Effects of Kraft Pulping on Cellulose Fibers Composition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mountain Pine Beetle-Attacked Lodgepole Pine for Pulp and Papermaking
Operational extractives management from- mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Working Paper 2007-15 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • cfs.nrcan.gc.ca/regions/pfc Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Operational extractives management from mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Initiative W orking Paper 2007œ15 Paprican 3800 W esbrook Mall Vancouver, B.C. V6S 2L9 Mountain Pine Beetle Initiative PO # 8.43 Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 W est Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2007 ≤ Her Majesty the Queen in Right of Canada 2007 Printed in Canada Library and Archives Canada Cataloguing in Publication Allen, Larry Operational extractives m anagem ent from m ountain pine beetle-attached lodgepole pine from pulp and paperm aking / Larry Allen and Vic Uloth. (Mountain Pine Beetle Initiative working paper 2007-15) "Mountain Pine Beetle Initiative, Canadian Forest Service". "MPBI Project # 8.43". "Paprican". Includes bibliographical references: p. Includes abstract in French. ISBN 978-0-662-46480-8 Cat. no.: Fo143-3/2007-15E 1. Pulping--British Colum bia--Quality control. 2. Pulping--Alberta--Quality control. 3. Paper m ills-- Econom ic aspects--British Colum bia. 4. Pulp m ills--Econom ic aspects--Alberta. 5. Lodgepole pine--Diseases and pests–Econom ic aspects. 6. Mountain pine beetle--Econom ic aspects. -
Basics of Kraft Pulping
Lignin Wood is composed of many chemical components, primarily extractives, carbohydrates, and lignin, which are distributed nonuniformly as the result of anatomical structure. Lignin is derived from the Latin term lignum, which means wood.1 Anselme Payen (1838) was the first to recognize the composite nature of wood and referred to a carbon- rich substance as the “encrusting material” which embedded cellulose in the wood. Schulze (1865) later defined this encrusting material as lignin. Lignin has been described as a random, three-dimensional network polymer comprised of variously linked phenylpropane units.2 Lignin is the second most abundant biological material on the planet, exceeded only by cellulose and hemicellulose, and comprises 15-25% of the dry weight of woody plants. This macromolecule plays a vital role in providing mechanical support to bind plant fibers together. Lignin also decreases the permeation of water through the cell walls of the xylem, thereby playing an intricate role in the transport of water and nutrients. Finally, lignin plays an important function in a plant’s natural defense against degradation by impeding penetration of destructive enzymes through the cell wall. Although lignin is necessary to trees, it is undesirable in most chemical papermaking fibers and is removed by pulping and bleaching processes. 1.1.1 Biosynthesis Plant lignins can be broadly divided into three classes: softwood (gymnosperm), hardwood (angiosperm) and grass or annual plant (graminaceous) lignin.3 Three different phenylpropane units, or monolignols, are responsible for lignin biosynthesis.4 Guaiacyl lignin is composed principally of coniferyl alcohol units, while guaiacyl-syringyl lignin contains monomeric units from coniferyl and sinapyl alcohol. -
Making Paper from Trees
Making Paper from Trees Forest Service U.S. Department of Agriculture FS-2 MAKING PAPER FROM TREES Paper has been a key factor in the progress of civilization, especially during the past 100 years. Paper is indispensable in our daily life for many purposes. It conveys a fantastic variety and volume of messages and information of all kinds via its use in printing and writing-personal and business letters, newspapers, pamphlets, posters, magazines, mail order catalogs, telephone directories, comic books, school books, novels, etc. It is difficult to imagine the modern world without paper. Paper is used to wrap packages. It is also used to make containers for shipping goods ranging from food and drugs to clothing and machinery. We use it as wrappers or containers for milk, ice cream, bread, butter, meat, fruits, cereals, vegetables, potato chips, and candy; to carry our food and department store purchases home in; for paper towels, cellophane, paper handkerchiefs and sanitary tissues; for our notebooks, coloring books, blotting paper, memo pads, holiday greeting and other “special occasion’’ cards, playing cards, library index cards; for the toy hats, crepe paper decorations, paper napkins, paper cups, plates, spoons, and forks for our parties. Paper is used in building our homes and schools-in the form of roofing paper, and as paperboard- heavy, compressed product made from wood pulp-which is used for walls and partitions, and in such products as furniture. Paper is also used in linerboard, “cardboard,” and similar containers. Wood pulp is the principal fibrous raw material from which paper is made, and over half of the wood cut in this country winds up in some form of paper products. -
Technological Innovations As a Competitive Advantage in Paper Industry
International Journal of Economics and Law, Vol. 4, No. 10 (2014) TECHNOLOGICAL INNOVATIONS AS A COMPETITIVE ADVANTAGE IN PAPER INDUSTRY Knežević S. Rade Faculty of Strategic and Operational Management, Belgrade, Serbia [email protected] Mrdak Gordana Higher Professional School of Applied Studies, Vranje, Serbia Krgović Milorad Faculty of Technology and Metallurgy, University of Belgrade, Serbia Knežević Željko Novi Sad, Serbia Abstract: In the business development special place belongs to the technology, because it shows the influence of different factors that significantly impact the creation of competitive advantage of countries and companies within the world and the global economy. One of the main generators of competition are technological development and technological achievements. In the first part of the paper technical and technological development of the technology of paper to this day are represented chronologicaly,showing how certain ideas in a certain period can be revolutionary and useful for the development of technology. Through a practical example, with desire to improve the technological process, improve the quality of the final product, reduce production costs, achieve financial savings, achieve competitive advantage, et al., the actual impact of work on improving the technological process of the paper is given in this paper. Key words: paper, technology, innovation, constant part. 1. INTRODUCTION Modern business conditions impose the constancy of change and the adoption of the in- novation spirit as a business orientation of all market participants. Consequently, it leads to improvement of many business philosophies and creation of completely new ones, which are trying to respond to the challenges and obstacles of the turbulent environment. -
Lignin As a Source of Phenolic Compounds: from Lignin Extraction to Its Transformation by Different Routes
Lignin as a source of phenolic compounds: from lignin extraction to its transformation by different routes A dissertation presented by Javier Fernández Rodríguez In Fulfillment of the Requirements for the Degree Doctor of Philosophy in Renewable Materials Engineering by the University of the Basque Country UPV/EHU Under the supervision of Dr. Jalel Labidi Dr. María González Alriols Chemical and Environmental Engineering Department Engineering School of Gipuzkoa Donostia-San Sebastián 2020 (c)2020 JAVIER FERNANDEZ RODRIGUEZ “Dalli qui nu canta, verdi qui nu livanta” II Summary In the last decades, considerable interest has been put in using lignocellulosic streams, which have been traditionally considered as wastes, to be converted into value-added products, such as fuel, chemicals and biomaterials, which are currently obtained from fossil sources. Lignin, the most plenty polymer as an aromatic source in nature has been traditionally considered as a by-product or side stream from pulp and paper process, although lignin commercialization as a source of phenolic compounds has gained more and more relevance lately. However, several drawbacks have to be still overcome, such as the high polydispersity and high content in impurities of the obtained lignin samples, which lead to generate a recalcitrant behavior that hinders its transformation processes into high value- added chemical compounds. Lignin-based products must be competitive with their petroleum-derived counterparts. Hence, it is very important to design energetically efficient processes for lignin extraction and purification. For this purpose, lignin-based products have to be assumed as a section of an integrated biorefinery where multiple products are obtained and in this line being able to compete in a realistic scenario. -
Construction Health and Safety Manual: Pulp and Paper Mills
PULP AND PAPER MILLS 33 PULP AND PAPER MILLS The two common forms of chemical pulping are 1) the dominant “alkaline” or “kraft” process, and Processes 2) the “acid pulping” or “sulphite” process. Acid pulping has generally declined but is still in use. The A number of processes, grouped by type as mechanical, digester liquor is a solution of sulphurous acid, H SO , chemical, and semi-chemical (or hybrid), are used in 2 3 mixed with lime (CaO) or other base (magnesium, the preparation of wood pulp. In 1990 (according to sodium, or ammonium) to form bisulphites. Lockwood’s Directory) the distribution of pulp mills in Ontario and Quebec was as follows: Mechanical processes produce the highest yield from the wood, but have high energy demands. Mechanical pulping Process Type generally incorporates thermal or chemical pre-softening Chemical Processes Semi-chemical Mechanical Total of the wood chips, resulting in lower energy requirements. Kraft Sulphite Some chemical processes include mechanical features. Ontario 94 2 15 30 The division is not distinct and is generally based on Quebec 10 8241 61 efficiency of production from dry wood. Figure 22.1: Number of pulp mills by type in Ontario and Quebec Figure 22.2 provides a flow diagram for a semi-chemical pulp mill. In chemical pulping, the wood chips are cooked, using heat and a chemical solution that depends on the type of Of the chemical processes , alkaline pulping – the kraft process being used. The lignin binder, a natural glue that or sulphite process – is the most common and is shown in holds the wood cells (fibres) together, is dissolved. -
Semichemical and Sulfite Pulping Experiments and Production of Semichemical Corrugated Board from Red Gum (Liouidampar Styraciflua)
AGRICULTURE ROOM SEMICHEMICAL AND SULFITE PULPING EXPERIMENTS AND PRODUCTION OF SEMICHEMICAL CORRUGATED BOARD FROM RED GUM (LIOUIDAMPAR STYRACIFLUA) August 1939 UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE LFOREST—PRODUCTS LABORATORY L- Madison, Wisconsin In Cooperation with the University of Wisconsin SEMICEEMIC AL AND SULFITE PULPING EXPERIMENTS AND PRODUCTION OF SEMI- CHEMICAL CORRUGATED BOARD FROM RED GUM (LIQUIDAMBAR STYRACIFLUA) By G. H. CHIDESTER, Senior Engineer, and J. N. McGOVERN, Assistant Technologist Large quantities of red gum, among other hardwoods, are available in pulpwood size in various parts of the South. A. market for rid gum pulp- wood would provide an outlet for thinnings and cleanings to supplement its present use for lumber and be of material aid in improving forestry practice in many of these areas. The experiments reported here were made to determine the suita- bility of red gum for the manufacture of corrugating board, a high tonnage product in growing demand. Also, preliminary trials were made to furnish information on the suitability of the wood for sulphite pulp. For corru- gating board the semichemical pulping process, which has given a high yield of pulp suitable for this purpose from other hardwoods with a con- sequently low cost, was used. WOOD USED The sample of red gum (Liouidambax styraciflua) consisting of about 5 cords, supplied through the courtesy of the Arkansas State Forest Service, was cut in Prairie County, Arkansas. The stand was second growth and contained about 200 trees per acre, averaging 10 inches d.b.h. The properties reportegl for the wood are given in tables 1, 2, and 3. -
Systematic Review on Isolation Processes for Technical Lignin
processes Review Systematic Review on Isolation Processes for Technical Lignin Marlene Kienberger *, Silvia Maitz, Thomas Pichler and Paul Demmelmayer Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25c, A-8010 Graz, Austria; [email protected] (S.M.); [email protected] (T.P.); [email protected] (P.D.) * Correspondence: [email protected]; Tel.: +43-031-6873-7484 Abstract: Technologies for the isolation of lignin from pulping process streams are reviewed in this article. Based on published data, the WestVaco process, the LignoBoost process, the LigoForce SystemTM and the SLRP process are reviewed and discussed for the isolation of lignin from Kraft black liquor. The three new processes that have now joined the WestVaco process are compared from the perspective of product quality. Further, isolation processes of lignosulfonates from spent sulfite liquor are reviewed. The limitation for this review is that data are only available from lab scale and pilot scale experiments and not from industrial processes. Key output of this paper is a technology summary of the state of the art processes for technical lignins, showing the pros and cons of each process. Keywords: Kraft lignin; lignosulfonates; lignin isolation processes; technical lignin 1. Introduction Citation: Kienberger, M.; Maitz, S.; After cellulose, lignin is the second most abundant biopolymer worldwide. Lignins are Pichler, T.; Demmelmayer, P. non-toxic and renewable, and hence may play an essential role during the change-over from Systematic Review on Isolation a fossil-based to a bio-based economy. The value-added application of technical lignin not Processes for Technical Lignin. -
Energy Generation and Use in the Kraft Pulp Industry
ENERGY GENERAnON AND USE IN THE KRAFT PULP INDUSTRY Alex Orr, H.A.Simoos Ltd INTRODUCTION The pulp and paper industry is one of the largest users of energy among the process industries, but most of its requirements, both steam and electrical power, can be produced from by-product and waste material produced within the process. This paper will discuss energy utilisation and generation in kraft pulp mills, and briefly describe the basic kraft pulping process. THE KRAFT PROCESS The kraft process is the most widely used chemical pulping process for a number of reasons: it produces the strongest pulp; it can handle a wide range of furnish: softwood, hardwood, bagasse and bamboo; the cooking chemicals can be recovered economically; it is energy efficient Figure 1 shows a simplified schematic of a kraft mill. The wood furnish supplied to the mill can be in the form of logs (roundwood) or by-product chips from sawmills.. The source of the wood supply has a significant affect on the energy production.. Ifroundwood is chipped the waste wood produced per ton ofchips will be around 200 kg, but when sawmill by-product chips are used the waste wood produced in the sawmill will be in the range of 450 kg/ton chips, as most of the log goes to produce lumbero This waste wood may be available to the pulp mill at a low cost, or even negative cost, allowing the production of low cost steam and electrical power" The chips are mixed with white liquor (NaOH and N~S) and cooked, using steam, in a large pressure vessel called a digester, either in a continuous or batch process. -
Part I Chemical Pulping
1 Part I Chemical Pulping Handbook of Pulp. Edited by Herbert Sixta Copyright © 2006 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim ISBN: 3-527-30999-3 3 1 Introduction Herbert Sixta 1.1 Introduction Industrial pulping involves the large-scale liberation of fibers from lignocellulosic plant material, by either mechanical or chemical processes. Chemical pulping relies mainly on chemical reactants and heat energy to soften and dissolve lignin in the plant material, partially followed by mechanical refining to separate fibers. Mechanical pulping involves the pretreatment of wood with steam (and some- times also with aqueous sulfite solution) prior to the separation into fibrous mate- rial by abrasive refining or grinding. Depending on its end-use, the material recov- ered from such processes – the unbleached pulp – may be further treated by screening, washing, bleaching and purification (removal of low molecular-weight hemicelluloses) operations. For any given type of production, the properties of the unbleached pulp are de- termined by the structural and chemical composition of the raw material. The variation in fiber dimension and chemical composition of some selected fibers is detailed in Tab. 1.1. By far, the predominant use of the fiber material is the manufacture of paper, where it is re-assembled as a structured network from an aqueous solution. Fiber morphology such as fiber length and fiber geometry have a decisive influence on the papermaking process. A high fiber wall thickness to fiber diameter ratio means that the fibers will be strong, but that they may not be able to bond as effec- tively with each other in the sheet-forming process. -
Crude Tall Oil Low ILUC Risk Assessment Comparing Global Supply and Demand
Crude tall oil low ILUC risk assessment Comparing global supply and demand Crude tall oil low ILUC risk assessment Comparing global supply and demand By: Daan Peters, Viktorija Stojcheva Date: 24 April 2017 Project number: SISNL17494 © Ecofys 2017 by order of: UPM ECOFYS Netherlands B.V. | Kanaalweg 15G | 3526 KL Utrecht| T +31 (0)30 662-3300 | F +31 (0)30 662-3301 | E [email protected] | I www.ecofys.com Chamber of Commerce 30161191 Executive Summary UPM produces renewable diesel and naphtha from crude tall oil (CTO) in its biorefinery in Lappeenranta, Finland from early 2015 onwards. Because the company wanted clarity on the status and sustainability of its feedstock, UPM asked Ecofys in 2013 to assess whether CTO can be regarded as a residue and whether the feedstock would be low ILUC risk, meaning its use for biofuels would not lead to displace- ment effects of existing other uses. The current report is an updated version of the 2013 report. An important change since the previous report is that biofuel production at UPM has started, so any effects of CTO usage for biofuels has on the CTO market would be visible. Ecofys studies the following questions in this report: 1. Can CTO be defined as a residue based on biofuel legislation 2. Does the feedstock create an additional demand for land (is it a low ILUC risk feed stock?) 3. Does the use of the feedstock for biofuel production cause significant distortive effects on markets? The second and third question are closely interlinked. CTO in itself is a non-land using feedstock. -
Wood Pulp and Waste Paper
Wood Pulp and Waste Paper USITC Publication 3490 February 2002 OFFICE OF INDUSTRIES U.S. International Trade Commission Washington, DC 20436 UNITED STATES INTERNATIONAL TRADE COMMISSION COMMISSIONERS Stephen Koplan, Chairman Deanna Tanner Okun, Vice Chairman Lynn M. Bragg Marcia E. Miller Jennifer A. Hillman Director of Operations Robert A. Rogowsky Director of Industries Vern Simpson This report was prepared principally by Fred Forstall Animal and Forest Products Branch Agriculture and Forest Products Division Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 www.usitc.gov ITC READER SATISFACTION SURVEY Industry and Trade Summary: Wood Pulp and Waste Paper The U.S. International Trade Commission (ITC) is interested in your voluntary comments (burden < 15 minutes) to help us assess the value and quality of our reports, and to assist us in improving future products. Please return survey by fax (202-205-2384) or by mail to the ITC. Your name and title (please print; responses below not for attribution): Please specify information in this report most useful to you/your organization: Was any information missing that you consider important? Yes (specify below) No If yes, please identify missing information and why it would be important or helpful to you: Please assess the value of this ITC report (answer below by circling all that apply): SA—Strongly Agree; A—Agree; N—No Opinion/Not Applicable; D—Disagree; SD—Strongly Disagree " Report presents new facts, information,