Falcon Heavy

Total Page:16

File Type:pdf, Size:1020Kb

Falcon Heavy Schaub 5:00 L04 Disclaimer: This paper partially fulfills a writing requirement for the first year (freshman) engineering students at the University of Pittsburgh Swanson School of Engineering. This paper is a student paper, not professional paper. This paper is based on publicly available information and may not provide complete analyses of all relevant data. If this paper is used for any purpose other than this author`s partial fulfillment of a writing requirement for first year (freshman) engineering students at the University of Pittsburgh Swanson School of Engineering, users are doing so at their own risk. FALCON HEAVY Zoë Neal ([email protected]) SPACEX order to finish the mission the vehicle was set out to SpaceX is a private space exploration do. company that designs and manufactures various Named after its use of nine first stage launch technologically advanced spacecraft and launch engineers, this is the world’s first partially reusable vehicles under the direction of co-founder and rocket [1]. It is comprised of three separate parts. CEO, Elon Musk [1]. The company was founded in The first stage is comprised of two boosters and the 2002 with the intent of advancing space exploration second stage is rocket itself. The Falcon 9 Full technology to achieve their ultimate goal of Thrust can lift cargo up to 50,300 pounds to low enabling humans to live on other planets. They are Earth orbit. That is the equivalent of sending a the first private company to return a spacecraft from sailboat, a greyhound bus, and a monster truck to an low-Earth orbit and are the first to use an orbital altitude of 1,200 miles. The launch vehicle can take class rocket in re-flight. They have not fell short of 18,300 pounds to Geostationary Transfer Orbit. their expectations, and the success of SpaceX has That equalizes to flying a Howitzer Trailer and a not gone unrecognized. NASA has worked in medium missile to an altitude of 22,236 miles [3]. tandem with SpaceX numerous times in order to For comparison and assistance in solidifying the receive state of the art technology. In 2011, NASA understanding of the weight and heights mentioned contracted SpaceX to build a version of their above, an average commercial aircraft carries Dragon Capsule, a free flying spacecraft, that was around 175,000 pounds to an altitude of 7.8 miles suitable for human transport to the International [4]. Space Station and back. This year, Musk stated that In 2008, SpaceX won a contract to resupply SpaceX has been contracted by two individuals that the International Space Station from NASA and want to be put into the Dragon and orbit the moon. utilized the Falcon 9 and Dragon Capsule. The pair They are already set to launch in 2018, resulting in launched their first mission in October 2012. This SpaceX becoming a pioneer in lunar tourism. The rocket has performed extremely well, but many focus of my paper is SpaceX`s Falcon Heavy, a changes and innovations have been made, which rocket that is years in the making and set to launch have resulted in the Falcon Heavy. Although the in late 2017. Falcon Heavy is designed to be superior to the FALCON 9 FULL THRUST Falcon 9, it is being prepared to be certified for In order to understand the significance of human transportation to the International Space the Falcon 9 Heavy, one must possess general Station. information of the Falcon 9 Full Thrust, its predecessor. FALCON 9 HEAVY The Falcon 9 Full Thrust is a two-stage, LOX/RP powered heavy lift launch vehicle. “Two- The Falcon 9 Heavy is set to launch late this stage” describes the way the rocket is made, and year, and the space exploration community is how it functions [2]. The rocket essentially is brimming with excitement. It is a reusable, two- comprised of two parts. The first stage, or the first stage, super heavy lift space launch vehicle. The part, is designed in a way that once it suns out of Falcon Heavy is comprised of a stronger version of fuel, it detaches from the second stage. Many space the Falcon 9 rocket core, and two additional first vehicles are constructed this way due to the fact that stage rockets as strap on boosters. once the fuel runs out, the fuel chambers just After some research and analysis of what the become extra weight. Therefore, it is disposed of. capabilities of the Falcon 9 Heavy would be, the The second stage is equipped with its own fuel in SpaceX decided that the first two stages will be comprised of liquid strap on boosters. That allowed University of Pittsburgh, Swanson School of Engineering 10.31.2017 Zoë Neal them to place in the neighborhood of 25 tons into The task at hand is to discuss a problem and lower earth orbit, more than any launch vehicle an innovation that attempts to act as the solution. used since 1975. This rocket can send 141,00 to low One may contemplate, what problem is SpaceX earth orbit, and 37,000 pounds to trans-Mars trying to solve? There is a lot of controversy around injection, which is a maneuver to set a spacecraft on space exploration, but SpaceX is solving one of the the path towards mars Additionally, it is a reusable biggest encroaching problems to date, population rocket and costs less than the average rockets of its control. The Earth can only hold so many people, kind. Falcon Heavy was designed from the outset to once we have reached maximum capacity, what will carry human cargo, and due to its strength, restores happen? The phrase “There is no Planet B” is the possibility of sending humans to mars. infamous nowadays. Yet, SpaceX is challenging Technology this advanced is seldom produced that phrase. Elon Musk confidently estimates without difficulty. Combining the three Falcon 9 humans will be on Mars within twenty years, and cores necessary to produce the new spacecraft SpaceX is closer to sending men to Mars than the proved a lot more difficult than originally human race has ever been before. anticipated. Musk stated “At first it sounds real easy, you just stick two first stages on as strap-on THE FUTURE WITH FALCON 9 boosters, but then everything changes…All the HEAVY loads change, aerodynamics totally change. You’ve tripled the vibration and acoustics. You The Falcon 9 Heavy was designed to deliver sort of break the qualification levels on so much human cargo safely to the International Space of the hardware [5].” For the Falcon 9 Heavy, Station, and potentially has enough power to send they had to reanalyze and redesign a lot more itself on the proper path towards Mars. As we than they thought. Which continually delayed the continue to get more familiar and better able to launch date of the rocket. explore our celestial environment, debate increases In May 2017, SpaceX did the first static fire about space exploration. Should humans really be test of flight design for the Falcon Heavy center expanding beyond our boundaries? core, and everything went as expected [6]. Alas, due With the innovations of the Falcon 9 Heavy, to the difficulty of the perfecting the Rocket, Musk some people against Space Exploration have grown has downplayed the success of the rocket during the more worried that humans will begin setting up actual. All he hopes for is the launch, it won`t residence on planets other than Earth. They believe damage the launch pad. that if we were given the Earth, which has all we The “SpaceX Reusable Launch System need, and the atmosphere, which protects us from Development Program” is a program that devotes the unsuitable conditions of space, then there is no its energy toward new technologies that make need to go any further. Humans do not know what rockets reusable, similar to the reusability of an lies outside of our atmosphere for a reason. Another aircraft. In order to return the parts, it involves view from this side of the debate is, by expanding flipping the booster around, possibly a boost back beyond our preset boundaries, we can potentially to reverse the course, a re-entry burn, and disturb other life in space. Due to the fact that controlling the direction to arrive at the landing site. reusable rockets are a relatively new innovation, The hard part about this is that, rockets take a lot of there is copious amounts of debris from earlier time to build and they only go in one direction. missions floating in space. That waste has the Once they have detached from the initial rocket, and potential to badly damage or destroy another form are out of the gravitational field, it is hard to focus of life that we do not now about. If the Falcon where they will land. Rocket ships are extremely 9Heavy or Falcon 9 does become certified for costly, and being able to retrieve the rockets will be human transportation, it is only a matter of time an enormous cost reduction and enable companies before the colonization of Mars. This can be safely to build more rockets. Currently, Space X is assumed, because Elon Musk has directly expressed working on the development of an extensible interest in Mars colonization. reusable rocket launching system that would be able Leaving the existing debate aside, there are a to recover all parts of the Falcon 9 Heavy. myriad of issues that can arise if humans begin to inhabit Mars. There are no legislations regarding IS ALL THIS REALLY life on other planets.
Recommended publications
  • Cape Canaveral Air Force Station Support to Commercial Space Launch
    The Space Congress® Proceedings 2019 (46th) Light the Fire Jun 4th, 3:30 PM Cape Canaveral Air Force Station Support to Commercial Space Launch Thomas Ste. Marie Vice Commander, 45th Space Wing Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ste. Marie, Thomas, "Cape Canaveral Air Force Station Support to Commercial Space Launch" (2019). The Space Congress® Proceedings. 31. https://commons.erau.edu/space-congress-proceedings/proceedings-2019-46th/presentations/31 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Cape Canaveral Air Force Station Support to Commercial Space Launch Colonel Thomas Ste. Marie Vice Commander, 45th Space Wing CCAFS Launch Customers: 2013 Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs; Blue text – in work; * – sub-orbital CCAFS Launch Customers: 2013 Complex 39B: NASA SLS Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy NASA Space Launch System Launch Complex 39B February 4, 2013 Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs;
    [Show full text]
  • ESPA Ring Datasheet
    PAYLOAD ADAPTERS | ESPA ESPA THE EVOLVED SECONDARY PAYLOAD ADAPTER ESPA mounts to the standard NSSL (formerly EELV) interface bolt pattern (Atlas V, Falcon 9, Delta IV, OmegA, Vulcan, Courtesy of Lockheed Martin New Glenn) and is a drop-in component in the launch stack. Small payloads mount to ESPA ports featuring either a Ø15-inch bolt circle with 24 fasteners or a 4-point mount with pads at each corner of a 15-inch square; both of these interfaces have become small satellite standards. ESPA is qualified to carry 567 lbs (257 kg), and a Heavy interface Courtesy of NASA (with Ø5/16” fastener hardware) has been introduced with a capacity of 991 lbs (450 kg). All small satellite mass capabilities require the center of gravity (CG) to be within 20 inches (50.8 cm) of the ESPA port surface. Alternative configurations can be accommodated. ESPA GRANDE ESPA Grande is a more capable version of ESPA with Ø24-inch ports; the ring height is typically 42 inches. The Ø24-inch port has been qualified by test to Courtesy of ORBCOMM & Sierra Nevada Corp. carry small satellites up to 1543 lb (700 kg). ESPA ESPA IS ADAPTABLE TO UNIQUE MISSION REQUIREMENTS • The Air Force’s STP-1 mission delivered multiple small satellites on an Atlas V. • NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS): ESPA was the spacecraft hub for the LCROSS shepherding satellite in 2009. • ORBCOMM Generation 2 (OG2) launched stacks of two and three ESPA Grandes on two different Falcon 9 missions and in total deployed 17 satellites.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Finding of No Significant Impact for Boost-Back and Landing of Falcon Heavy Boosters at Landing Zone-1, Cape Canaveral Air Force Station, Florida
    DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space Transportation Adoption of the Environmental Assessment and Finding of No Significant Impact for Boost-back and Landing of Falcon Heavy Boosters at Landing Zone-1, Cape Canaveral Air Force Station, Florida Summary The U.S. Air Force (USAF) acted as the lead agency, and the Federal Aviation Administration (FAA) was a cooperating agency, in the preparation of the February 2017 Supplemental Environmental Assessment to the December 2014 EA for Space Exploration Technologies Vertical Landing of the Falcon Vehicle and Construction at Launch Complex 13 at Cape Canaveral Air Force Station, Florida (2017 SEA), which analyzed the potential environmental impacts of Space Exploration Technologies Corp. (SpaceX) conducting boost-backs and landings of up to three Falcon Heavy boosters at Landing Zone 1 (LZ-1) at Cape Canaveral Air Force Station (CCAFS), Florida during the same mission. LZ-1 is also known as Launch Complex 13 (LC-13). The scope of the action analyzed in the 2017 SEA also included the option of landing one or two Falcon Heavy boosters on SpaceX’s autonomous droneship in the Atlantic Ocean. The 2017 SEA also addressed construction of two landing pads as well as construction and operation of a processing and testing facility for SpaceX’s Dragon spacecraft. The National Aeronautics and Space Administration (NASA) also participated as a cooperating agency in the preparation of the 2017 SEA. The 2017 SEA was prepared in accordance with the National Environmental Policy Act of 1969, as amended (NEPA; 42 United States Code [U.S.C.] § 4321 et seq.); Council on Environmental Quality NEPA implementing regulations (40 Code of Federal Regulations [CFR] parts 1500 to 1508); the USAF’s Environmental Impact Analysis Process (32 CFR 989); and FAA Order 1050.1F, Environmental Impacts: Policies and Procedures.
    [Show full text]
  • Failures in Spacecraft Systems: an Analysis from The
    FAILURES IN SPACECRAFT SYSTEMS: AN ANALYSIS FROM THE PERSPECTIVE OF DECISION MAKING A Thesis Submitted to the Faculty of Purdue University by Vikranth R. Kattakuri In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering August 2019 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF THESIS APPROVAL Dr. Jitesh H. Panchal, Chair School of Mechanical Engineering Dr. Ilias Bilionis School of Mechanical Engineering Dr. William Crossley School of Aeronautics and Astronautics Approved by: Dr. Jay P. Gore Associate Head of Graduate Studies iii ACKNOWLEDGMENTS I am extremely grateful to my advisor Prof. Jitesh Panchal for his patient guidance throughout the two years of my studies. I am indebted to him for considering me to be a part of his research group and for providing this opportunity to work in the fields of systems engineering and mechanical design for a period of 2 years. Being a research and teaching assistant under him had been a rewarding experience. Without his valuable insights, this work would not only have been possible, but also inconceivable. I would like to thank my co-advisor Prof. Ilias Bilionis for his valuable inputs, timely guidance and extremely engaging research meetings. I thank my committee member, Prof. William Crossley for his interest in my work. I had a great opportunity to attend all three courses taught by my committee members and they are the best among all the courses I had at Purdue. I would like to thank my mentors Dr. Jagannath Raju of Systemantics India Pri- vate Limited and Prof.
    [Show full text]
  • IMS Infrasound Records of Announced Rocket Launches
    SnT2017 T1.1-P10 Disclaimer IMS Infrasound Records of Announced Rocket Launches The views expressed on this poster are those Tatiana Medinskaya, Paulina Bittner, Paul Polich, Pierrick Mialle, Jane Gore of the author and do not necessarily reflect the view of the CTBTO CTBTO Prep Com, Vienna International Centre, Austria. e-mail: [email protected] In 19 cases the launch pad was within the confidence ellipse (area in ABSTRACT which an event takes place with probability of 90%) associated to event CONSISTENCY OF INFRASOUND RECORDS Infrasound technology as part of the verification regime plays a location, in 4 cases event time differed by more than 20 minutes from To demonstrate consistency of infrasound signal signatures we checked IMS stations significant role in monitoring compliance with the Comprehensive the actual time of the launch. Therefore the epicentre significantly records of Soyuz rocket launches from Baikonur Cosmodrome. It is the largest and oldest Test Ban Treaty (CTBT). Low frequency acoustic waves under shifted from the launch location. For 5 launches some distinct events spaceport in the world located at the southern Kazakhstan and mostly used by favourable conditions can propagate thousands of kilometres until along the flight trajectory were registered in addition to signals Roskosmos. The closest IMS station is I31KZ (Aktubinsk, Kazakhstan) at the west from they arrive at infrasound arrays of the International Monitoring supposedly related to the liftoffs. the spaceport. The flight trajectory goes to the east towards IMS station I46RU (Zalesovo, System (IMS). Recorded data are transmitted to the International Russia). Data Centre (IDC) and used for detection and characterization of This study is aimed to inspect infrasound signal signatures and to atmospheric events.
    [Show full text]
  • Hybrid Rocket Propulsion
    CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF TRANSPORTATION Department of Air Transport Bc. Tomáš Cáp HYBRID ROCKET PROPULSION Diploma Thesis 2017 1 2 3 4 Acknowledgements I would like to express my sincere thanks to my thesis advisor, doc. Ing. Jakub Hospodka, PhD., for valuable feedback and support during the process of creation of this thesis. Additionally, I am thankful for moral support extended by my family without which the process of writing this thesis would be significantly more difficult. Čestné prohlášení Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací. Nemám žádný závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon). V Praze dne 29. 5. 2017 ……………………………… Tomáš Cáp 5 Abstrakt Autor: Bc. Tomáš Cáp Název práce: Hybrid Rocket Propulsion Škola: České vysoké učení technické v Praze, Fakulta dopravní Rok obhajoby: 2017 Počet stran: 56 Vedoucí práce: doc. Ing. Jakub Hospodka, PhD. Klíčová slova: hybridní raketový motor, raketový pohon, raketové palivo, komerční lety do vesmíru Cílem této diplomové práce je představení hybridního raketového pohonu coby perspektivní technologie, která do budoucna zřejmě výrazně ovlivní směřování kosmonautiky. Součástí práce je stručný popis konvenčních raketových motorů na tuhá a kapalná paliva a základní popis problematiky hybridních raketových motorů. V druhé části práce jsou zmíněny přibližné náklady na provoz těchto systémů a je provedeno srovnání těchto finančních nákladů v poměru k poskytovanému výkonu. V závěru jsou doporučeny oblasti možných využití vhodné pro hybridní raketové motory vzhledem k současnému stupni jejich technologické vyspělosti.
    [Show full text]
  • Trópico De Ciencia No
    No. 112, febrero de 2017 Boletín mensual del CCYTET Se realiza con gran éxito la Primera Olimpiada Tabasqueña de Matemáticas para Nivel Básico • Participaron 796 alumnos provenientes de 11 municipios • La premiación se llevará a cabo el 21 de marzo El sábado 11 de febrero se llevó a cabo Por su parte, en el nivel Secundaria, la por primera ocasión la Olimpiada Ta- prueba se llevó a cabo en la Escuela basqueña de Matemáticas para Nivel Secundaria Técnica Número 1 , ubicada básico, para la cual se convocó a niños y igualmente en Atasta, sobre la avenida jóvenes mexicanos alumnos de nivel pri- Heroico Colegio Militar. maria y secundaria de escuelas públicas Esta primera Olimpiada Tabasqueña de y privadas de nuestro estado. Matemáticas Nivel Básico Premiará a La participación rebasó por mucho a la 20 alumnos, así como a los 4 maestros que se esperaba, que era cerca de 200 cuyos alumnos hayan alcanzado los me- alumnos, alcanzando un total de 796 jores lugares. Los resultados se darán a alumnos registrados (333 de primaria y conocer durante la primera semana de 463 de secundaria), provenientes de 108 marzo. escuelas (41 de nivel primaria y 67 de Por su parte, el Consejo de Ciencia y nivel secundaria) de 11 municipios dis- Tecnología del Estado de Tabasco, agra- tintos (Cárdenas, Centro, Comalcalco, dece nuevamente a las autoridades de Cunduacán, Jalapa, Jalpa y Teapa para las escuelas que fungieron como sedes. el nivel primaria, a los que se sumaron Huimanguillo, Macuspana, Nacajuca y Tacotalpa en el nivel secundaria). Para el nivel Primaria, la Olimpiada se realizó en la Escuela “Benito Juárez García” (De nivel básico) ubicada en la Colonia Atasta.
    [Show full text]
  • Payload Fairing Geometries As Space Stations with Flexible “Plug and Play” Rack System
    49th International Conference on Environmental Systems ICES-2019-113 7-11 July 2019, Boston, Massachusetts Payload Fairing Geometries as Space Stations with Flexible “Plug and Play” Rack System Leonardo A. Guzman1 SICSA, University of Houston, Houston, Texas, 77004 This paper outlines a design methodology of modifying launch vehicle payload fairing geometries into pressurized single or multi-element space stations. The project investigates how Carbon Fiber Reinforced Polymer with Aluminum honeycomb core (CFRP-Al/HC) fairing structure used for deploying satellites can be applied to function as space habitats. Large volume, low budget microgravity space stations that can be achieved along with the utilization of a pre-integrated flexible “Plug and Play” rack system prior to launch on the ground. Nomenclature LEO = Low-Earth Orbit CFRP = Carbon Fiber Reinforced Polymer P&P = “Plug & Play” Rack System TRL = Technology readiness level TPS = Thermal Protection System psi = Pounds per square inch IDSS = International Docking System Standard MMOD = Micro-meteoroid orbital debris I. Introduction ITH the necessity of generating return on investments, private space companies are focusing on reusability, Woptimization and commonality of architecture and systems to get to orbit. Efficient and sustainable commerce is proving to be the way the space industry will become a democratized reality. Looking to generate returns in sending satellites into orbit, launch companies are effectively solving the conventional and new methods to reaching Low-Earth Orbit (LEO) and Geostationary Orbit (GTO). In 2018 alone there were more than 110 successful launches to orbit by both international agencies and private companies. Following the growing trend of the space industry, is to be noted that launch and payload capacities are getting larger and costs are decreasing.
    [Show full text]
  • NASA Launch Services Manifest
    Launch Options - Future Options • Constellation Architecture • Commercial Alternatives – SpaceX – Orbital Sciences • EELV Options • DIRECT • Side-Mount Shuttle Derived • Space (or “Senate”) Launch System • Recent Developments © 2012 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F U.S. Future Launch Options MARYLAND 1 ENAE 791 - Launch and Entry Vehicle Design Attribution • Slides shown are from the public record of the deliberations of the Augustine Commission (2009) • Full presentation packages available at http:// www.nasa.gov/ofces/hsf/meetings/index.html U N I V E R S I T Y O F U.S. Future Launch Options MARYLAND 2 ENAE 791 - Launch and Entry Vehicle Design Review of Human Spaceflight Plans Constellation Overview June 17, 2009 Doug Cooke www.nasa.gov Jeff Hanley Constellation Architecture Earth Departure Stage Altair Lunar Lander Orion Ares I Crew Exploration Crew Launch Vehicle Vehicle Ares V Cargo Launch Vehicle Constellation is an Integrated Architecture National Aeronautics and Space Administration 2 Key Exploration Objectives 1. Replace Space Shuttle capability, with Shuttle retirement in 2010 2. To ensure sustainability, development and operations costs must be minimized 3. Develop systems to serve as building blocks for human exploration of the solar system using the Moon as a test bed 4. Design future human spaceflight systems to be significantly safer than heritage systems 5. Provide crew transport to ISS by 2015, to the lunar surface for extended durations by 2020, and to Mars by TBD 6. Separate crew from cargo delivery to orbit 7. Maintain and grow existing national aerospace supplier base 8.
    [Show full text]
  • Fuelling the Future of Mobility: Moon-Produced Space Propellants
    May 2021 Fuelling the future of mobility: Moon-produced space propellants Go Beyond The forthcoming decade is expected to witness a wave of missions to the Moon and Mars, and fuel supply is a major challenge to make these travels economically sustainable. The difference in the required energy to launch from Earth and from the Moon is causing people to reconsider refuelling point positions (e.g. NHRO, Near Halo Rectilinear Orbit) and contemplate using space-produced propellants. A whole production and transport value chain would have to be established on the Moon. Initial investments are sizeable (~$7B) but an economic oportunity for space propellants should exist if launch costs from Earth do not fall too much below current SpaceX standards. Capex optimization and increased scale should further improve the competitiveness of space propellants. Positive outcomes for ’terrestrial‘ applications are also expected to be significant. Fuelling the future of mobility: Moon-produced space propellants The Case for Moon-Produced Propellants The next decade is expected to witness After 2024, NASA expects to set up a a boom in Lunar and Mars exploration. base camp on the moon (’Artemis Base Space-exploration- After the space race of the 60s, there has Camp’) to be a long-term foothold for lunar been an unprecedented resurgence of exploration, as well as a Moon-orbiting driven technologies unmanned Lunar and Mars missions since station (’Gateway’) on the NHRO (Near the end of the 90s, as well as the spread Rectilinear Halo Orbit) being a site for also have very of space programs to various countries.
    [Show full text]
  • List of Private Spaceflight Companies - Wikipedia
    6/18/2020 List of private spaceflight companies - Wikipedia List of private spaceflight companies This page is a list of non-governmental (privately owned) entities that currently offer—or are planning to offer—equipment and services geared towards spaceflight, both robotic and human. List of abbreviations used in this article Contents Commercial astronauts LEO: Low Earth orbit GTO: Geostationary transfer Manufacturers of space vehicles orbit Cargo transport vehicles VTOL: Vertical take-off and Crew transport vehicles landing Orbital SSTO: Single-stage-to-orbit Suborbital TSTO: Two-stage-to-orbit Launch vehicle manufacturers SSTSO: Single-stage-to-sub- Landers, rovers and orbiters orbit Research craft and tech demonstrators Propulsion manufacturers Satellite launchers Space-based economy Space manufacturing Space mining Space stations Space settlement Spacecraft component developers and manufacturers Spaceliner companies See also References External links Commercial astronauts Association of Spaceflight Professionals[1][2] — Astronaut training, applied research and development, payload testing and integration, mission planning and operations support (Christopher Altman, Soyeon Yi)[1][3] Manufacturers of space vehicles Cargo transport vehicles Dry Launch Return Company Launch Length Payload Diameter Generated Automated Spacecraft mass mass Payload (kg) payload S name system (m) volume (m3) (m) power (W) docking (kg) (kg) (kg) 10.0 (pressurized), 3,310 plus 14 2,500 Falcon 9 pressurized or (unpressurized), Dragon 6.1 4,200[4] 10,200 capsule
    [Show full text]