IAC-17-D2.4.3 Page 1 of 18 IAC-17
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Validation of Wind Tunnel Test and Cfd Techniques for Retro-Propulsion (Retpro): Overview on a Project Within the Future Launchers Preparatory Programme (Flpp)
VALIDATION OF WIND TUNNEL TEST AND CFD TECHNIQUES FOR RETRO-PROPULSION (RETPRO): OVERVIEW ON A PROJECT WITHIN THE FUTURE LAUNCHERS PREPARATORY PROGRAMME (FLPP) D. Kirchheck, A. Marwege, J. Klevanski, J. Riehmer, A. Gulhan¨ German Aerospace Center (DLR) Supersonic and Hypersonic Technologies Department Cologne, Germany S. Karl O. Gloth German Aerospace Center (DLR) enGits GmbH Spacecraft Department Todtnau, Germany Gottingen,¨ Germany ABSTRACT and landing (VTVL) spacecraft, assisted by retro-propulsion. Up to now, in Europe, knowledge and expertise in that field, The RETPRO project is a 2-years activity, led by the Ger- though constantly growing, is still limited. Systematic stud- man Aerospace Center (DLR) in the frame of ESA’s Future ies were conducted to compare concepts for possible future Launchers Preparatory Program (FLPP), to close the gap of European launchers [2, 3], and activities on detailed inves- knowledge on aerodynamics and aero-thermodynamics of tigations of system components of VTVL re-usable launch retro-propulsion assisted landings for future concepts in Eu- vehicles (RLV) recently started in the RETALT project [4, 5]. rope. The paper gives an overview on the goals, strategy, and Nevertheless, validated knowledge on the aerodynamic current status of the project, aiming for the validation of inno- and aerothermal characteristics of such vehicles is still lim- vative WTT and CFD tools for retro-propulsion applications. ited to a small amount of experimental and numerical inves- Index Terms— RETPRO, retro-propulsion, launcher tigations mostly on lower altitude VTVL trajectories, e. g. aero-thermodynamics, wind tunnel testing, CFD validation within the CALLISTO project [6, 7, 8]. Other studies were conducted to analyze the aerothermodynamics of a simplified generic Falcon 9 geometry during its re-entry and landing 1. -
Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates -
Space Launch System (Sls) Motors
Propulsion Products Catalog SPACE LAUNCH SYSTEM (SLS) MOTORS For NASA’s Space Launch System (SLS), Northrop Grumman manufactures the five-segment SLS heavy- lift boosters, the booster separation motors (BSM), and the Launch Abort System’s (LAS) launch abort motor and attitude control motor. The SLS five-segment booster is the largest solid rocket motor ever built for flight. The SLS booster shares some design heritage with flight-proven four-segment space shuttle reusable solid rocket motors (RSRM), but generates 20 percent greater average thrust and 24 percent greater total impulse. While space shuttle RSRM production has ended, sustained booster production for SLS helps provide cost savings and access to reliable material sources. Designed to push the spent RSRMs safely away from the space shuttle, Northrop Grumman BSMs were rigorously qualified for human space flight and successfully used on the last fifteen space shuttle missions. These same motors are a critical part of NASA’s SLS. Four BSMs are installed in the forward frustum of each five-segment booster and four are installed in the aft skirt, for a total of 16 BSMs per launch. The launch abort motor is an integral part of NASA’s LAS. The LAS is designed to safely pull the Orion crew module away from the SLS launch vehicle in the event of an emergency on the launch pad or during ascent. Northrop Grumman is on contract to Lockheed Martin to build the abort motor and attitude control motor—Lockheed is the prime contractor for building the Orion Multi-Purpose Crew Vehicle designed for use on NASA’s SLS. -
Supersonic Retropropulsion Wind Tunnel Testing
NASA/TM—2012-217746 AIAA–2012–401 Entry, Descent, and Landing With Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing Bryan Palaszewski Glenn Research Center, Cleveland, Ohio December 2012 NASA STI Program . in Profi le Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientifi c and technical NASA Scientifi c and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientifi c, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Offi cer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports • TECHNICAL TRANSLATION. English- Server, thus providing one of the largest collections language translations of foreign scientifi c and of aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major signifi cant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis. -
Status of the Space Shuttle Solid Rocket Booster
The Space Congress® Proceedings 1980 (17th) A New Era In Technology Apr 1st, 8:00 AM Status of The Space Shuttle Solid Rocket Booster William P. Horton Solid Rocket Booster Engineering Office, George C. Marshall Space Flight Center, Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Horton, William P., "Status of The Space Shuttle Solid Rocket Booster" (1980). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1980-17th/session-1/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATUS OF THE SPACE SHUTTLE SOLID ROCKET BOOSTER William P. Horton, Chief Engineer Solid Rocket Booster Engineering Office George C. Marshall Space Flight Center, AL 35812 ABSTRACT discuss retrieval and refurbishment plans for Booster reuse, and will address Booster status Two Solid Rocket Boosters provide the primary for multimission use. first stage thrust for the Space Shuttle. These Boosters, the largest and most powerful solid rocket vehicles to meet established man- BOOSTER CONFIGURATION rated design criteria, are unique in that they are also designed to be recovered, refurbished, It is appropriate to review the Booster config and reused. uration before describing the mission profile. The Booster is 150 feet long and is 148 inches The first SRB f s have been stacked on the in diameter (Figure 1), The inert weight Mobile Launch Platform at the Kennedy Space is 186,000 pounds and the propellant weight is Center and are ready to be mated with the approximately 1.1 million pounds for each External Tank and Orbiter in preparation for Booster. -
Economic Benefits of Reusable Launch Vehicles for Space Debris Removal
68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017. Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved. IAC-17-A6.8.5 Economic Benefits of Reusable Launch Vehicles for Space Debris Removal Matthew P. Richardsona*, Dominic W.F. Hardyb a Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 113- 8656, [email protected] b Nova Systems, 53 Ellenborough Street, Ipswich, Queensland, Australia 4305, [email protected] * Corresponding Author Abstract An analysis of cost savings which could be realized on active debris removal missions through the use of reusable launch vehicles has been performed. Launch vehicle price estimates were established for three levels of reusable launch vehicle development, based on varying levels of technological development and market competition. An expendable launch vehicle price estimate was also established as a point of comparison. These price estimates were used to form two separate debris removal mission cost estimates, based on previously-proposed debris removal mission concepts. The results of this analysis indicate that reusable launch vehicles could reduce launch prices to levels between 19.6% and 92.8% cheaper than expendable launch vehicles, depending on the level of RLV maturity. It was also determined that a reusable launch vehicle could be used to realize total active debris removal mission cost savings of between 2.8% (for a partially reusable launch -
Since Our Last SIA Member News Summary, Press Releases and Posts
SIA PRESIDENT’S REPORT – MEMBER NEWS FOR OCT 2020 Since our last SIA Member News Summary, press releases and posts from many SIA Members including AGI, Blue Origin, Hawkeye 360, Inmarsat, Integrasys, Iridium, Kymeta, Lockheed Martin, OneWeb, Planet, SES, SpaceX, Spire, Telesat and XTAR have released news. Please see the summary of stories and postings below and click on the COMPANY LINK for more details. PLANET (above) On Oct 28th, Planet announced the successful launch of nine Flock 4e latest-generation SuperDove satellites onboard a Rocket Lab Electron rocket from New Zealand. The Flock 4e’ SuperDoves were deployed into an approximately 500 km, morning-crossing Sun Synchronous Orbit (SSO), joining the rest of the constellation providing medium-resolution Earth imagery with unprecedented coverage and frequency of update. The nine SuperDoves are equipped with 8 spectral bands that provide high image quality and accurate surface reflectance values for advanced algorithms and time-series analysis. Planet’s SuperDoves are also interoperable with publicly available imagery, like Copernicus’ Sentinel-2, enabling innovative applications and use cases. (Photo credit: Image courtesy of Planet and Rocket Lab) AGI On Oct 26th, Analytical Graphics Inc., (AGI) announced that AGI and Ansys, a leading innovator of engineering software, had entered into a definitive acquisition agreement. According to the terms of the agreement, Ansys would acquire AGI. The purchase price for the transaction, which is expected to close in Q4 of 2020 pending regulatory clearance, is $700 million. SPACEX On Oct 24th, SpaceX announced that a Falcon 9 rocket had launched 60 Starlink satellites to orbit from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station in Florida. -
Falcon 1 User's Guide
Falcon 1 Launch Vehicle Payload User’s Guide Rev 7 TABLE OF CONTENTS 1. Introduction 4 1.1. Revision History 4 1.2. Purpose 6 1.3. Company Description 6 1.4. Falcon Program Overview 6 1.5. Mission Management 7 2. Falcon 1 Launch Vehicles 8 2.1. Overview 8 2.1.1. Falcon 1 9 2.1.2. Falcon 1e 11 2.2. Availability 12 2.3. Reliability 13 2.4. Performance 15 2.5. Pricing 16 2.6. Standard Services 16 2.7. Non‐standard Services 16 2.8. Vehicle Axes/Attitude Definitions 17 3. Requirements & Environments 18 3.1. Mass Properties 18 3.2. Payload Interfaces 19 3.2.1. Falcon Payload Attach Fittings 19 3.2.2. Test Fittings and Fitcheck Policy 19 3.2.3. Electrical Design Criteria 19 3.3. Documentation Requirements 21 3.4. Payload Environments 23 3.4.1. Transportation Environments 23 3.4.2. Humidity, Cleanliness and Thermal Control 23 3.4.3. Payload Air Conditioning 24 3.4.4. Launch and Flight Environments 24 4. Facilities 32 4.1. Headquarters – Hawthorne, California 32 4.2. Washington, DC 32 4.3. Test Facility ‐ Central Texas 32 4.4. Launch Site – Kwajalein Atoll 33 4.4.1. Processing Services and Equipment 33 5. Launch Operations 36 5.1. Launch Control Organization 36 5.2. Mission Integration 37 5.2.1. Payload Transport to Launch Site 38 5.2.2. Payload Integration 38 5.2.3. Example Flight Profiles 41 D000973 Rev Falcon 1 User’s Guide ‐ D000973 Rev. 7 Page | 3 6. -
Status of Space Shuttle External Tank, Solid Rocket Booster, and Main Engine
The Space Congress® Proceedings 1979 (16th) Space: The Best Is Yet To Come Apr 1st, 8:00 AM Status of Space Shuttle External Tank, Solid Rocket Booster, and Main Engine Robert E. Lindstrom Manager, Shuttle Projects Office, Marshal I Space Fl ight Center Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Lindstrom, Robert E., "Status of Space Shuttle External Tank, Solid Rocket Booster, and Main Engine" (1979). The Space Congress® Proceedings. 4. https://commons.erau.edu/space-congress-proceedings/proceedings-1979-16th/session-1/4 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATUS OF SPACE SHUTTLE EXTERNAL TANK SOLID ROCKET BOOSTER and MAIN ENGINE Mr. Robert E. Lindstrom Manager, Shuttle Projects Office Marshal I Space Fl ight Center ABSTRACT success. The Sol id Rocket Booster, whose recovery and reusability make the Space Shuttle economically The paper will cover the current status of three feasible, provides the additional power necessary major propulsion elements for the Space Transporta to boost the Shuttle off the launch pad towards tion System: the Space Shuttle Main Engine (SSME), orbit. the External Tank (ET) and the Solid Rocket Booster (SRB). Presented will be the Test and Manufactur ing experience in the last year, the Test and Manu EXTERNAL TANK facturing plans for the coming year and the current status of hardware to support the first manned or The External Tank is that element of the Space bital fl ight. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
Spacex's Expanding Launch Manifest
October 2013 SpaceX’s expanding launch manifest China’s growing military might Servicing satellites in space A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS SpaceX’s expanding launch manifest IT IS HARD TO FIND ANOTHER SPACE One of Brazil, and the Turkmensat 1 2012, the space docking feat had been launch services company with as di- for the Ministry of Communications of performed only by governments—the verse a customer base as Space Explo- Turkmenistan. U.S., Russia, and China. ration Technologies (SpaceX), because The SpaceX docking debunked there simply is none. No other com- A new market the myth that has prevailed since the pany even comes close. Founded only The move to begin launching to GEO launch of Sputnik in 1957, that space a dozen years ago by Elon Musk, is significant, because it opens up an travel can be undertaken only by na- SpaceX has managed to win launch entirely new and potentially lucrative tional governments because of the contracts from agencies, companies, market for SpaceX. It also puts the prohibitive costs and technological consortiums, laboratories, and univer- company into direct competition with challenges involved. sities in the U.S., Argentina, Brazil, commercial launch heavy hitters Ari- Teal Group believes it is that Canada, China, Germany, Malaysia, anespace of Europe with its Ariane mythology that has helped discourage Mexico, Peru, Taiwan, Thailand, Turk- 5ECA, U.S.-Russian joint venture Inter- more private investment in commercial menistan, and the Netherlands in a rel- national Launch Services with its Pro- spaceflight and the more robust growth atively short period. -
Finding of No Significant Impact for Boost-Back and Landing of Falcon Heavy Boosters at Landing Zone-1, Cape Canaveral Air Force Station, Florida
DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space Transportation Adoption of the Environmental Assessment and Finding of No Significant Impact for Boost-back and Landing of Falcon Heavy Boosters at Landing Zone-1, Cape Canaveral Air Force Station, Florida Summary The U.S. Air Force (USAF) acted as the lead agency, and the Federal Aviation Administration (FAA) was a cooperating agency, in the preparation of the February 2017 Supplemental Environmental Assessment to the December 2014 EA for Space Exploration Technologies Vertical Landing of the Falcon Vehicle and Construction at Launch Complex 13 at Cape Canaveral Air Force Station, Florida (2017 SEA), which analyzed the potential environmental impacts of Space Exploration Technologies Corp. (SpaceX) conducting boost-backs and landings of up to three Falcon Heavy boosters at Landing Zone 1 (LZ-1) at Cape Canaveral Air Force Station (CCAFS), Florida during the same mission. LZ-1 is also known as Launch Complex 13 (LC-13). The scope of the action analyzed in the 2017 SEA also included the option of landing one or two Falcon Heavy boosters on SpaceX’s autonomous droneship in the Atlantic Ocean. The 2017 SEA also addressed construction of two landing pads as well as construction and operation of a processing and testing facility for SpaceX’s Dragon spacecraft. The National Aeronautics and Space Administration (NASA) also participated as a cooperating agency in the preparation of the 2017 SEA. The 2017 SEA was prepared in accordance with the National Environmental Policy Act of 1969, as amended (NEPA; 42 United States Code [U.S.C.] § 4321 et seq.); Council on Environmental Quality NEPA implementing regulations (40 Code of Federal Regulations [CFR] parts 1500 to 1508); the USAF’s Environmental Impact Analysis Process (32 CFR 989); and FAA Order 1050.1F, Environmental Impacts: Policies and Procedures.