Computers and Microprocessors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intel 8255 - Wikipedia, the Free Encyclopedia
Intel 8255 - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Intel_8255 Intel 8255 From Wikipedia, the free encyclopedia The Intel 8255 (or i8255 ) Programmable Peripheral Interface ( PPI ) chip is a peripheral chip originally developed for the Intel 8085 microprocessor, [1] and as such is a member of a large array of such chips, known as the MCS-85 Family . This chip was later also used with the Intel 8086 and its descendants. It was later made (cloned) by many Intel D8255 other manufacturers. It is made in DIP 40 and PLCC 44 pins encapsulated versions. [2] Contents 1 Similar chips 2 Uses in computers 3 Functional block of 8255 4 Operational modes of 8255 5 Bit set/reset (BSR) mode 6 Input/Output mode 6.1 Control Word Format 6.2 Mode 0 - simple I/O 6.2.1 Mode 1 – input mode 6.2.2 Mode 0 - output mode 6.3 Mode 1 6.4 Mode 2 Pinout of i8255 7 References 8 External links Similar chips The 8255 is used to give the CPU access to programmable parallel I/O,[3] and is similar to other such chips like the MOS Technology 6522 (Versatile Interface Adapter) and the MOS Technology CIA (Complex Interface Adapter) all developed for the 6502 family. Other such chips are the 2655 Programmable Peripheral Interface from the Signetics 2650 family of microprocessors, the Motorola 6820 PIA (Peripheral Interface Adapter) from the Motorola 6800 family, the Western Design Center WDC 65C21, an enhanced 6520, and many others. However, most often the functionality 8255 offered is now not implemented with the 8255 chip itself any more, but is embedded in a larger VLSI chip as a subfunction. -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements. -
The Z80 Microprocessor Architecture
DESIGN AND FABRICATION OF AN ELECTRONIC SYSTEM FOR MONITORING AND CONTROLLING TEMPERATURE, LIGHT ILLUMINANCE AND HUMIDITY IN A GREENHOUSE WYCLIFFE OBANDA NYANYA I56/0243/2003 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (ELECTRONICS AND INSTRUMENTATION) IN THE SCHOOL OF PURE AND APPLIED SCIENCES OF KENYATTA UNIVERSITY APRIL 2010 DECLARATION I declare that the work presented in this thesis is my original work and has not been presented for a degree in any other university or for any other award. WYCLIFFE OBANDA NYANYA Signature………………………… Date………… PHYSICS DEPARTMENT KENYATTA UNIVERSITY We confirm that the candidate carried out the work reported in this thesis under our supervision. DR. PATRICK M. KARIMI Signature…………………….......... Date……...... PHYSICS DEPARTMENT KENYATTA UNIVERSITY P. O. BOX 43844-00100 GPO NAIROBI-KENYA DR. ABDALLAH S. MERENGA Signature……………………….... Date …………… PHYSICS DEPARTMENT KENYATTA UNIVERSITY P. O. BOX 43844-00100 GPO NAIROBI- KENYA ii DEDICATION This work is dedicated to my wife, Elizabeth, my daughters Sharon and Louise, my son Mark and to my late father Herbert Ambundo who would have loved to see it all. iii ACKNOWLEDGEMENTS I would like to take this opportunity to thank all my lecturers in the physics department for instilling confidence in me when pursuing this course. Special thanks go to my supervisors, Dr. P. M. Karimi and Dr. A. S. Merenga, for their guidance throughout this research. I also wish to thank my colleague John Githaiga for his useful suggestions. The technicians in the Physics department were very helpful to me during the construction of the system. I also wish to thank my wife Elizabeth Obanda for her moral support and patience. -
Programming the 65816
Programming the 65816 Including the 6502, 65C02 and 65802 Distributed and published under COPYRIGHT LICENSE AND PUBLISHING AGREEMENT with Authors David Eyes and Ron Lichty EFFECTIVE APRIL 28, 1992 Copyright © 2007 by The Western Design Center, Inc. 2166 E. Brown Rd. Mesa, AZ 85213 480-962-4545 (p) 480-835-6442 (f) www.westerndesigncenter.com The Western Design Center Table of Contents 1) Chapter One .......................................................................................................... 12 Basic Assembly Language Programming Concepts..................................................................................12 Binary Numbers.................................................................................................................................................... 12 Grouping Bits into Bytes....................................................................................................................................... 13 Hexadecimal Representation of Binary................................................................................................................ 14 The ACSII Character Set ..................................................................................................................................... 15 Boolean Logic........................................................................................................................................................ 16 Logical And....................................................................................................................................................... -
History of Micro-Computers
M•I•C•R•O P•R•O•C•E•S•S•O•R E•V•O•L•U•T•I.O•N Reprinted by permission from BYTE, September 1985.. a McGraw-Hill Inc. publication. Prices quoted are in US S. EVOLUTION OF THE MICROPROCESSOR An informal history BY MARK GARETZ Author's note: The evolution of were many other applica- the microprocessor has followed tions for the new memory a complex and twisted path. To chip, which was signifi- those of you who were actually cantly larger than any that involved in some of the follow- had been produced ing history, 1 apologize if my before. version is not exactly like yours. About this time, the The opinions expressed in this summer of 1969, Intel was article are my own and may or approached by the may not represent reality as Japanese calculator manu- someone else perceives it. facturer Busicom to pro- duce a set of custom chips THE TRANSISTOR, devel- designed by Busicom oped at Bell Laboratories engineers for the Jap- in 1947, was designed to anese company's new line replace the vacuum tube, of calculators. The to switch electronic sig- calculators would have nals on and off. (Al- several chips, each of though, at the time, which would contain 3000 vacuum tubes were used to 5000 transistors. mainly as amplifiers, they Intel designer Marcian were also used as (led) Hoff was assigned to switches.) The advent of assist the team of Busi- the transistor made possi- com engineers that had ble a digital computer that taken up residence at didn't require an entire Intel. -
W65C265S 16–Bit Microcontroller
Sept 13, 2010 W65C265S 16–bit Microcontroller WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitability of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request. Copyright (C) 1981-2009 The Western Design Center, Inc. All rights reserved, including the right of reproduction in whole or in part in any form. 2 INTRODUCTION The WDC W65C265S microcomputer is a complete fully static 16-bit computer fabricated on a single chip using a Hi-Rel low power CMOS process. The W65C265S complements an established and growing line of W65C products and has a wide range of microcomputer applications. The W65C265S has been developed for Hi-Rel applications and where minimum power is required. The W65C265S consists of a W65C816S (Static) Central Processing Unit (CPU), -
Microprocessor Interfacing Techniques
MICROPROCESSOR INTERFACING TECHNIQUES AUSTIN LESEA SYBEX RODNAYZAKS c o to n en MCMXCVn MICROPROCESSOR INTERFACING TECHNIQUES AUSTIN -LESEA RODNAY ZAKS SYBEX Published by: SYBEX Incorporated 2161 Shattuck Avenue Berkeley, California 94704 In Europe: SYBEX-EUROPE 313 rue Lecourbe 75015-Paris, France DISTRIBUTORS L P. ENTERPRISES 313 KINGSTON ROAD ILFORD, Essex. IG1 IPj Tel: 01-553 U $9.95 (USA) FF66 (Europe) FO REWARD Every effort has been made to supply complete and accurate information. However, Sybex assumes no responsibility for its use; nor any infringements of patents or other rights of third parties which would result. No license is granted by the equipment manufacturers under any patent or patent rights. Manufacturers reserve the right to change circuitry at any time without notice. In particular, technical characteristics and prices are subject to rapid change. Comparisons and evaluations are presented for their educational value and for guidance principles. The reader is referred to the manu- facturer's data for exact specifications. Copyright Q) 1977 SYBEX Inc. World Rights reserved. No part of this publication may be stored in a retrieval system, copied, transmitted, or reproduced in any way, including, but not limited to, photocopy, photography, magnetic or other recording, without the prior written permission of the publisher. Library of Congress Card Number: 77-20627 ISBN Number: 0-89588-000-8 Printed in the United States of America Printing 109 8 76 5 43 2 1 CONTENTS PREFACE .5 L INTRODUCTION 7 Concepts, Techniques to be discussed, Bus Introduction, Bus Details II. ASSEMBLING THE CENTRAL PROCESSING UNIT ....... 17 Introduction, The $080, The 6800, The Z-80: Dynamic Memory, The 8085 III. -
MOS Technology 6502
MOS Technology 6502 Le MOS Technology 6502 est un microprocesseur 8 bits conçu par MOS Technology en 1975. Quand il fut présenté, il était de loin le processeur le plus économique sur le marché, à environ 1/6 du prix, concurrençant de plus grandes MOS Technology 6502 compagnies telles que Motorola ou Intel. Il était néanmoins plus rapide que la plupart d'entre eux, et avec le Zilog Z80, brilla dans une série de projets d'ordinateurs qui furent par la suite la source de la révolution d'ordinateurs personnels des années 1980. La production du 6502 était à l'origine concédée par MOS Technology à Rockwell et Synertek puis plus tard à d'autres compagnies ; il est encore fabriqué en 2014 pour équiper des systèmes embarqués. Sommaire 1 Histoire et utilisation 2 Description 3 Des caractéristiques floues 4 Remarques sur le 6502 5 Références 6 Liens externes (en français) Schema d'un circuit MOS 6502. 7 Liens externes (en anglais) Caractéristiques Production 1975 Histoire et utilisation Fabricant MOS Technology Fréquence 1 MHz à 1,55 MHz Le 6502 a été conçu principalement par l'équipe qui avait développé le Motorola 6800. Après avoir quitté Motorola en Finesse de 8000 nm à 8 000 nm bloc, ses ingénieurs ont rapidement sorti le 6501, d'une conception complètement nouvelle mais dont le brochage gravure restait néanmoins compatible avec le 6800. Motorola entama des poursuites judiciaires immédiatement, et bien qu'aujourd'hui l'affaire aurait été déboutée, les dommages que MOS encourut furent suffisants pour que la société Cœur MOS Tech 6502 accepte de cesser de produire le 6501. -
W65C134S 8-Bit Microcontroller
October 15, 2019 W65C134S Datasheet W65C134S 8-bit Microcontroller WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitability of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request. Copyright (C) 1981-2019 by The Western Design Center, Inc. All rights reserved, including the right of reproduction in whole or in part in any form. www.WDC65xx.com 1 October 15, 2019 W65C134S Datasheet TABLE OF CONTENTS DOCUMENT REVISION HISTORY .................................................................................................................................. 5 1 INTRODUCTION ............................................................................................................................................................. 6 1.1 KEY FEATURES -
Micro Processors and Interfacing Devices
MPMC Course File Contents required for course file 1. Cover Page 2. Syllabus copy 3. Vision of the Department 4. Mission of the Department 5. PEOs and POs 6. Course objectives and outcomes 7. Brief notes on the importance of the course and how it fits into the curriculum 8. prerequisites 9. Instructional Learning Outcomes 10. Course mapping with PEOs and POs 11. Class Time Table 12. Individual Time Table 13. Micro Plan with dates and closure report 14. Detailed notes 15. Additional topics 16. University Question papers of previous years 17. Question Bank 18. Assignment topics 19. Unit wise Quiz Questions 20. Tutorial problems 21. Known gaps ,if any 22. Discussion topics 23. References, Journals, websites and E-links 24. Quality Control Sheets 25. Student List 26. Group-Wise students list for discussion topics 1.cover page GEETHANJALI COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF Electronics and Communication Engineering (Name of the Subject ) : Microprocessors and Microcontrollers Course file (JNTU CODE – 56012) Programme : UG Branch: EEE Version No : 0 Year: III Document No: GCET/ECE/56012/01 Semester: II No. of pages : Classification status (Unrestricted / Restricted ) : Unrestricted Distribution List : Dept. Library, Dept Office, Concerned Faculty Prepared by Updated by: 1) Name : M.Laxmi 1) Name 2) Sign : 2) Sign : 3) Design : Assoc. Professor. 3) Design 4) Date : 12/12/2014 4) Date : Verified by : 1) Name : * For Q.C Only. 2) Sign : 1) Name : 3) Design : 2) Sign : 4) Date : 3) Design : 4) Date : Approved by : (HOD ) 1) Name -
Table of Contents
INTRODUCTION TO VLSI DESIGN WITH SYSTEM ON CHIP DESIGN REUSE: A TUTORIAL FOR STUDENTS by Frank J. Ventura Jr. An Applied Project in Partial Fulfillment of the Requirements for the Degree Master of Science in Technology ARIZONA STATE UNIVERSITY EAST March 2005 INTRODUCTION TO VLSI DESIGN WITH SYSTEM ON CHIP DESIGN REUSE: A TUTORIAL FOR STUDENTS by Frank J. Ventura Jr. has been approved March, 2005 APPROVED: ,Chair Dr. Narciso F. Macia Dr. Albert L. McHenry Dr. Don Cottrell Supervisory Committee ACCEPTED: Dr. Lakshmi V. Munukutla Department Chair ii ABSTRACT Due to the absence of a formal class in VLSI design at ASU East, the need arose for a hands-on tutorial that would introduce the students to VLSI design, emphasizing System-on-a-Chip design and the concept of design reuse. When UET 513 – Introduction to VLSI Design was taught at ASU East, The Western Design Center Inc. (WDC) supported this class by donating industry used software tools and their microprocessor Intellectual Property (IP) for the class to use in learning the concepts of VLSI Design. WDC continues to support the students at ASU East that are interested in VLSI design, by offering internships to give the students experience in the VLSI design flow. Students interested in using this tutorial will be able to work at WDC’s office and have access to the software tools and technology. The students will be following the design flow as used by WDC. The students will be exposed to the following design tools: ViewDraw for schematic entry, Silos for Verilog HDL simulation, ICED for laying out an IC, and PSPICE for electrical characterization. -
“Bill” Mensch, Jr
........ Computer • History Museum Oral History of William David “Bill” Mensch, Jr. Interviewed by: Stephen Diamond Recorded: November 10, 2014 Mountain View, California CHM Reference number: X7273.2015 © 2014 Computer History Museum Oral History of William David “Bill” Mensch, Jr. Stephen Diamond: OK, it's November 10, 2014, here at the Computer History Museum. I'm Steve Diamond, and we're doing in oral history of Bill Mensch. Thanks, Bill, for joining us. William David “Bill” Mensch: Well, thank you. Diamond: We'll be talking about a variety of subjects and your perceptions of what's happened in the past and, perhaps, where things are going in the future. Why don't we start out by talking about your youth and your education, and then we'll follow that up into your transition into the semiconductor world? Mensch: All right. Well, thanks for inviting me. It's an honor to be here right now, and I will enjoy telling you what I know about my life, how I got here. And we'll start, then, with my growing up on a farm in Pennsylvania, Bucks County, about 35 miles north of Philadelphia, very rural. The dairy farm had like 26 head of cattle, and I was a middle child of eight children I grew up with. And as a result, I got to explore because it was more fun being outside of the house rather than inside the house. When I was probably about 10 years old, we may have gotten a TV. We had a radio, liked to listen to the Lone Ranger.