Neuroimaging Evidence Implicating Cerebellum in the Experience of Hypercapnia and Hunger for Air
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2
667 The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2. The Cerebellar Hemispheres Gary A. Press 1 Thin (5-mm) sagittal high-field (1 .5-T) MR images of the cerebellar hemispheres James Murakami2 display (1) the superior, middle, and inferior cerebellar peduncles; (2) the primary white Eric Courchesne2 matter branches to the hemispheric lobules including the central, anterior, and posterior Dean P. Berthoty1 quadrangular, superior and inferior semilunar, gracile, biventer, tonsil, and flocculus; Marjorie Grafe3 and (3) several finer secondary white-matter branches to individual folia within the lobules. Surface features of the hemispheres including the deeper fissures (e.g., hori Clayton A. Wiley3 1 zontal, posterolateral, inferior posterior, and inferior anterior) and shallower sulci are John R. Hesselink best delineated on T1-weighted (short TRfshort TE) and T2-weighted (long TR/Iong TE) sequences, which provide greatest contrast between CSF and parenchyma. Correlation of MR studies of three brain specimens and 11 normal volunteers with microtome sections of the anatomic specimens provides criteria for identifying confidently these structures on routine clinical MR. MR should be useful in identifying, localizing, and quantifying cerebellar disease in patients with clinical deficits. The major anatomic structures of the cerebellar vermis are described in a companion article [1). This communication discusses the topographic relationships of the cerebellar hemispheres as seen in the sagittal plane and correlates microtome sections with MR images. Materials, Subjects, and Methods The preparation of the anatomic specimens, MR equipment, specimen and normal volunteer scanning protocols, methods of identifying specific anatomic structures, and system of This article appears in the JulyI August 1989 issue of AJNR and the October 1989 issue of anatomic nomenclature are described in our companion article [1]. -
Introduction
Cambridge University Press 978-1-316-64693-9 — The Brain and Behavior 4th Edition Excerpt More Information Chapter1 Introduction Introduction Theneuraxisinthehumanrunsasanimaginary straight line through the center of the spinal cord Human behavior is a direct reflection of the anatomy and brainstem (Figure 1.1). At the level of the junc- and physiology of the central nervous system. The goal tion of the midbrain and diencephalon, however, the of the behavioral neuroscientist is to uncover the neu- neuraxis changes orientation and extends from the roanatomical substrates of behavior. Complex mental occipital pole to the frontal pole (Figure 1.1). processes are represented in the brain by their elemen- The neuraxis located above the midbrain is the neur- tary components. Elaborate mental functions consist of axis of the cerebrum and is sometimes called the subfunctions and are constructed from both serial and horizontal neuraxis. A cross-section taken perpendi- parallel interconnections of several brain regions. cular to the horizontal neuraxis is called a coronal An introduction to the nervous system covers general (frontal) section. terminology and the ventricular system. With regard to the neuraxis of the spinal cord and brainstem: Major Subdivisions • Dorsal (posterior) means toward the back. The nervous system is divided anatomically into the • Ventral (anterior) means toward the abdomen. central nervous system (CNS) and the peripheral ner- • Rostral means toward the nose. vous system (PNS). • Caudal means toward the tail. • The CNS is made up of the brain and spinal cord. • The sagittal (midsagittal) plane is the vertical • The PNS consists of the cranial nerves and spinal plane that passes through the neuraxis. -
Nucleus Dorsalis Superficialis (Lateralis Dorsalis) of the Thalamus and the Limbic System in Man
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.7.765 on 1 July 1974. Downloaded from Joutrnal of Neur)ology, Neurosurgery, and Psychiatry, 1974, 37, 765-789 Nucleus dorsalis superficialis (lateralis dorsalis) of the thalamus and the limbic system in man J. M. VAN BUREN AND R. C. BORKE Fr-om the Surgical Neurology Branch, National Institute of Neurological Diseases and Str-oke, National Institutes of Health, Bethesda, Maryland, U.S.A. SYNOPSIS Although the earlier supposition was that the n. dorsalis superficialis (n. lateralis dorsalis) of the thalamus projected to the parietal region, more recent evidence has linked it to the posterior cingulate gyrus and possibly adjacent regions near the splenium of the corpus callosum. An afferent supply from lower levels was in more doubt, although some report had been made of cell and fibre degeneration in the n. dorsalis superficialis after extensive temporal resections and section of the fornix in lower primates. The five human hemispheres of the present study all had lesions of long duration below the level of the splenium of the corpus callosum in the posteromedial temporal region. All showed marked degeneration in the fornix and n. dorsalis superficialis. In favourably Protected by copyright. stained cases, gliotic fascicles could be followed from the descending column of the fornix to the n. dorsalis superficialis via the region lateral to the stria medullaris thalami. The cell loss in the nucleus thus appeared to be an instance of anterograde transynaptic degeneration. These cases provided an interesting instance in which human infarctions provided natural lesions that would have been hard to duplicate in experimental animals. -
The Cerebellum: 3
41 The Cerebellum: 3. Anatomic-MR Correlation in the Coronal Plane Gary A. Press 1 Thin (5-mm) coronal high-field (1.5-T) MR images of four human brain specimens and James W. Murakami2 14 normal volunteers were correlated with myelin-stained microtomic sections of the Eric Courchesne2 specimen cerebella. The primary white-matter tracts innervating several hemispheric Marjorie Grafe3 (posterior quadrangular, superior, and inferior semilunar, gracile, biventer, tonsil) and John R. Hesselink1 vermian (declive, folium, tuber) lobules are oriented perpendicularly to the coronal plane of section and are shown well on proton-density-weighted (long TR/short TE) and T2- weighted (long TR/Iong TE) spin-echo images, which provide excellent contrast between gray and white matter. Several of the surface sulci and fissures of the cerebellar hemispheres (including the superior posterior, horizontal, secondary, and posterolateral fissures) also course perpendicular to the coronal plane and are depicted well on T1- weighted (short TR/short TE) and T2-weighted images, which maximize contrast be tween CSF and parenchyma. The opportunity for side-to-side comparison of the hemi spheres is a distinct advantage of the coronal view. Nevertheless, more obliquely oriented surfaces (preculminate, primary, inferior posterior, inferior anterior, and intra biventral fissures) and deep hemispheric structures (primary white-matter tracts to central, anterior quadrangular, and floccular lobules) may be obscured by volume averaging in the coronal plane; moreover, much of the finer anatomy of the vermis is depicted poorly. The constant surface and deep anatomy of the cerebellum revealed on coronal images in normal volunteers encourages detailed mapping. MR imaging in the coronal plane should be especially useful in identifying, localizing, and quantifying normal and abnormal morphologic differences between the cerebellar hemispheres. -
Anatomy of the Cerebellum Computational Models of Neural
Anatomy of the Cerebellum Computational Models of neural Systems Lecture 2.1 David S. Touretzky September, 2015 First Look cerebellum 09/09/15 Computational Models of Neural Systems 2 Lateral View 09/09/15 Computational Models of Neural Systems 3 Ventral View 09/09/15 Computational Models of Neural Systems 4 Basic Facts About the Cerebellum ● Latin for ªlittle brainº. ● An older brain area, with a simple, regular architecture. ● Makes up 10% of brain volume, but contains over 50% of the brain©s neurons and 4X the neurons of the cerebral cortex. ● Huge fan-in: 40X as many axons enter the cerebellum as exit from it. ● Necessary for smooth, accurate performance of motor actions. ● Example: moving your arm rapidly in a circle. – Involves many muscles in the arm, trunk, and legs. ● People can still move without a cerebellum, but their actions will not be coordinated. There can be overshoots and oscillations. 09/09/15 Computational Models of Neural Systems 5 Cortical Projections to Cerebellum From Strick et al., Annual review of Neuroscience (2009), adapted from Glickstein et al. (1985) J. Comparative Neurology 09/09/15 Computational Models of Neural Systems 6 Three Cerebellar Lobes ● Anterior (divided into 3 lobules) ● Posterior (divided into 6 lobules) ● Flocculonodular 09/09/15 Computational Models of Neural Systems 7 10 Lobules Lingula, Central, Culmen, Declive, Folium, Tuber, Pyramis, Uvula, Tonsil, Flocculonodular 09/09/15 Computational Models of Neural Systems 8 8 of the 10 Lobules 1. Lingula 2. Central Lobule 3. Culmen 4. Declive 5. -
Is Composed from Spinal Cord and Brain
doc. MUDr. Adriana Boleková, PhD. MVDr. Natália Hvizdošová, PhD. CENTRAL NERVOUS SYSTEM – is composed from spinal cord and brain SPINAL CORD cranial border: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 – L2 vertebrae medullary cone – filum terminale (S2) – cauda equina enlargements: cervical enlargement (C5 – Th1): origin of nerves for upper extremity – brachial plexus lumbosacral enlargement (L1 – S2): origin of nerves for lower extremity – lumbosacral plexus external features: anterior median fissure anterolateral sulcus – anterior roots of spinal nn. posterolateral sulcus – posterior roots of spinal nn. posterior median sulcus posterior intermediate sulcus internal features: White matter anterior funiculus (between anterior median fissure and anterolateral sulcus) lateral funiculus (between anterolateral and posterolateral sulci) posterior funiculus (between posterolateral sulcus and posterior median sulcus) fasciculus gracilis fasciculus cuneatus Gray matter anterior (ventral) horn – motor function: Rexed laminae I – VI lateral horn – serves to visceral function: Rexed lamina VII dorsal (posterior) horn – sensory information: Rexed laminae VIII – IX central grey matter – interneurons: around central canal Rexed lamina X Central canal cranially opens into IV. ventricle caudally expands into terminal ventricle vessels of spinal cord: Arteries: spinal brr. from surrounding arteries – anterior radicular aa., posterior radicular aa.: posterior spinal aa. (in posterolateral -
Neuroimaging Evidence Implicating Cerebellum in Support of Sensory Cognitive Processes Associated with Thirst
Neuroimaging evidence implicating cerebellum in support of sensory͞cognitive processes associated with thirst Lawrence M. Parsons*†, Derek Denton‡, Gary Egan‡, Michael McKinley‡, Robert Shade‡, Jack Lancaster*, and Peter T. Fox* *Research Imaging Center, Medical School, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 78284; ‡Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria 3052, Australia; and §Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX 78245-0549 Contributed by Derek A. Denton, December 13, 1999 Recent studies implicate the cerebellum, long considered strictly a and tactile discrimination, kinesthetic sensation, and working motor control structure, in cognitive, sensory, and affective phe- memory, among other processes (6–12). It has been proposed nomenon. The cerebellum, a phylogenetically ancient structure, that the lateral cerebellum may be activated during several has reciprocal ancient connections to the hypothalamus, a struc- motor, perceptual, and cognitive processes specifically because ture important in vegetative functions. The present study investi- of the requirement to monitor and adjust the acquisition of gated whether the cerebellum was involved in vegetative func- sensory data (2, 13). Furthermore, there are reports suggesting tions and the primal emotions engendered by them. Using positron the involvement of posterior vermal cerebellum in affect (14, 15). emission tomography, we examined the effects on the cerebellum The findings implicating the cerebellum in sensory processing of the rise of plasma sodium concentration and the emergence of and emotional states make it of great interest to examine thirst in 10 healthy adults. The correlation of regional cerebral whether the cerebellum has a role in basic vegetative functions blood flow with subjects’ ratings of thirst showed major activation and the primal emotions thus generated, particularly given the in the vermal central lobule. -
On the Function of the Floccular Complex of the Vertebrate Cerebellum: Implications in Paleoneuroanatomy
On the function of the floccular complex of the vertebrate cerebellum: implications in paleoneuroanatomy Sérgio Filipe Ferreira Cardoso Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Doutor Rui Alexandre Ferreira Castanhinha Co-orientadores: Doutor Ricardo Miguel Nóbrega Araújo Prof. Doutor Miguel Telles Antunes On the function of the floccular complex of the vertebrate cerebellum: implications in paleoneuroanatomy Sérgio Filipe Ferreira Cardoso Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Doutor Rui Alexandre Ferreira Castanhinha Co-orientadores: Doutor Ricardo Miguel Nóbrega Araújo Prof. Doutor Miguel Telles Antunes Successfully defended on 18th November 2015 at FCT-UNL Campus, Portugal, before a juri presided over by: Doutor Paulo Alexandre Rodrigues Roque Legoinha and consisting of: Doutor Gabriel José Gonçalves Martins Doutor Rui Alexandre Ferreira Castanhinha I II Direitos de autor - Copyright Os direitos de autor deste documento pertencem a Sérgio Filipe Ferreira Cardoso, à FCT/UNL, à UNL e à UÉ. A Faculdade de Ciências e Tecnologia, a Universidade Nova de Lisboa e a Universidade de Évora têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. Two peer-reviewed abstracts, resulting from this study, were accepted for oral communications (Appendix II). Ferreira-Cardoso, S., Araújo, R., Castanhinha, R., Walsh, S., Martins, R.M.S., Martins, G.G. -
Computed Tomography of the Brain Stem with Intrathecal Metrizamide. Part I: the Normal Brain Stem
Computed Tomography of the Brain Stem with Intrathecal Metrizamide. Part I: The Normal Brain Stem Michel E. Mawad 1 Detailed anatomy of the brain stem and cervicomedullary junction can be accurately A. John Silver demonstrated with metrizamide computed tomographic cisternography. Specifically. Sadek K. Hilal surface anatomy is unusually well outlined. Nine distinct and easily recognizable levels S. Ramaiah Ganti of section are described: four levels in the medulla, three in the pons, and two in the mesencephalon. Surface features of the brain stem, fine details in the floor of the fourth ventricle, cranial nerves, and vascular structures are shown and discussed. Reliably accurate imaging of the brain stem and cervicomedullary junction has now become available using high-resolution computed tomographic (CT) scan ning following intrathecal admini stration of metrizamide [1 -6]. The demonstration of surface features of the brain stem such as the ventral fissure, ventrolateral su lcus, pyramids, and olivary protuberance has become commonplace; suc h details have not been routinely demonstrable in the past. Many authors [1, 2] have already emphasized the value of metrizamide CT cisternography and its superiority to both angiography and pneumoencephalog raphy. These latter procedures rely on subtle displacement of vessels or distor tion of the air-filled fourth ventricle and posterior fossa cisterns. Compared with air, metrizamide spreads much more readily in th e entire subarachnoid space without the problem of meniscus formation or " air lock. " CT permits the sepa ration of the various collections of contrast agent and avoids th e superimposition of features encountered in nontomographic contrast studies. Improved visualization of the details of the brain stem by metrizamide CT has allowed the detection of subtle morphologic changes in the brain stem and subarachnoid space not previously appreciated. -
Roles of the Declive, Folium, and Tuber Cerebellar Vermian Lobules in Sportspeople
JCN Open Access REVIEW pISSN 1738-6586 / eISSN 2005-5013 / J Clin Neurol 2017 Roles of the Declive, Folium, and Tuber Cerebellar Vermian Lobules in Sportspeople In Sung Parka The cerebellum plays vital roles in balance control and motor learning, including in saccadic Nam Joon Leeb c adaptation and coordination. It consists of the vermis and two hemispheres and is anatomically Im Joo Rhyu separated into ten lobules that are designated as I–X. Although neuroimaging and clinical stud- aDepartment of Liberal Arts, ies suggest that functions are compartmentalized within the cerebellum, the function of each Kyungil University, Gyeongsan, Korea cerebellar lobule is not fully understood. Electrophysiological and lesion studies in animals as b Departments of Diagnostic Radiology and well as neuroimaging and lesion studies in humans have revealed that vermian lobules VI and c Anatomy, Korea University VII (declive, folium, and tuber) are critical for controlling postural balance, saccadic eye move- College of Medicine, Seoul, Korea ments, and coordination. In addition, recent structural magnetic resonance imaging studies have revealed that these lobules are larger in elite basketball and short-track speed skaters. Fur- thermore, in female short-track speed skaters, the volume of this region is significantly correlat- ed with static balance. This article reviews the function of vermian lobules VI and VII, focusing on the control of balance, eye movements, and coordination including coordination between the eyes and hands and bimanual coordination. Key Words balance, cerebellum, coordination, saccade. INTRODUCTION The cerebellum, located in the posterior cranial fossa, is a major motor structure of the brain. It controls motor-related functions, such as maintaining balance and posture, and motor learning including coordination of movements through complex regulatory and feedback mechanisms. -
Modulatory Effects of Theta Burst Stimulation on Cerebellar Nonsomatic Functions
Cerebellum (2011) 10:495–503 DOI 10.1007/s12311-010-0230-5 Modulatory Effects of Theta Burst Stimulation on Cerebellar Nonsomatic Functions Asli Demirtas-Tatlidede & Catarina Freitas & Alvaro Pascual-Leone & Jeremy D. Schmahmann Published online: 7 December 2010 # Springer Science+Business Media, LLC 2010 Abstract Clinical and functional imaging studies suggest the Profile of Mood States test. All 36 sessions of cerebellar that the cerebellar vermis is involved in the regulation of a stimulation were tolerated well without serious adverse range of nonsomatic functions including cardiovascular events. Cardiovascular monitoring pointed to a mild but control, thirst, feeding behavior, and primal emotions. significant decrease in heart rate subsequent to vermal Cerebello-hypothalamic circuits have been postulated to stimulation; no changes were detected in systolic or be a potential neuroanatomical substrate underlying this diastolic blood pressure measurements. Subjective ratings modulation. We tested this putative relationship between detected a significant increase in Thirst and a trend toward the cerebellar vermis and nonsomatic functions by stimu- increased Appetite following vermal stimulation. These lating the cerebellum noninvasively via neuronavigated observations are consistent with existing neurophysiological transcranial magnetic stimulation. In this randomized, and neuroimaging data indicating a role for the cerebellum in counter-balanced, within-subject study, intermittent theta the regulation of visceral responses. In conjunction with the burst stimulation (TBS) was applied on three different days modulatory function of the cerebellum, our results suggest a to the vermis and the right and left cerebellar hemispheres role for the vermis in somatovisceral integration likely of 12 right-handed normal subjects with the aim of through cerebello-hypothalamic pathways. -
Identification of Novel Pathways Associated with Patterned
International Journal of Molecular Sciences Article Identification of Novel Pathways Associated with Patterned Cerebellar Purkinje Neuron Degeneration in Niemann-Pick Disease, Type C1 Kyle B. Martin 1, Ian M. Williams 1, Celine V. Cluzeau 1, Antony Cougnoux 1, Ryan K. Dale 2, James R. Iben 3, Niamh X. Cawley 1, Christopher A. Wassif 1 and Forbes D. Porter 1,* 1 Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA; [email protected] (K.B.M.); [email protected] (I.M.W.); [email protected] (C.V.C.); [email protected] (A.C.); [email protected] (N.X.C.); [email protected] (C.A.W.) 2 Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA; [email protected] 3 Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-301-435-4432 Received: 7 December 2019; Accepted: 25 December 2019; Published: 31 December 2019 Abstract: Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by progressive cerebellar ataxia. In NPC1, a defect in cholesterol transport leads to endolysosomal storage of cholesterol and decreased cholesterol bioavailability. Purkinje neurons are sensitive to the loss of NPC1 function.