Is Composed from Spinal Cord and Brain

Total Page:16

File Type:pdf, Size:1020Kb

Is Composed from Spinal Cord and Brain doc. MUDr. Adriana Boleková, PhD. MVDr. Natália Hvizdošová, PhD. CENTRAL NERVOUS SYSTEM – is composed from spinal cord and brain SPINAL CORD cranial border: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 – L2 vertebrae medullary cone – filum terminale (S2) – cauda equina enlargements: cervical enlargement (C5 – Th1): origin of nerves for upper extremity – brachial plexus lumbosacral enlargement (L1 – S2): origin of nerves for lower extremity – lumbosacral plexus external features: anterior median fissure anterolateral sulcus – anterior roots of spinal nn. posterolateral sulcus – posterior roots of spinal nn. posterior median sulcus posterior intermediate sulcus internal features: White matter anterior funiculus (between anterior median fissure and anterolateral sulcus) lateral funiculus (between anterolateral and posterolateral sulci) posterior funiculus (between posterolateral sulcus and posterior median sulcus) fasciculus gracilis fasciculus cuneatus Gray matter anterior (ventral) horn – motor function: Rexed laminae I – VI lateral horn – serves to visceral function: Rexed lamina VII dorsal (posterior) horn – sensory information: Rexed laminae VIII – IX central grey matter – interneurons: around central canal Rexed lamina X Central canal cranially opens into IV. ventricle caudally expands into terminal ventricle vessels of spinal cord: Arteries: spinal brr. from surrounding arteries – anterior radicular aa., posterior radicular aa.: posterior spinal aa. (in posterolateral sulci) – for posterior 1/3 of spinal cord, white mater anterior spinal a. (in anterior median fissure) – for anterior 2/3 of spinal cord, grey mater Veins: internal vertebral venous plexuses opens to external vertebral venous plexuses coverings and spaces of spinal cord: endorhachis – periosteum of vertebral canal epidural space: fatty tissue, internal vertebral venous plexuses dura mater arachnoid mater subarachnoid space: cerebrospinal fluid pia mater BRAIN Rhombencephalon (hindbrain) Myelencephalon (Medulla oblongata) Metencephalon (Pons + Cerebellum) Mesencephalon (midbrain) Prosencephalon (forebrain) Diencephalon Telencephalon Brainstem (Truncus encephali) Medulla oblongata (bulb of spinal cord) Pons Mesencephalon BRAIN STEM Medulla oblongata from pyramidal decussation (crossing of anterior corticospinal tracts) to bulbopontine sulcus (transverse groove between medulla oblongata and pons) longitudinal division: – ventrally: anterior median fissure foramen cecum pyramid: contains fibers of anterior corticospinal tract anterolateral sulcus: exit of hypoglossal n. (CN XII) olive posterolateral sulcus: exit of glossopharyngeal n. (CN IX), vagus n. (CN X), accessory n. (CN XI) inferior cerebellar peduncles: connect medulla oblongata and pons – dorsally: posterior median sulcus fasciculus gracilis – gracile tubercle intermediate sulcus fasciculus cuneatus – cuneate tubercle lower part of rhomboid fossa Pons – cranial continuation of medulla oblongata structures: – ventrally: bulbopontine sulcus: abducent n. (CN V.) basilar sulcus: groove on ventral surface of pons, basilar a. runs within basilar sulcus middle cerebellar peduncles: connect cerebellum to pons pontocerebellar angle (pontocerebellar trigone): exits of facial n. (CN VII) and vestibulocochlear n. (CN VIII) trigeminofacial line: forms lateral border of pons, between exits of trigeminal n. (CN V) and facial n. (CN VII),border between pons and cerebellum – dorsally upper part of rhomboid fossa Rhomboid fossa posterior surface of medulla oblongata and pons, forms floor of fourth ventricle structures: median sulcus of rhomboid fossa: connects central canal to cerebral aqueduct median eminence: laterally to median sulcus of rhomboid fossa sulcus limitans: laterally to median eminence, border between alar and basal plates from developmental period superior part – superior fovea, locus ceruleus, facial colliculus (fibers of facial n. loop around ncl. of abducent n.) intermediate part – medullary striae of rhomboid fossa vestibular area and acoustic tubercle (laterally to sulcus limitans) inferior part – hypoglossal trigone: lies close to median sulcus (ncl. of hypoglossal n.) vagal trigone: laterally to hypoglossal trigone (ncl. of vagus n.) area postrema: caudally to vagal trigone inferior fovea: on top of vagal trigone Mesencephalon through all mesencephalon runs cerebral aqueduct (connects IIIrd and IVth ventricles) superior cerebellar peduncles: connect mesencephalon and cerebellum parts: cerebral peduncle: ventral to cerebral aqueduct – cerebral crus (basis pedunculi): interpeduncular fossa, posterior perforating substance, exit of oculomotor n. (CN III) – tegmentum: substantia nigra, red nucleus tectum: dorsal to cerebral aqueduct – superior colliculi – brachium of superior colliculi (part of visual pathway) – inferior colliculi – brachium of inferior colliculi (part of auditory pathway) – exit of trochlear n. (CN IV) CEREBELLUM vermis: middle unpaired part hemisphere anterior lobe posterior lobe flocculonodular lobe external features: folia of cerebellum fissures of cerebellum: primary fissure: between anterior lobe and posterior lobe posterolateral fissure: between posterior lobe and flocculonodular lobe internal features: cerebellar cortex: gray matter tree of life (arbor vitae): white matter cerebellar nuclei: gray matter fastigial nuclei emboliform nucleus globose nuclei dentate nucleus superior cerebellar peduncles: connect cerebellum to midbrain middle cerebellar peduncles: connect cerebellum to pons inferior cerebellar peduncles: connect cerebellum to medulla oblongata anatomical division of cerebellum: vermis hemisphere lingula – vinculum lingulae central lobule – ala of central lobule culmen – quadrangular lobule primary fissure declive – lobulus simplex folium – superior semilunar lobule horizontal fissure tuber – inferior semilunar lobule pyramis – biventral lobule uvula – tonsil posterolateral fissure nodulus – flocculus DIENCEPHALON located upward and in front of midbrain hypothalamic sulcus: border between sensory and motor parts of diencephalon Hypothalamus primary centre of ANS, located below hypothalamic sulcus structures: mammillary body tuber cinereum infundibulum – hypophysis optic chiasma – optic tract Thalamus – sensory above hypothalamic sulcus, the largest portion of diencephalon 'gate to consciousness', receives all sensory information (except olfactory) structures: Medial surface – interthalamic adhesion (intermediate mass) medullary stria of thalamus – tenia thalami Dorsal surface terminal sulcus – superior thalamostriate v., terminal stria tenia choroidea – choroid plexus of lateral ventricle lamina affixa anterior tubercle pulvinar Metathalamus: medial geniculate body – subcortical auditory centre lateral geniculate body – subcortical visual centre Epithalamus dorsomedially to thalamus, connected with limbic system structures: habenula – habenular trigone habenular commissure – epiphysis (pineal body) posterior commissure TELENCEPHALON cerebral hemispheres: cerebral cortex – gray matter medullary body – white matter basal ganglia – gray matter rhinencephalon and limbic systems Surfaces: superolateral, medial, and inferior surfaces Margins: superior, medial, and inferior margins Lobes: frontal, parietal, occipital, temporal lobes, and insula Poles: frontal, occipital, and temporal poles Cerebral cortex – gyri and sulci Superolateral surface lateral sulcus – anterior, ascending, and posterior rami central sulcus Frontal lobe precentral gyrus precentral sulcus superior frontal gyrus superior frontal sulcus middle frontal gyrus inferior frontal sulcus inferior frontal gyrus – orbital part anterior ramus of lateral sulcus – triangular part ascending ramus of lateral – opercular part posterior ramus of lateral sulcus Parietal lobe postcentral gyrus postcentral sulcus superior parietal lobule intraparietal sulcus inferior parietal lobule – supramarginal gyrus: around end of posterior ramus of lateral sulcus – angular gyrus: around end of superior temporal sulcus Occipital lobe occipital gyri transverse occipital sulcus lunate sulcus preoccipital notch Temporal lobe superior temporal gyrus – transverse temporal gyri superior temporal sulcus middle temporal gyrus inferior temporal sulcus inferior temporal gyrus Insula limen of insula circular sulcus long gyrus – central sulcus of insula short gyri Medial surface of telencephalon medial frontal gyrus paracentral lobule precuneus parietooccipital sulcus cuneus – calcarine sulcus cingulate sulcus cingulate gyrus – isthmus of cingulate gyrus sulcus of corpus callosum corpus callosum – rostrum, genu, body, splenium septum pellucidum – laminae and cave of septum pellucidum fornix – column, body, and crus of fornix paraterminal gyrus subcallosal area Inferior surface of telencephalon straight gyrus olfactory sulcus olfactory bulb – olfactory tract – medial and lateral olfactory striae olfactory trigone – anterior perforating substance optic n. (CN II) – optic chiasma – optic tract orbital gyri – orbital sulci hippocampal sulcus uncus of parahippocampal gyrus – parahippocampal gyrus – lingual gyrus collateral sulcus – rhinal sulcus medial occipitotemporal gyrus occipitotemporal sulcus lateral occipitotemporal gyrus Functional cortical areas: Brodmannꞌs cytoarchitectonic map (1907) motor and sensory Homunculus motor areas – in frontal
Recommended publications
  • Role of Endoscopy in Management of Hydrocephalus
    8 Role of Endoscopy in Management of Hydrocephalus Nasser M. F. El-Ghandour Department of Neurosurgery, Faculty of Medicine, Cairo University Egypt 1. Introduction Management of hydrocephalus is the most beneficial indication for endoscopy. To cure hydrocephalus and thereby render an individual shunt independent is a great achievement. The standard and the most commonly performed endoscopic procedure is endoscopic third ventriculostomy. However, the field of neuroendoscopy is prepared to extend itself beyond just the ventriculostomy procedure. The neuroendoscope plays other important roles in the management of hydrocephalus. Although the literature is focusing mainly on the role of endoscopic third ventriculostomy in the treatment of aqueduct stenosis, the indications for endocopy continues to increase rapidly. With increasing experience, and improved endoscopic instruments, another important role of endoscopy has been emerged in approaching intraventricular tumors which may be completely removed without microsurgical brain dissection (Gaab & Schroeder, 1998). In addition to tumor removal it is usually possible to restore obstructed cerebrospinal fluid pathways using the same approach by performing ventriculostomies, septostomies or stent implantation (Oka et al., 1994). The goal of this chapter is to present the role of endoscopy in the management of hydrocephalus. The following chapter gives a comprehensive review about the indications, outcome, complications, and advantages of endoscopy. Various procedures which can be performed endoscopically for the management of hydrocephalus will be discussed. 2. Historical perspectives Endoscopy was introduced in the neurosurgical speciality at the beginning of this century. In 1910, L’Espinasse used the cystoscope to perform the first registered endoscopic procedure. He explored the lateral ventricle and coagulated the choroid plexus in 2 infants with hydrocephalus (Walker, 2001).
    [Show full text]
  • Brainstem: Midbrainmidbrain
    Brainstem:Brainstem: MidbrainMidbrain 1.1. MidbrainMidbrain –– grossgross externalexternal anatomyanatomy 2.2. InternalInternal structurestructure ofof thethe midbrain:midbrain: cerebral peduncles tegmentum tectum (guadrigeminal plate) Midbrain MidbrainMidbrain –– generalgeneral featuresfeatures location – between forebrain and hindbrain the smallest region of the brainstem – 6-7g the shortest brainstem segment ~ 2 cm long least differentiated brainstem division human midbrain is archipallian – shared general architecture with the most ancient of vertebrates embryonic origin – mesencephalon main functions:functions a sort of relay station for sound and visual information serves as a nerve pathway of the cerebral hemispheres controls the eye movement involved in control of body movement Prof. Dr. Nikolai Lazarov 2 Midbrain MidbrainMidbrain –– grossgross anatomyanatomy dorsal part – tectum (quadrigeminal plate): superior colliculi inferior colliculi cerebral aqueduct ventral part – cerebral peduncles:peduncles dorsal – tegmentum (central part) ventral – cerebral crus substantia nigra Prof. Dr. Nikolai Lazarov 3 Midbrain CerebralCerebral cruscrus –– internalinternal structurestructure CerebralCerebral peduncle:peduncle: crus cerebri tegmentum mesencephali substantia nigra two thick semilunar white matter bundles composition – somatotopically arranged motor tracts: corticospinal } pyramidal tracts – medial ⅔ corticobulbar corticopontine fibers: frontopontine tracts – medially temporopontine tracts – laterally
    [Show full text]
  • Introduction
    Cambridge University Press 978-1-316-64693-9 — The Brain and Behavior 4th Edition Excerpt More Information Chapter1 Introduction Introduction Theneuraxisinthehumanrunsasanimaginary straight line through the center of the spinal cord Human behavior is a direct reflection of the anatomy and brainstem (Figure 1.1). At the level of the junc- and physiology of the central nervous system. The goal tion of the midbrain and diencephalon, however, the of the behavioral neuroscientist is to uncover the neu- neuraxis changes orientation and extends from the roanatomical substrates of behavior. Complex mental occipital pole to the frontal pole (Figure 1.1). processes are represented in the brain by their elemen- The neuraxis located above the midbrain is the neur- tary components. Elaborate mental functions consist of axis of the cerebrum and is sometimes called the subfunctions and are constructed from both serial and horizontal neuraxis. A cross-section taken perpendi- parallel interconnections of several brain regions. cular to the horizontal neuraxis is called a coronal An introduction to the nervous system covers general (frontal) section. terminology and the ventricular system. With regard to the neuraxis of the spinal cord and brainstem: Major Subdivisions • Dorsal (posterior) means toward the back. The nervous system is divided anatomically into the • Ventral (anterior) means toward the abdomen. central nervous system (CNS) and the peripheral ner- • Rostral means toward the nose. vous system (PNS). • Caudal means toward the tail. • The CNS is made up of the brain and spinal cord. • The sagittal (midsagittal) plane is the vertical • The PNS consists of the cranial nerves and spinal plane that passes through the neuraxis.
    [Show full text]
  • The Brain Stem Medulla Oblongata
    Chapter 14 The Brain Stem Medulla Oblongata Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Central sulcus Parietal lobe • embryonic myelencephalon becomes Cingulate gyrus leaves medulla oblongata Corpus callosum Parieto–occipital sulcus Frontal lobe Occipital lobe • begins at foramen magnum of the skull Thalamus Habenula Anterior Epithalamus commissure Pineal gland • extends for about 3 cm rostrally and ends Hypothalamus Posterior commissure at a groove between the medulla and Optic chiasm Mammillary body pons Cerebral aqueduct Pituitary gland Fourth ventricle Temporal lobe • slightly wider than spinal cord Cerebellum Midbrain • pyramids – pair of external ridges on Pons Medulla anterior surface oblongata – resembles side-by-side baseball bats (a) • olive – a prominent bulge lateral to each pyramid • posteriorly, gracile and cuneate fasciculi of the spinal cord continue as two pair of ridges on the medulla • all nerve fibers connecting the brain to the spinal cord pass through the medulla • four pairs of cranial nerves begin or end in medulla - IX, X, XI, XII Medulla Oblongata Associated Functions • cardiac center – adjusts rate and force of heart • vasomotor center – adjusts blood vessel diameter • respiratory centers – control rate and depth of breathing • reflex centers – for coughing, sneezing, gagging, swallowing, vomiting, salivation, sweating, movements of tongue and head Medulla Oblongata Nucleus of hypoglossal nerve Fourth ventricle Gracile nucleus Nucleus of Cuneate nucleus vagus
    [Show full text]
  • Telovelar Approach to the Fourth Ventricle: Microsurgical Anatomy
    J Neurosurg 92:812–823, 2000 Telovelar approach to the fourth ventricle: microsurgical anatomy ANTONIO C. M. MUSSI, M.D., AND ALBERT L. RHOTON, JR., M.D. Department of Neurological Surgery, University of Florida, Gainesville, Florida Object. In the past, access to the fourth ventricle was obtained by splitting the vermis or removing part of the cere- bellum. The purpose of this study was to examine the access to the fourth ventricle achieved by opening the tela cho- roidea and inferior medullary velum, the two thin sheets of tissue that form the lower half of the roof of the fourth ven- tricle, without incising or removing part of the cerebellum. Methods. Fifty formalin-fixed specimens, in which the arteries were perfused with red silicone and the veins with blue silicone, provided the material for this study. The dissections were performed in a stepwise manner to simulate the exposure that can be obtained by retracting the cerebellar tonsils and opening the tela choroidea and inferior medullary velum. Conclusions. Gently displacing the tonsils laterally exposes both the tela choroidea and the inferior medullary velum. Opening the tela provides access to the floor and body of the ventricle from the aqueduct to the obex. The additional opening of the velum provides access to the superior half of the roof of the ventricle, the fastigium, and the superolater- al recess. Elevating the tonsillar surface away from the posterolateral medulla exposes the tela, which covers the later- al recess, and opening this tela exposes the structure forming
    [Show full text]
  • Central Neurocircuits Regulating Food Intake in Response to Gut Inputs—Preclinical Evidence
    nutrients Review Central Neurocircuits Regulating Food Intake in Response to Gut Inputs—Preclinical Evidence Kirsteen N. Browning * and Kaitlin E. Carson Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-717-531-8267 Abstract: The regulation of energy balance requires the complex integration of homeostatic and hedonic pathways, but sensory inputs from the gastrointestinal (GI) tract are increasingly recognized as playing critical roles. The stomach and small intestine relay sensory information to the central nervous system (CNS) via the sensory afferent vagus nerve. This vast volume of complex sensory information is received by neurons of the nucleus of the tractus solitarius (NTS) and is integrated with responses to circulating factors as well as descending inputs from the brainstem, midbrain, and forebrain nuclei involved in autonomic regulation. The integrated signal is relayed to the adjacent dorsal motor nucleus of the vagus (DMV), which supplies the motor output response via the efferent vagus nerve to regulate and modulate gastric motility, tone, secretion, and emptying, as well as intestinal motility and transit; the precise coordination of these responses is essential for the control of meal size, meal termination, and nutrient absorption. The interconnectivity of the NTS implies that many other CNS areas are capable of modulating vagal efferent output, emphasized by the many CNS disorders associated with dysregulated GI functions including feeding. This review will summarize the role of major CNS centers to gut-related inputs in the regulation of gastric function Citation: Browning, K.N.; Carson, with specific reference to the regulation of food intake.
    [Show full text]
  • Nucleus Dorsalis Superficialis (Lateralis Dorsalis) of the Thalamus and the Limbic System in Man
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.7.765 on 1 July 1974. Downloaded from Joutrnal of Neur)ology, Neurosurgery, and Psychiatry, 1974, 37, 765-789 Nucleus dorsalis superficialis (lateralis dorsalis) of the thalamus and the limbic system in man J. M. VAN BUREN AND R. C. BORKE Fr-om the Surgical Neurology Branch, National Institute of Neurological Diseases and Str-oke, National Institutes of Health, Bethesda, Maryland, U.S.A. SYNOPSIS Although the earlier supposition was that the n. dorsalis superficialis (n. lateralis dorsalis) of the thalamus projected to the parietal region, more recent evidence has linked it to the posterior cingulate gyrus and possibly adjacent regions near the splenium of the corpus callosum. An afferent supply from lower levels was in more doubt, although some report had been made of cell and fibre degeneration in the n. dorsalis superficialis after extensive temporal resections and section of the fornix in lower primates. The five human hemispheres of the present study all had lesions of long duration below the level of the splenium of the corpus callosum in the posteromedial temporal region. All showed marked degeneration in the fornix and n. dorsalis superficialis. In favourably Protected by copyright. stained cases, gliotic fascicles could be followed from the descending column of the fornix to the n. dorsalis superficialis via the region lateral to the stria medullaris thalami. The cell loss in the nucleus thus appeared to be an instance of anterograde transynaptic degeneration. These cases provided an interesting instance in which human infarctions provided natural lesions that would have been hard to duplicate in experimental animals.
    [Show full text]
  • Frontal Lobe Anterior Corpora Commissure Quadrigemina Superior Colliculus Optic Chiasm Inferior Colliculus
    Chapter 16 The Nervous System The Brain and Cranial Nerves Lecture Presentation by Steven Bassett Southeast Community College © 2015 Pearson Education, Inc. Introduction • The brain is a complex three-dimensional structure that performs a bewildering array of functions • Think of the brain as an organic computer • However, the brain is far more versatile than a computer • The brain is far more complex than the spinal cord • The brain consists of roughly 20 billion neurons © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain • The CNS begins as a neural tube • The lumen of the tube (neurocoel) is filled with fluid • The lumen of the tube will expand thus forming the various ventricles of the brain • In the fourth week of development, the cephalic area of the neural tube enlarges to form: • Prosencephalon • Mesencephalon • Rhombencephalon © 2015 Pearson Education, Inc. Table 16.1 Development of the Human Brain © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain (continued) • Prosencephalon eventually develops to form: • Telencephalon forms: • Cerebrum • Diencephalon forms: • Epithalamus, thalamus, and hypothalamus. © 2015 Pearson Education, Inc. Table 16.1 Development of the Human Brain © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain (continued) • Mesencephalon • Does not subdivide • Becomes the midbrain © 2015 Pearson Education, Inc. Table 16.1 Development of the Human Brain © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain (continued) • Rhombencephalon • Eventually develops to form: • Metencephalon: forms the pons and cerebellum • Myelencephalon: forms the medulla oblongata © 2015 Pearson Education, Inc.
    [Show full text]
  • Subarachnoid Trabeculae: a Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance Martin M
    Literature Review Subarachnoid Trabeculae: A Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance Martin M. Mortazavi1,2, Syed A. Quadri1,2, Muhammad A. Khan1,2, Aaron Gustin3, Sajid S. Suriya1,2, Tania Hassanzadeh4, Kian M. Fahimdanesh5, Farzad H. Adl1,2, Salman A. Fard1,2, M. Asif Taqi1,2, Ian Armstrong1,2, Bryn A. Martin1,6, R. Shane Tubbs1,7 Key words - INTRODUCTION: Brain is suspended in cerebrospinal fluid (CSF)-filled sub- - Arachnoid matter arachnoid space by subarachnoid trabeculae (SAT), which are collagen- - Liliequist membrane - Microsurgical procedures reinforced columns stretching between the arachnoid and pia maters. Much - Subarachnoid trabeculae neuroanatomic research has been focused on the subarachnoid cisterns and - Subarachnoid trabecular membrane arachnoid matter but reported data on the SAT are limited. This study provides a - Trabecular cisterns comprehensive review of subarachnoid trabeculae, including their embryology, Abbreviations and Acronyms histology, morphologic variations, and surgical significance. CSDH: Chronic subdural hematoma - CSF: Cerebrospinal fluid METHODS: A literature search was conducted with no date restrictions in DBC: Dural border cell PubMed, Medline, EMBASE, Wiley Online Library, Cochrane, and Research Gate. DL: Diencephalic leaf Terms for the search included but were not limited to subarachnoid trabeculae, GAG: Glycosaminoglycan subarachnoid trabecular membrane, arachnoid mater, subarachnoid trabeculae LM: Liliequist membrane ML: Mesencephalic leaf embryology, subarachnoid trabeculae histology, and morphology. Articles with a PAC: Pia-arachnoid complex high likelihood of bias, any study published in nonpopular journals (not indexed PPAS: Potential pia-arachnoid space in PubMed or MEDLINE), and studies with conflicting data were excluded. SAH: Subarachnoid hemorrhage SAS: Subarachnoid space - RESULTS: A total of 1113 articles were retrieved.
    [Show full text]
  • The Choroid Plexus: a Comprehensive Review of Its History, Anatomy, Function, Histology, Embryology, and Surgical Considerations
    Childs Nerv Syst (2014) 30:205–214 DOI 10.1007/s00381-013-2326-y REVIEW PAPER The choroid plexus: a comprehensive review of its history, anatomy, function, histology, embryology, and surgical considerations Martin M. Mortazavi & Christoph J. Griessenauer & Nimer Adeeb & Aman Deep & Reza Bavarsad Shahripour & Marios Loukas & Richard Isaiah Tubbs & R. Shane Tubbs Received: 30 September 2013 /Accepted: 11 November 2013 /Published online: 28 November 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Keywords Choroid plexus . Anatomy . Neurosurgery . Introduction The role of the choroid plexus in cerebrospinal Hydrocephalus fluid production has been identified for more than a century. Over the years, more intensive studies of this structure has lead to a better understanding of the functions, including brain Introduction immunity, protection, absorption, and many others. Here, we review the macro- and microanatomical structure of the Around the walls of the ventricles, folds of pia mater form choroid plexus in addition to its function and embryology. vascularized layers named choroid plexus. This vasculature Method The literature was searched for articles and textbooks along with the overlying ependymal lining of the ventricles for data related to the history, anatomy, physiology, histology, forms the tela choroidea. Sometimes, however, the term embryology, potential functions, and surgical implications of choroid plexus is used to describe the entire structure [1]. The the choroid plexus. All were gathered and summarized narrow cleft, to which the choroids plexus is attached in the comprehensively. ventricles, is defined as the choroidal fissure. [2] The discovery Conclusion We summarize the literature regarding the choroid of the choroid plexus is attributed to Herophilus, who named it plexus and its surgical implications.
    [Show full text]
  • Graduate Neuroanatomy GSBS GS141181
    Page 1 Graduate Neuroanatomy GSBS GS141181 Laboratory Guide Offered and Coordinated by the Department of Neurobiology and Anatomy The University of Texas Health Science Center at Houston. This course guide was adatped from the Medical Neuroscience Laboratory Guide. Nachum Dafny, Ph.D., Course Director; Michael Beierlein, Ph.D., Laboratory Coordinator. Online teaching materials are available at https://oac22.hsc.uth.tmc.edu/courses/neuroanatomy/ Other course information available at http://openwetware.org/wiki/Beauchamp:GraduateNeuroanatomy Contents © 2000-Present University of Texas Health Science Center at Houston. All Rights Reserved. Unauthorized use of contents subject to civil and/or criminal prosecution. Graduate Neuroanatomy : Laboratory Guide Page 2 Table of Contents Overview of the Nervous System ................................................................................................................ 3 Laboratory Exercise #1: External Anatomy of the Brain ......................................................................... 19 Laboratory Exercise #2: Internal Organization of the Brain ..................................................................... 35 Graduate Neuroanatomy : Laboratory Guide Page 3 Overview of the Nervous System Nachum Dafny, Ph.D. The human nervous system is divided into the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS, in turn, is divided into the brain and the spinal cord, which lie in the cranial cavity of the skull and the vertebral canal, respectively. The CNS and the PNS, acting in concert, integrate sensory information and control motor and cognitive functions. The Central Nervous System (CNS) The adult human brain weighs between 1200 to 1500g and contains about one trillion cells. It occupies a volume of about 1400cc - approximately 2% of the total body weight, and receives 20% of the blood, oxygen, and calories supplied to the body. The adult spinal cord is approximately 40 to 50cm long and occupies about 150cc.
    [Show full text]
  • High-Yield Neuroanatomy
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]