THE SPACEX FAMILY by Jared-Base with Help from the NSF Forum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates -
The Annual Compendium of Commercial Space Transportation: 2013
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2013 February 2014 About FAA \ NOTICE ###i# £\£\ ###ii# Table of Contents TABLE OF CONTENTS INTRODUCTION. 1 YEAR AT A GLANCE ..............................................2 COMMERCIAL SPACE TRANSPORTATION 2013 YEAR IN REVIEW ........5 7 ORBITAL LAUNCH VEHICLES .....................................21 3 SUBORBITAL REUSABLE VEHICLES ...............................47 33 ON-ORBIT VEHICLES AND PLATFORMS ............................57 LAUNCH SITES .................................................65 COMMERCIAL VENTURES BEYOND EARTH ORBIT ...................79 44 REGULATION AND POLICY .......................................83 3 5 3 53 3 8599: : : ;55: 9 < 5; < 2013 COMMERCIAL SPACE TRANSPORTATION FORECASTS ..........89 4 3 4 : ACRONYMS AND ABBREVIATIONS ...............................186 2013 WORLDWIDE ORBITAL LAUNCH EVENTS .....................192 DEFINITIONS ..................................................196 ###iii# £\£\ LIST OF FIGURES COMMERCIAL SPACE TRANSPORTATION YEAR IN REVIEW = =999 =99 = =3> =:9;> LAUNCH SITES = :< 2013 COMMERCIAL SPACE TRANSPORTATION FORECASTS =944 =4 =?4;9 =99493 =3 =:5= =< =;=9 =95;@3 =A =;=9 A 3 =994?: =9999 ? =54 =359 =:5 3 =<999= ? =99=5 ?3 =;>>99: =99 ? 3 ==9 ? 3: =3 =>3 =?: =3?: =:? : ###iv# LIST OF TABLES COMMERCIAL SPACE TRANSPORTATION YEAR IN REVIEW 99 : 3< :9=99< <99 ORBITAL LAUNCH VEHICLES 99 99 59595 593 SUBORBITAL REUSABLE VEHICLES 3 :5933 ON-ORBIT VEHICLES -
By Tamman Montanaro
4 Reusable First Stage Rockets y1 = 15.338 m m1 = 2.047 x 10 kg 5 y2 = 5.115 m m2 = 1.613 x 10 kg By Tamman Montanaro What is the moment of inertia? What is the force required from the cold gas thrusters if we assume constancy. Figure 1. Robbert Goddard’s design of the first ever rocket to fly in 1926. Source: George Edward Pendray. The moment of inertia of a solid disk: rper The Rocket Formula Now lets stack a bunch of these solid disk on each other: Length = l Divide by dt Figure 2: Flight path for the Falcon 9; After separation, the first stage orientates itself and prepares itself for landing. Source: SpaceX If we do the same for the hollow cylinder, we get a moment of inertia Launch of: Specific impulse for a rocket: How much mass is lost? What is the mass loss? What is the moment of inertia about the center of mass for these two objects? Divide by m Figure 3: Falcon 9 first stage after landing on drone barge. Source: SpaceX nd On December 22 2015, the Falcon 9 Orbcomm-2 What is the constant force required for its journey halfway (assuming first stage lands successfully. This is the first ever orbital- that the force required to flip it 90o is the equal and opposite to class rocket landing. From the video and flight logs, we Flip Maneuver stabilize the flip). can gather specifications about the first stage. ⃑ How much time does it take for the first stage to descend? We assume this is the time it takes � Flight Specifications for the first stage to reorientate itself. -
Cape Canaveral Air Force Station Support to Commercial Space Launch
The Space Congress® Proceedings 2019 (46th) Light the Fire Jun 4th, 3:30 PM Cape Canaveral Air Force Station Support to Commercial Space Launch Thomas Ste. Marie Vice Commander, 45th Space Wing Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ste. Marie, Thomas, "Cape Canaveral Air Force Station Support to Commercial Space Launch" (2019). The Space Congress® Proceedings. 31. https://commons.erau.edu/space-congress-proceedings/proceedings-2019-46th/presentations/31 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Cape Canaveral Air Force Station Support to Commercial Space Launch Colonel Thomas Ste. Marie Vice Commander, 45th Space Wing CCAFS Launch Customers: 2013 Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs; Blue text – in work; * – sub-orbital CCAFS Launch Customers: 2013 Complex 39B: NASA SLS Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy NASA Space Launch System Launch Complex 39B February 4, 2013 Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs; -
IAC-17-D2.4.3 Page 1 of 18 IAC-17
68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017. Copyright ©2017 by DLR-SART. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-17- D2.4.3 Evaluation of Future Ariane Reusable VTOL Booster stages Etienne Dumonta*, Sven Stapperta, Tobias Eckerb, Jascha Wilkena, Sebastian Karlb, Sven Krummena, Martin Sippela a Department of Space Launcher Systems Analysis (SART), Institute of Space Systems, German Aerospace Center (DLR), Robert Hooke Straße 7, 28359 Bremen, Germany b Department of Spacecraft, Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Bunsenstraße 10, 37073 Gottingen, Germany *[email protected] Abstract Reusability is anticipated to strongly impact the launch service market if sufficient reliability and low refurbishment costs can be achieved. DLR is performing an extensive study on return methods for a reusable booster stage for a future launch vehicle. The present study focuses on the vertical take-off and vertical landing (VTOL) method. First, a restitution of a flight of Falcon 9 is presented in order to assess the accuracy of the tools used. Then, the preliminary designs of different variants of a future Ariane launch vehicle with a reusable VTOL booster stage are described. The proposed launch vehicle is capable of launching a seven ton satellite into a geostationary transfer orbit (GTO) from the European spaceport in Kourou. Different stagings and propellants (LOx/LH2, LOx/LCH4, LOx/LC3H8, subcooled LOx/LCH4) are considered, evaluated and compared. First sizing of a broad range of launcher versions are based on structural index derived from existing stages. -
Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation . -
March 29, 2021 Ms. Lisa Felice Executive Secretary Michigan
8 8 KARL L. GOTTING PAULA K. MANIS PLLC JACK C. DAVIS MICHAEL G. OLIVA JAMES R. NEAL JEFFREY L. GREEN8 (1938-2020) [email protected] 8 MICHAEL G. OLIVA KELLY REED LUCAS DIRECT DIAL: 517-318-9266 8 MICHAEL H. RHODES RICHARD W. PENNINGS NOTES: MOBILE: 989-798-2650 EFFREY HEUER1 ICHAEL OLMES8 ______________________ J S. T M A. H 1 KEVIN J. RORAGEN YING BEHER8 ALSO LICENSED IN MD 2 REPLY TO LANSING OFFICE ED OZEBOOM ARREN EAN5,8 ALSO LICENSED IN FL T S. R W T. D 3 7,8 ALSO LICENSED IN CT SARA L. CUNNINGHAM JACK L. HOFFMAN 4 2 7,8 ALSO LICENSED IN NY JAMES F. ANDERTON, V HOLLY L. JACKSON 5 ALSO LICENSED IN OH 6 DOMINIC R. RIOS ALSO LICENSED BY USPTO 3,4,6 MIKHAIL MURSHAK 7 GRAND RAPIDS OFFICE GABRIELLE C. LAWRENCE 8 OF COUNSEL ALAN G. ABOONA6 AMIA A. BANKS HANNAH E. BUZOLITS March 29, 2021 Ms. Lisa Felice Executive Secretary Michigan Public Service Commission 7109 W. Saginaw Highway Lansing, MI 48917 Re: Starlink Services, LLC Application for CLEC License MPSC Case No U-21035 Dear Ms. Felice: Enclosed for filing on behalf of Starlink Services, LLC please find: • Application Of Starlink Services, LLC For A Temporary And Permanent License To Provide Basic Local Exchange Service In Michigan • Prefiled Testimony of Matt Johnson • Exhibits SLS-1, SLS-2, SLS-3 and Confidential Exhibit SLS-4 Confidential Exhibit SLS-4 is not being filed electronically, but a sealed copy of Confidential Exhibit SLS-4 is being delivered via overnight mail to the Commission’s offices. -
ESPA Ring Datasheet
PAYLOAD ADAPTERS | ESPA ESPA THE EVOLVED SECONDARY PAYLOAD ADAPTER ESPA mounts to the standard NSSL (formerly EELV) interface bolt pattern (Atlas V, Falcon 9, Delta IV, OmegA, Vulcan, Courtesy of Lockheed Martin New Glenn) and is a drop-in component in the launch stack. Small payloads mount to ESPA ports featuring either a Ø15-inch bolt circle with 24 fasteners or a 4-point mount with pads at each corner of a 15-inch square; both of these interfaces have become small satellite standards. ESPA is qualified to carry 567 lbs (257 kg), and a Heavy interface Courtesy of NASA (with Ø5/16” fastener hardware) has been introduced with a capacity of 991 lbs (450 kg). All small satellite mass capabilities require the center of gravity (CG) to be within 20 inches (50.8 cm) of the ESPA port surface. Alternative configurations can be accommodated. ESPA GRANDE ESPA Grande is a more capable version of ESPA with Ø24-inch ports; the ring height is typically 42 inches. The Ø24-inch port has been qualified by test to Courtesy of ORBCOMM & Sierra Nevada Corp. carry small satellites up to 1543 lb (700 kg). ESPA ESPA IS ADAPTABLE TO UNIQUE MISSION REQUIREMENTS • The Air Force’s STP-1 mission delivered multiple small satellites on an Atlas V. • NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS): ESPA was the spacecraft hub for the LCROSS shepherding satellite in 2009. • ORBCOMM Generation 2 (OG2) launched stacks of two and three ESPA Grandes on two different Falcon 9 missions and in total deployed 17 satellites. -
NASA's in Space Manufacturing Initiative and Additive Manufacturing Development for Rocket Engine Space Flight Hardware
1 National Aeronautics and Space Administration NASA’s In Space Manufacturing Initiative and Additive Manufacturing Development for Rocket Engine Space Flight Hardware Presented to: Aeronautics and Space Engineering Board National Academy of Sciences, Engineering and Medicine October 13, 2016 shall Beckman Center r Irvine, California ma R.G. Clinton, Jr. www.nasa.gov Acting Manager, Science and Technology Office NASA, Marshall Space Flight Center1 Contributors • Kristin Morgan: NASA MSFC Additive Manufacturing Lead • Dr. Tracie Prater: NASA MSFC In Space Manufacturing Material Characterization Lead • Elizabeth Robertson: NASA MSFC Additive Manufactured Engine Technology Development • Mike Snyder: Made In Space Chief Designer • Niki Werkheiser: NASA MSFC In Space Manufacturing Project Manager • Andrew Owens: NASA Tech Fellow, MIT PhD Canidate 2 Agenda • Discussion Topics – How is Additive Manufacturing Used in Your Field/Application Area Today? – How Do You Expect Additive Manufacturing to be Used in ISM Portfolio 5 Years? – Why Have You Chosen to Move into Additive Manufacturing, and What Technical Capabilities Are You Focused On? – What Do You Believe the Major Challenges Are to More Effective Use of Additive Manufacturing? – What Corollary or Overlapping Technologies have been Important to the Effective Utility of Additive Manufacturing in your Application Space? • In Space Manufacturing Initiative (ISM) – In Space Manufacturing Path to Exploration – Evolvable Mars Campaign Assessment – ISM Portfolio – ISM Program Timeline • Additive -
Advancements in Rocket Technology
Advancements in Rocket Technology Prepared by Marcelo Fernando Condori Mendoza Credits: NASA https://www.nasa.gov/exploration/systems/sls/overview.html 1. History of Rocketry Ancient Rockets Rockets for Warfare Rockets as Inventions Early - Mid 20th Century Rockets Space Race Rockets Future Rockets Space Launch System (SLS) Overview NASA’s Space Launch System, or SLS, is an advanced launch vehicle that provides the foundation for human exploration beyond Earth’s orbit. Credits: NASA https://www.nasa.gov/sites/default/files/atoms/files/00 80_sls_fact_sheet_10162019a_final_508.pdf The Power to Explore Beyond Earth’s Orbit To fill America’s future needs for deep space missions, SLS will evolve into increasingly more powerful configurations. The first SLS vehicle, called Block 1, was able to send more than 26 metric tons (t) or 57,000 pounds (lbs.) to orbits beyond the Moon. https://www.nasa.gov/exploration/systems/sls/overview.html Block 1 - Initial SLS Configuration Block 1 - Initial SLS Configuration Credits: NASA What is SpaceX? QUESTION SpaceX headquarters in December Spaceflight Industries will carry and 2017; plumes from a flight of a launch a cluster of Kleos satellites on Falcon 9 rocket are visible overhead the SpaceX Falcon 9 scheduled for launch mid 2021. Space Exploration Technologies Corp., trading as SpaceX, is an American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California, which was founded in 2002 by Elon Mask. An Airbus A321 on final assembly line 3 in the Airbus plant at Hamburg Finkenwerder Airport Main important events The goal was reducing space transportation costs to enable the colonization of Mars. -
Since Our Last SIA Member News Summary, Press Releases and Posts
SIA PRESIDENT’S REPORT – MEMBER NEWS FOR OCT 2020 Since our last SIA Member News Summary, press releases and posts from many SIA Members including AGI, Blue Origin, Hawkeye 360, Inmarsat, Integrasys, Iridium, Kymeta, Lockheed Martin, OneWeb, Planet, SES, SpaceX, Spire, Telesat and XTAR have released news. Please see the summary of stories and postings below and click on the COMPANY LINK for more details. PLANET (above) On Oct 28th, Planet announced the successful launch of nine Flock 4e latest-generation SuperDove satellites onboard a Rocket Lab Electron rocket from New Zealand. The Flock 4e’ SuperDoves were deployed into an approximately 500 km, morning-crossing Sun Synchronous Orbit (SSO), joining the rest of the constellation providing medium-resolution Earth imagery with unprecedented coverage and frequency of update. The nine SuperDoves are equipped with 8 spectral bands that provide high image quality and accurate surface reflectance values for advanced algorithms and time-series analysis. Planet’s SuperDoves are also interoperable with publicly available imagery, like Copernicus’ Sentinel-2, enabling innovative applications and use cases. (Photo credit: Image courtesy of Planet and Rocket Lab) AGI On Oct 26th, Analytical Graphics Inc., (AGI) announced that AGI and Ansys, a leading innovator of engineering software, had entered into a definitive acquisition agreement. According to the terms of the agreement, Ansys would acquire AGI. The purchase price for the transaction, which is expected to close in Q4 of 2020 pending regulatory clearance, is $700 million. SPACEX On Oct 24th, SpaceX announced that a Falcon 9 rocket had launched 60 Starlink satellites to orbit from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station in Florida. -
Falcon Heavy
Schaub 5:00 L04 Disclaimer: This paper partially fulfills a writing requirement for the first year (freshman) engineering students at the University of Pittsburgh Swanson School of Engineering. This paper is a student paper, not professional paper. This paper is based on publicly available information and may not provide complete analyses of all relevant data. If this paper is used for any purpose other than this author`s partial fulfillment of a writing requirement for first year (freshman) engineering students at the University of Pittsburgh Swanson School of Engineering, users are doing so at their own risk. FALCON HEAVY Zoë Neal ([email protected]) SPACEX order to finish the mission the vehicle was set out to SpaceX is a private space exploration do. company that designs and manufactures various Named after its use of nine first stage launch technologically advanced spacecraft and launch engineers, this is the world’s first partially reusable vehicles under the direction of co-founder and rocket [1]. It is comprised of three separate parts. CEO, Elon Musk [1]. The company was founded in The first stage is comprised of two boosters and the 2002 with the intent of advancing space exploration second stage is rocket itself. The Falcon 9 Full technology to achieve their ultimate goal of Thrust can lift cargo up to 50,300 pounds to low enabling humans to live on other planets. They are Earth orbit. That is the equivalent of sending a the first private company to return a spacecraft from sailboat, a greyhound bus, and a monster truck to an low-Earth orbit and are the first to use an orbital altitude of 1,200 miles.