technological gaps inhibiting the exploitation of CRMs primary resources Authors : Dr. Jordi GUIMERA (AMPHOS21) SCRREEN - D6.1 - Issued on 2019-12-18 22:10:32 by AMPHOS21 SCRREEN - D6.1 - Issued on 2019-12-18 22:10:32 by AMPHOS21 SCRREEN - Contract Number: 730227 Project officer: Jonas Hedberg Document title Technological gaps inhibiting the exploitation of CRMs primary resources Author(s) Dr. Jordi GUIMERA Number of pages 126 Document type Deliverable Work Package WP6 Document number D6.1 Issued by AMPHOS21 Date of completion 2019-12-18 22:10:32 Dissemination level Public Summary Technological gaps inhibiting the exploitation of CRMs primary resources Approval Date By 2019-12-19 10:05:27 Mrs. Maria TAXIARCHOU (LabMet, NTUA) 2020-01-27 08:01:27 Mr. Stéphane BOURG (CEA) SCRREEN - D6.1 - Issued on 2019-12-18 22:10:32 by AMPHOS21 SCRREEN This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730227. Start date: 2016-11-01 Duration: 37 Months DELIVERABLE 6.1: TECHNOLOGICAL GAPS AND BARRIERS ON PRIMARY RESOURCES AUTHOR(S): Aina Bruno Diaz (Amphos 21) Susanna Casanovas (Amphos 21) Lena Sundqvist (SWERIM) Stéphane Bourg (CEA) Michael Samouhos (NTUA) DATE OF SUBMISSION: 09/12/2019 CONTENT List of figures ..........................................................................................................................................................
    [Show full text]
  • ABSTRACT ALLEN, JOSHUA LEE. Molecular Interactions of The
    ABSTRACT ALLEN, JOSHUA LEE. Molecular Interactions of the Difluoro(oxalato)borate Anion and Its Application for Lithium Ion Battery Electrolytes. (Under the direction of Dr. Wesley A. Henderson). Understanding the molecular interactions within electrolyte mixtures is essential for designing next generation electrolyte materials for high-voltage lithium ion (Li-ion) battery applications. Despite significant advancements in Li-ion battery electrode materials, which have theoretically enabled cell operation in excess of 5 V (vs. Li/Li+), the state-of-the-art electrolyte formulation has remained largely unchanged over two decades after its initial commercialization. To optimize the electrolyte properties, it is crucial to understand and relate the molecular-level interactions to the measured bulk properties. In the present study, these interactions have been explored through the use of the following techniques: phase diagrams (DSC analysis), X-ray single crystal structural determination, spectroscopic vibrational analysis (Raman) of the solvent and anion bands, and other techniques for determining electrolyte physical and electrochemical properties (density, viscosity and ionic conductivity). The primary focus of the present work is on the difluoro(oxalato)borate (DFOB‒) anion and how the properties of this anion differ from other anions used in Li-ion battery electrolyte mixtures. The synthesis of highly pure LiDFOB is reported, along with the X-ray single crystal structural analysis of the neat salt and its dihydrate (LiDFOB∙2H2O). The ion ‒ ‒ coordination behavior of the DFOB anion is compared with the structurally similar BF4 and lithium bis(oxalato)borate (BOB‒) anions. The decomposition mechanism and Raman vibrational band assignments for the LiDFOB salt are also compared with those for LiBF4 and LiBOB.
    [Show full text]