Systematic Review on Isolation Processes for Technical Lignin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Entrained-Flow Gasification of Black Liquor and Pyrolysis Oil
LICENTIATE T H E SIS Department of Engineering Sciences and Mathematics Division of Energy Science Yawer Jafri Entrained-Flow Gasification of Black Liquor and Pyrolysis Gasification of Black Liquor and Pyrolysis Jafri Entrained-Flow Yawer ISSN 1402-1757 Entrained-Flow Gasification of ISBN 978-91-7583-761-1 (print) ISBN 978-91-7583-762-8 (pdf) Black Liquor and Pyrolysis Oil Luleå University of Technology 2016 Pilot-Scale and Equilibrium Modelling Studies of Catalytic Co-gasification Yawer Jafri Energy Engineering Licentiate Thesis Entrained-Flow Gasification of Black Liquor and Pyrolysis Oil Pilot-scale and Equilibrium Modelling Studies of Catalytic Co-gasification Yawer Jafri Energy Engineering Division of Energy Science Department of Environmental Sciences and Mathematics Luleå University of Technology a Printed by Luleå University of Technology, Graphic Production 2016 ISSN 1402-1757 ISBN 978-91-7583-761-1 (print) ISBN 978-91-7583-762-8 (pdf) Luleå 2016 www.ltu.se b Abstract The last couple of decades have seen entrained-flow gasification of black liquor (BL) undergo an incremental process of technical development as an alternative to combustion in a recovery boiler. The ability of the technology to combine chemical recovery with the production of clean syngas renders it a promising candidate for the transformation of chemical pulp mills into integrated forest biorefineries. However, techno-economic assessments have shown that blending BL with the more easily transportable pyrolysis oil (PO) can not only increase the energy efficiency of the conversion process for methanol production, but also remove a significant roadblock to commercial deployment by partially decoupling production capacity from BL availability. -
Mountain Pine Beetle-Attacked Lodgepole Pine for Pulp and Papermaking
Operational extractives management from- mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Working Paper 2007-15 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • cfs.nrcan.gc.ca/regions/pfc Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Operational extractives management from mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Initiative W orking Paper 2007œ15 Paprican 3800 W esbrook Mall Vancouver, B.C. V6S 2L9 Mountain Pine Beetle Initiative PO # 8.43 Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 W est Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2007 ≤ Her Majesty the Queen in Right of Canada 2007 Printed in Canada Library and Archives Canada Cataloguing in Publication Allen, Larry Operational extractives m anagem ent from m ountain pine beetle-attached lodgepole pine from pulp and paperm aking / Larry Allen and Vic Uloth. (Mountain Pine Beetle Initiative working paper 2007-15) "Mountain Pine Beetle Initiative, Canadian Forest Service". "MPBI Project # 8.43". "Paprican". Includes bibliographical references: p. Includes abstract in French. ISBN 978-0-662-46480-8 Cat. no.: Fo143-3/2007-15E 1. Pulping--British Colum bia--Quality control. 2. Pulping--Alberta--Quality control. 3. Paper m ills-- Econom ic aspects--British Colum bia. 4. Pulp m ills--Econom ic aspects--Alberta. 5. Lodgepole pine--Diseases and pests–Econom ic aspects. 6. Mountain pine beetle--Econom ic aspects. -
Basics of Kraft Pulping
Lignin Wood is composed of many chemical components, primarily extractives, carbohydrates, and lignin, which are distributed nonuniformly as the result of anatomical structure. Lignin is derived from the Latin term lignum, which means wood.1 Anselme Payen (1838) was the first to recognize the composite nature of wood and referred to a carbon- rich substance as the “encrusting material” which embedded cellulose in the wood. Schulze (1865) later defined this encrusting material as lignin. Lignin has been described as a random, three-dimensional network polymer comprised of variously linked phenylpropane units.2 Lignin is the second most abundant biological material on the planet, exceeded only by cellulose and hemicellulose, and comprises 15-25% of the dry weight of woody plants. This macromolecule plays a vital role in providing mechanical support to bind plant fibers together. Lignin also decreases the permeation of water through the cell walls of the xylem, thereby playing an intricate role in the transport of water and nutrients. Finally, lignin plays an important function in a plant’s natural defense against degradation by impeding penetration of destructive enzymes through the cell wall. Although lignin is necessary to trees, it is undesirable in most chemical papermaking fibers and is removed by pulping and bleaching processes. 1.1.1 Biosynthesis Plant lignins can be broadly divided into three classes: softwood (gymnosperm), hardwood (angiosperm) and grass or annual plant (graminaceous) lignin.3 Three different phenylpropane units, or monolignols, are responsible for lignin biosynthesis.4 Guaiacyl lignin is composed principally of coniferyl alcohol units, while guaiacyl-syringyl lignin contains monomeric units from coniferyl and sinapyl alcohol. -
Optimization of the Continuous Analysis Pearl-Benson Method for Lignosulfonates
AN ABSTRACT OF THE THESIS OF ROGER LEE BLAINE for the DOCTOR OF PHILOSOPHY (Name) (Degree) in CHEMISTRY presented on January 21, 1969 (Major) (Date) Title: OPTIMIZATION OF THE CONTINUOUSANALYSIS PEARL- BENSON METHOD FOR LIGNOSULFONATES Redacted for Privacy Abstract approved Dr. Hty'ry Freund A procedure is described for the optimizationof a previously described continuous analysis adaptation ofthe Pearl-Benson or nitroso method for estimation of spentsulfite liquor (SSL) or ligno- sulfonates.The optimized procedure has a responsetime of 6. 5 minutes.In order to monitor samples whoseSSL concentration is between 0 and 10 ppm, a long path length,dual beam, flow through colorimeter was developed.The colorimeter has a range of 0.94 absorbance units for a 10 cm cuvette length,and has a readout which expresses the sample concentrationdirectly in millivolts. Both the continuous analysis chemicalthanipulation system and the colorimeter are packaged as portable units. An empirical equation is obtained for the response curveof continuous analyzers.This equation permits simulation of the con- tinuous analyzer response in both amathematical form and on an analog computer.Examination of the electrical analog leads to information about the response of continuous analysis apparatus toa' variety of input signals and provides an approach to figures ofmerit for comparison of continuous analysis systems. An electronic method is illustrated for predicting the steady state value of a con- tinuous analysis apparatus long before that steady state condition is -
TECHNICAL REPORT – PATENT ANALYSIS Enhancing Productivity in the Indian Paper and Pulp Sector
TECHNICAL REPORT – PATENT ANALYSIS Enhancing Productivity in the Indian Paper and Pulp Sector 2018 TABLE OF contEnts ACKNOWLEDGEMENTS 10 EXECUTIVE SUMMARY 11 1 INTRODUCTION 13 2 OVERVIEW OF THE PULP AND PAPER SECTOR 15 2.1. Status of the Indian Paper Industry 15 2.2. Overview of the Pulp and Papermaking Process 20 2.3. Patenting in the Paper and Pulp Industry: A Historical Perspective 22 2.4. Environmental Impact of the Pulp and Paper Industry 25 3 METHODOLOGY 27 3.1. Search Strategy 27 4 ANALYSIS OF PATENT DOCUMENTS USING GPI 31 4.1. Papermaking; Production of Cellulose (IPC or CPC class D21) 31 4.2. Analysis of Patenting Activity in Different Technology Areas using GPI 38 5 ANALYSIS OF THE INDIAN PATENT SCENARIO WITHIN THE CONTEXT OF THIS REPORT 81 5.1. Analysis of Patents Filed in India 81 6 CONCLUDING REMARKS 91 REFERENCES 93 ANNEXURE 94 Annexure 1. Technologies related to paper manufacturing 94 Annexure 2. Sustainable/green technologies related to pulp and paper sector 119 Annexure 3. Emerging Technology Areas 127 List OF FIGURES Figure 2.1: Geographical Spread of Figure 4.11: (d) Applicant vs. Date of Indian Paper Mills .................................16 Priority Graph: Paper-Making Machines Figure 2.2: Share of Different Segments and Methods ........................................42 in Total Paper Production .......................19 Figure 4.11: (e) Applicant vs. Date of Figure 2.3: Variety Wise Production of Priority Graph: Calendars and Accessories ..43 Paper from Different Raw Materials ........19 Figure 4.11: (f) Applicant vs. Date of Figure 2.4: Different Varieties of Paper Priority Graph: Pulp or Paper Comprising Made from Various Raw Materials ..........19 Synthetic Cellulose or Non-Cellulose Fibres ..43 Figure 2.5: Diagram of a Process Block Figure 4.11: (g) Applicant vs. -
Construction Health and Safety Manual: Pulp and Paper Mills
PULP AND PAPER MILLS 33 PULP AND PAPER MILLS The two common forms of chemical pulping are 1) the dominant “alkaline” or “kraft” process, and Processes 2) the “acid pulping” or “sulphite” process. Acid pulping has generally declined but is still in use. The A number of processes, grouped by type as mechanical, digester liquor is a solution of sulphurous acid, H SO , chemical, and semi-chemical (or hybrid), are used in 2 3 mixed with lime (CaO) or other base (magnesium, the preparation of wood pulp. In 1990 (according to sodium, or ammonium) to form bisulphites. Lockwood’s Directory) the distribution of pulp mills in Ontario and Quebec was as follows: Mechanical processes produce the highest yield from the wood, but have high energy demands. Mechanical pulping Process Type generally incorporates thermal or chemical pre-softening Chemical Processes Semi-chemical Mechanical Total of the wood chips, resulting in lower energy requirements. Kraft Sulphite Some chemical processes include mechanical features. Ontario 94 2 15 30 The division is not distinct and is generally based on Quebec 10 8241 61 efficiency of production from dry wood. Figure 22.1: Number of pulp mills by type in Ontario and Quebec Figure 22.2 provides a flow diagram for a semi-chemical pulp mill. In chemical pulping, the wood chips are cooked, using heat and a chemical solution that depends on the type of Of the chemical processes , alkaline pulping – the kraft process being used. The lignin binder, a natural glue that or sulphite process – is the most common and is shown in holds the wood cells (fibres) together, is dissolved. -
XXL Size Recovery Boilers – Present Status and Future Prospects
Published May 24, 2017 XXL Recovery Boilers XXL size recovery boilers – present status and future prospects Executive Summary XXL size recovery boilers have operated since 2004, when the first XXL size recovery boiler started up in China. From the process point of view, those boilers have run extremely well, either reaching or exceeding all process requirements. The XXL size recovery boilers are typically designed for high dry solids content, high energy efficiency, low air emissions, and environmentally friendly process solutions. Those boilers burn Non-Condensable Gases (NCG) and other side streams coming from the other parts of the mill, and therefore the XXL size recovery boilers are very important in targeting for odorless pulp mills. However, some units have encountered mechanical problems after start-up due to the large size of certain components in the pressure part. However, all those challenges have been solved and these experiences have helped to develop boilers further toward even safer operation and higher availability. In the future, larger and larger recovery boilers will be built; therefore development work is still needed to reach even lower emissions and better availability. New recovery boilers are very typically planned to operate for at least 18 months. This creates challenges for the engineering of many process systems and components in order to meet the requirements for safety and process optimization. However, long experience with XXL size recovery boilers helps meet these new demands for longer operation periods. © Valmet Page | 1 Published May 24, 2017 XXL Recovery Boilers Introduction Large recovery boilers producing bioenergy have been built all over the world. -
Energy Generation and Use in the Kraft Pulp Industry
ENERGY GENERAnON AND USE IN THE KRAFT PULP INDUSTRY Alex Orr, H.A.Simoos Ltd INTRODUCTION The pulp and paper industry is one of the largest users of energy among the process industries, but most of its requirements, both steam and electrical power, can be produced from by-product and waste material produced within the process. This paper will discuss energy utilisation and generation in kraft pulp mills, and briefly describe the basic kraft pulping process. THE KRAFT PROCESS The kraft process is the most widely used chemical pulping process for a number of reasons: it produces the strongest pulp; it can handle a wide range of furnish: softwood, hardwood, bagasse and bamboo; the cooking chemicals can be recovered economically; it is energy efficient Figure 1 shows a simplified schematic of a kraft mill. The wood furnish supplied to the mill can be in the form of logs (roundwood) or by-product chips from sawmills.. The source of the wood supply has a significant affect on the energy production.. Ifroundwood is chipped the waste wood produced per ton ofchips will be around 200 kg, but when sawmill by-product chips are used the waste wood produced in the sawmill will be in the range of 450 kg/ton chips, as most of the log goes to produce lumbero This waste wood may be available to the pulp mill at a low cost, or even negative cost, allowing the production of low cost steam and electrical power" The chips are mixed with white liquor (NaOH and N~S) and cooked, using steam, in a large pressure vessel called a digester, either in a continuous or batch process. -
A-RECOVERY+ CHEMICAL RECOVERY SOLUTION A-Recovery+ Chemical TABLE of CONTENTS Recovery Solution: New Opportunities in Kraft Mills
SEE THE CHEMICAL CYCLE IN A NEW LIGHT A-RECOVERY+ CHEMICAL RECOVERY SOLUTION A-Recovery+ chemical TABLE OF CONTENTS recovery solution: new opportunities in kraft mills A-RECOVERY+ CHEMICAL SULFURIC ACID With the goal of operating chemical recovery systems in a way that is as effi- RECOVERY SOLUTION PRODUCTION cient and and environmentally sound as possible, while minimizing capital and The next generation solution Production of concentrated operating expenses, A-Recovery+ chemical recovery solutions from ANDRITZ for the chemical recovery commercial-grade sulfuric cycle of pulp mills. acid in the mill can lead to offer new opportunities for kraft mills. significant savings. Over the years, chemical recovery loops have been “closed” to reduce emissions METHANOL LIGNIN RECOVERY and effluents – and to increase recov- PURIFICATION Production of high- ery efficiency. These closures some- Raw methanol is purified to a quality lignin on site can times resulted in an overabundance of merchantable bio-methanol. debottleneck a recovery certain chemicals in the chemical cycle boiler and reduce the cost and sometimes created side streams or of purchased fossil fuels or waste streams that were either disposed generate additional revenue of or ignored. by selling bioproducts. BENEFITS OF A-RECOVERY+ SOLUTIONS • Environmental and economic savings • Further closure of chemical recovery loops • Management and control of sodium/sulfur (Na/S) balance • Generation of key chemicals avoids purchasing costs • Additional opportunities for revenue generation • Removes obstacles to fossil-free operation 2 3 SEEING CHEMICAL RECOVERY IN A NEW LIGHT ANDRITZ has taken a fresh look at chemical recovery and developed technical solutions called “A-Recovery+”. This shines a new light by further closing the chemical cycle and converting side streams. -
Part I Chemical Pulping
1 Part I Chemical Pulping Handbook of Pulp. Edited by Herbert Sixta Copyright © 2006 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim ISBN: 3-527-30999-3 3 1 Introduction Herbert Sixta 1.1 Introduction Industrial pulping involves the large-scale liberation of fibers from lignocellulosic plant material, by either mechanical or chemical processes. Chemical pulping relies mainly on chemical reactants and heat energy to soften and dissolve lignin in the plant material, partially followed by mechanical refining to separate fibers. Mechanical pulping involves the pretreatment of wood with steam (and some- times also with aqueous sulfite solution) prior to the separation into fibrous mate- rial by abrasive refining or grinding. Depending on its end-use, the material recov- ered from such processes – the unbleached pulp – may be further treated by screening, washing, bleaching and purification (removal of low molecular-weight hemicelluloses) operations. For any given type of production, the properties of the unbleached pulp are de- termined by the structural and chemical composition of the raw material. The variation in fiber dimension and chemical composition of some selected fibers is detailed in Tab. 1.1. By far, the predominant use of the fiber material is the manufacture of paper, where it is re-assembled as a structured network from an aqueous solution. Fiber morphology such as fiber length and fiber geometry have a decisive influence on the papermaking process. A high fiber wall thickness to fiber diameter ratio means that the fibers will be strong, but that they may not be able to bond as effec- tively with each other in the sheet-forming process. -
Overview of Lignin Applications
Lignin Applications Brief Overview Lignin Applications: Concrete Low lllevels of lignin and modfdifie d lignin can yield • High performance concrete strength aid • Concrete grinding aid • Reduce damage of building external wall caused by moisture and acid rain • Set retarder for a cement composition • Sulfonated lignin contributes higher adsorption properties and zeta potential to cement particles, and hence shows better dispersion effect to the cement matrix. • Select lignins can improve the compressive strength of cement pastes Lignin Applications: Antioxidant • Liiignin acts as free radica l scavengers •Lignin provides thermal protection to: • Styrene /butadiene/rubber polymer • RbbRubber • Polypropylene • polycaprolactam • Lignin’s natural antioxidant properties provides use in cosmetic and topical formulations. • Lignin sulfonate‐containing cosmetic compositions have been developed for decorative use on skin Lignin Applications: Asphalt • CkCrack filling composiiition iliinvolving quaternary ammonium salt, aliphatic amine, lignin amine, imidazoline, and amide. • Water stability of an asphalt mixture can be improved by adding 03%0.3% lign in fibers • Asphalt‐emulsifying agent containing SW Na lignin salt with an av. mol. wt. of 200‐100,000 (Na lignosulfonate or Na lignophosphate, and the lignin is that broad‐leaf pine or needle‐leaf pine) has the proper HLB value, slow demulsification speed, proper frothing ability, and strong foam stability. • Lignin amine additive has been shown to provide a warm mix additive that can modify the combination state of asphalt and stone material surface; modifying the fluidity; and decrease production cost of the asphalt mixtures Lignin Applications: Carbon Fiber and Related • Native lignin or industrial lignin can be used for carbon fibers • Carbon nanotubes have been made from lignin/lignosulfonates. -
Crude Tall Oil Low ILUC Risk Assessment Comparing Global Supply and Demand
Crude tall oil low ILUC risk assessment Comparing global supply and demand Crude tall oil low ILUC risk assessment Comparing global supply and demand By: Daan Peters, Viktorija Stojcheva Date: 24 April 2017 Project number: SISNL17494 © Ecofys 2017 by order of: UPM ECOFYS Netherlands B.V. | Kanaalweg 15G | 3526 KL Utrecht| T +31 (0)30 662-3300 | F +31 (0)30 662-3301 | E [email protected] | I www.ecofys.com Chamber of Commerce 30161191 Executive Summary UPM produces renewable diesel and naphtha from crude tall oil (CTO) in its biorefinery in Lappeenranta, Finland from early 2015 onwards. Because the company wanted clarity on the status and sustainability of its feedstock, UPM asked Ecofys in 2013 to assess whether CTO can be regarded as a residue and whether the feedstock would be low ILUC risk, meaning its use for biofuels would not lead to displace- ment effects of existing other uses. The current report is an updated version of the 2013 report. An important change since the previous report is that biofuel production at UPM has started, so any effects of CTO usage for biofuels has on the CTO market would be visible. Ecofys studies the following questions in this report: 1. Can CTO be defined as a residue based on biofuel legislation 2. Does the feedstock create an additional demand for land (is it a low ILUC risk feed stock?) 3. Does the use of the feedstock for biofuel production cause significant distortive effects on markets? The second and third question are closely interlinked. CTO in itself is a non-land using feedstock.