High-Yield Neuroanatomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Role of Endoscopy in Management of Hydrocephalus
8 Role of Endoscopy in Management of Hydrocephalus Nasser M. F. El-Ghandour Department of Neurosurgery, Faculty of Medicine, Cairo University Egypt 1. Introduction Management of hydrocephalus is the most beneficial indication for endoscopy. To cure hydrocephalus and thereby render an individual shunt independent is a great achievement. The standard and the most commonly performed endoscopic procedure is endoscopic third ventriculostomy. However, the field of neuroendoscopy is prepared to extend itself beyond just the ventriculostomy procedure. The neuroendoscope plays other important roles in the management of hydrocephalus. Although the literature is focusing mainly on the role of endoscopic third ventriculostomy in the treatment of aqueduct stenosis, the indications for endocopy continues to increase rapidly. With increasing experience, and improved endoscopic instruments, another important role of endoscopy has been emerged in approaching intraventricular tumors which may be completely removed without microsurgical brain dissection (Gaab & Schroeder, 1998). In addition to tumor removal it is usually possible to restore obstructed cerebrospinal fluid pathways using the same approach by performing ventriculostomies, septostomies or stent implantation (Oka et al., 1994). The goal of this chapter is to present the role of endoscopy in the management of hydrocephalus. The following chapter gives a comprehensive review about the indications, outcome, complications, and advantages of endoscopy. Various procedures which can be performed endoscopically for the management of hydrocephalus will be discussed. 2. Historical perspectives Endoscopy was introduced in the neurosurgical speciality at the beginning of this century. In 1910, L’Espinasse used the cystoscope to perform the first registered endoscopic procedure. He explored the lateral ventricle and coagulated the choroid plexus in 2 infants with hydrocephalus (Walker, 2001). -
Bilateral Damage to Auditory Cortex
IS SPEECH A SPECIAL SOUND FOR THE BRAIN? Evidence from disorders How sound gets to the brain Outer ear Middle ear Inner ear Collects sound waves. The Transforms the energy of a Transform the energy of a configuration of the outer sound wave into the internal compressional wave within ear serves to amplify vibrations of the bone the inner ear fluid into structure of the middle ear sound, particularly at and transforms these nerve impulses which can 2000-5000 Hz, a vibrations into a be transmitted to the frequency range that is compressional wave in the brain. important for speech. inner ear. Auditory pathway • Auditory input reaches primary auditory cortex about 10–15 msec after stimulus onset (Liegeois-Chauvel, Musolino, & Chauvel 1991; Celesia, 1976). http://www.sis.pitt.edu/~is1042/html/audtrans.gif Auditory cortex in the superior temporal lobe Primary auditory cortex (A1): Brodmann areas 41 and 42 http://ist-socrates.berkeley.edu/ ~jmp/LO2/6.html Auditory cortex in the superior temporal lobe Primary auditory cortex (A1): Auditory-association cortex (A2): Brodmann areas 41 and 42 Brodmann area 22 http://ist-socrates.berkeley.edu/ ~jmp/LO2/6.html Disorders of auditory processing are rare • Signal from each ear is processed in both hemispheres (contra visual system). • Bilateral damage often necessary. • Generally requires two separate neurological events. DISORDER BEHAVIOR CHARACTERISTIC DAMAGE SITE Cortical Inability to hear sounds without Extensive bilateral damage to auditory deafness apparent damage to the hearing cortex (BAs 41 & 42). apparatus or brain stem abnormality. Auditory Inability to recognize auditorily Damage in auditory association cortex agnosia presented sounds (e.g., coughing, crying) (BAs 22 & 37). -
Cerebellar Ataxia
CEREBELLAR ATAXIA Dr. Waqar Saeed Ziauddin Medical University, Karachi, Pakistan What is Ataxia? ■ Derived from a Greek word, ‘A’ : not, ‘Taxis’ : orderly Ataxia is defined as an inability to maintain normal posture and smoothness of movement. Types of Ataxia ■ Cerebellar Ataxia ■ Sensory Ataxia ■ Vestibular Ataxia Cerebellar Ataxia Cerebrocerebellum Spinocerebellum Vestibulocerebellum Vermis Planning and Equilibrium balance Posture, limb and initiating and posture eye movements movements Limb position, touch and pressure sensation Limb ataxia, Eye movement dysdiadochokinesia, disorders, Truncal and gait Dysmetria dysarthria nystagmus, VOR, ataxia hypotonia postural and gait. Gait ataxia Types of Cerebellar Ataxia • Vascular Acute Ataxia • Medications and toxins • Infectious etiologies • Atypical Infectious agents • Autoimmune disorders • Primary or metastatic tumors Subacute Ataxia • Paraneoplastic cerebellar degeneration • Alcohol abuse and Vitamin deficiencies • Systemic disorders • Autosomal Dominant Chronic • Autosomal recessive Progressive • X linked ataxias • Mitochondrial • Sporadic neurodegenerative diseases Vascular Ataxia ▪ Benedikt Syndrome It is a rare form of posterior circulation stroke of the brain. A lesion within the tegmentum of the midbrain can produce Benedikt Syndrome. Disease is characterized by ipsilateral third nerve palsy with contralateral hemitremor. Superior cerebellar peduncle and/or red nucleus damage in Benedikt Syndrome can further lead in to contralateral cerebellar hemiataxia. ▪ Wallenberg Syndrome In -
Brainstem: Midbrainmidbrain
Brainstem:Brainstem: MidbrainMidbrain 1.1. MidbrainMidbrain –– grossgross externalexternal anatomyanatomy 2.2. InternalInternal structurestructure ofof thethe midbrain:midbrain: cerebral peduncles tegmentum tectum (guadrigeminal plate) Midbrain MidbrainMidbrain –– generalgeneral featuresfeatures location – between forebrain and hindbrain the smallest region of the brainstem – 6-7g the shortest brainstem segment ~ 2 cm long least differentiated brainstem division human midbrain is archipallian – shared general architecture with the most ancient of vertebrates embryonic origin – mesencephalon main functions:functions a sort of relay station for sound and visual information serves as a nerve pathway of the cerebral hemispheres controls the eye movement involved in control of body movement Prof. Dr. Nikolai Lazarov 2 Midbrain MidbrainMidbrain –– grossgross anatomyanatomy dorsal part – tectum (quadrigeminal plate): superior colliculi inferior colliculi cerebral aqueduct ventral part – cerebral peduncles:peduncles dorsal – tegmentum (central part) ventral – cerebral crus substantia nigra Prof. Dr. Nikolai Lazarov 3 Midbrain CerebralCerebral cruscrus –– internalinternal structurestructure CerebralCerebral peduncle:peduncle: crus cerebri tegmentum mesencephali substantia nigra two thick semilunar white matter bundles composition – somatotopically arranged motor tracts: corticospinal } pyramidal tracts – medial ⅔ corticobulbar corticopontine fibers: frontopontine tracts – medially temporopontine tracts – laterally -
Normal Aging Associated Functional Alternations in Auditory
NORMAL AGING ASSOCIATED FUNCTIONAL ALTERNATIONS IN AUDITORY SENSORY AND WORKING MEMORY PROCESSING by YUAN GAO (Under the Direction of Brett A. Clementz) ABSTRACT The purpose of the present study was to determine normal aging associated changes in brain functions during auditory sensory and auditory working memory processing by magneto- encephalography (MEG) measurement. Old and young participants were recruited from data recording. It is found that though there are no significant age associated differences in behavioral performance; normal aging associated brain activations differ between age groups. For brain activations in auditory sensory processing, though both age groups activate the same cortical regions and show a habituation pattern on stimulus rate effects, old participants have larger response magnitude and faster response speed than young participants. For brain activations in auditory working memory, old participants’ brain responses are slower than young participants’ and different cortical areas of two age groups are activated in the same experiment task. The possible underlying mechanisms of these normal aging associated brain responses differences are discussed further. INDEX WORDS: Normal aging, Auditory, Sensory, Working memory, MEG NORMAL AGING ASSOCIATED FUNCTIONAL ALTERNATIONS IN AUDITORY SENSORY AND WORKING MEMORY PROCESSING by YUAN GAO B. S., Beijing Normal University, Beijing, China, 2003 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2006 © 2006 YUAN GAO All Rights Reserved NORMAL AGING ASSOCIATED FUNCTIONAL ALTERNATIONS IN AUDITORY SENSORY AND WORKING MEMORY PROCESSING by YUAN GAO Major Professor: Brett A. Clementz Committee: Jennifer E. McDowell Leonard W. -
The Brain Stem Medulla Oblongata
Chapter 14 The Brain Stem Medulla Oblongata Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Central sulcus Parietal lobe • embryonic myelencephalon becomes Cingulate gyrus leaves medulla oblongata Corpus callosum Parieto–occipital sulcus Frontal lobe Occipital lobe • begins at foramen magnum of the skull Thalamus Habenula Anterior Epithalamus commissure Pineal gland • extends for about 3 cm rostrally and ends Hypothalamus Posterior commissure at a groove between the medulla and Optic chiasm Mammillary body pons Cerebral aqueduct Pituitary gland Fourth ventricle Temporal lobe • slightly wider than spinal cord Cerebellum Midbrain • pyramids – pair of external ridges on Pons Medulla anterior surface oblongata – resembles side-by-side baseball bats (a) • olive – a prominent bulge lateral to each pyramid • posteriorly, gracile and cuneate fasciculi of the spinal cord continue as two pair of ridges on the medulla • all nerve fibers connecting the brain to the spinal cord pass through the medulla • four pairs of cranial nerves begin or end in medulla - IX, X, XI, XII Medulla Oblongata Associated Functions • cardiac center – adjusts rate and force of heart • vasomotor center – adjusts blood vessel diameter • respiratory centers – control rate and depth of breathing • reflex centers – for coughing, sneezing, gagging, swallowing, vomiting, salivation, sweating, movements of tongue and head Medulla Oblongata Nucleus of hypoglossal nerve Fourth ventricle Gracile nucleus Nucleus of Cuneate nucleus vagus -
Supranuclear and Internuclear Ocular Motility Disorders
CHAPTER 19 Supranuclear and Internuclear Ocular Motility Disorders David S. Zee and David Newman-Toker OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF THE MEDULLA THE SUPERIOR COLLICULUS Wallenberg’s Syndrome (Lateral Medullary Infarction) OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF Syndrome of the Anterior Inferior Cerebellar Artery THE THALAMUS Skew Deviation and the Ocular Tilt Reaction OCULAR MOTOR ABNORMALITIES AND DISEASES OF THE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN BASAL GANGLIA THE CEREBELLUM Parkinson’s Disease Location of Lesions and Their Manifestations Huntington’s Disease Etiologies Other Diseases of Basal Ganglia OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN THE PONS THE CEREBRAL HEMISPHERES Lesions of the Internuclear System: Internuclear Acute Lesions Ophthalmoplegia Persistent Deficits Caused by Large Unilateral Lesions Lesions of the Abducens Nucleus Focal Lesions Lesions of the Paramedian Pontine Reticular Formation Ocular Motor Apraxia Combined Unilateral Conjugate Gaze Palsy and Internuclear Abnormal Eye Movements and Dementia Ophthalmoplegia (One-and-a-Half Syndrome) Ocular Motor Manifestations of Seizures Slow Saccades from Pontine Lesions Eye Movements in Stupor and Coma Saccadic Oscillations from Pontine Lesions OCULAR MOTOR DYSFUNCTION AND MULTIPLE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN SCLEROSIS THE MESENCEPHALON OCULAR MOTOR MANIFESTATIONS OF SOME METABOLIC Sites and Manifestations of Lesions DISORDERS Neurologic Disorders that Primarily Affect the Mesencephalon EFFECTS OF DRUGS ON EYE MOVEMENTS In this chapter, we survey clinicopathologic correlations proach, although we also discuss certain metabolic, infec- for supranuclear ocular motor disorders. The presentation tious, degenerative, and inflammatory diseases in which su- follows the schema of the 1999 text by Leigh and Zee (1), pranuclear and internuclear disorders of eye movements are and the material in this chapter is intended to complement prominent. -
Minnesota Ttaps Part 1
MINNESOTA TTAPS PART 1 COURSE NAME: USE OF REFLEXES TO RESOLVE BIOMECHANICS OF CHRONIC NEURO-MUSCULAR-SKELETAL DIAGNOSES COURSE COORDINATOR: ALAN R. BONEBRAKE, DC 630C N CENTRAL EXPY PLANO, TX 75074 COURSE DESCRIPTION: P.A.C.E APPROVED 16 CEs USE OF MYOTATIC, POSTURAL, RECIPROCAL, WITHDRAWAL, AND CROSSED EXTENSOR REFLEXES TO RESOLVE PAIN AND BIOMECHANICS OF CHRONIC NEURO-MUSCULAR- SKELETAL CONDITIONS EDUCATIONAL OBJECTIVES: DISCUSSION OF NORMAL FUNCTION OF MYOTATIC REFLEXES DISCUSSION OF CAUSES OF FACILITATED NERVES RELATING TO WITHDRAWAL REFLEXES CAUSING CHRONIC NEURO-MUSCULAR-SKELETAL CONDITIONS DISCUSSION OF VARIETIES OF WITHDRAWAL REFLEXES DISCUSSION OF AND WORKSHOP OF REINSTATING NORMOTONUS OF HYPERTONIC NERVES AND MUSCLES THROUGH REFLEX INHIBITION UTILIZING MYOTATIC REFLEXES TEACHING METHODS: VERBAL, OVERHEAD PROJECTOR, HANDOUT OF COURSE OUTLINE AND POSSIBLY THE OVERHEADS THAT AREN’T COPYRIGHTED, INSTRUCTOR WATCHING AND CRITIQUING THE STUDENTS PERFORMING THE TREATMENTS RECOMMENDED READING: GUYTON’S TEXTBOOK OF MEDICAL PHYSIOLOGY, 5TH & 9TH ED.; CHUSID’S CORRELATIVE NEUROANATOMY AND FUNCTIONAL NEUROLOGY; MAZION’S ILLUSTRATED MANUAL OF NEURO/ ORTHO/PHYSIOLOGICAL TESTS; THE CHALLENGE OF PAIN BY MELZACK; AND WALL; ACUPUNCTURE, THE ANCIENT CHINESE ART OF HEALING AND HOW IT WORKS SCIENTIFICALLY BY FELIX MANN, MB; CUNNINGHAM’S TEXTBOOK OF ANATOMY, 11TH ED; DORLAND’S ILLUSTRATED MEDICAL DICTIONARY, 25TH ED ~ 1 ~ st 1 hour: All-or-none law The all-or-none law is the principle that the strength by which a nerve or muscle fiber responds to a stimulus is independent of the strength of the stimulus. If that stimulus exceeds the threshold potential, the nerve or muscle fiber will give a complete response; otherwise, there is no response. -
Disrupted Functional Connectivity of the Pain Network in Fibromyalgia
Published Ahead of Print on December 30, 2011 as 10.1097/PSY.0b013e3182408f04 Disrupted Functional Connectivity of the Pain Network in Fibromyalgia IGNACIO CIFRE,PHD, CAROLINA SITGES,PHD, DANIEL FRAIMAN,PHD, MIGUEL A´ NGEL MUN˜ OZ,PHD, PABLO BALENZUELA,PHD, ANA GONZA´ LEZ-ROLDA´ N, MS, MERCEDES MARTI´NEZ-JAUAND, MS, NIELS BIRBAUMER,PHD, DANTE R. CHIALVO,MD, AND PEDRO MONTOYA,PHD Objective: To investigate the impact of chronic pain on brain dynamics at rest. Methods: Functional connectivity was examined in patients with fibromyalgia (FM) (n = 9) and healthy controls (n = 11) by calculating partial correlations between low-frequency blood oxygen levelYdependent fluctuations extracted from 15 brain regions. Results: Patients with FM had more positive and negative correlations within the pain network than healthy controls. Patients with FM displayed enhanced functional connectivity of the anterior cingulate cortex (ACC) with the insula (INS) and basal ganglia ( p values between .01 and .05), the secondary somatosensory area with the caudate (CAU) (p = .012), the primary motor cortex with the supplementary motor area (p = .007), the globus pallidus with the amygdala and superior temporal sulcus (both p values G .05), and the medial prefrontal cortex with the posterior cingulate cortex (PCC) and CAU (both p values G .05). Functional connectivity of the ACC with the amygdala and periaqueductal gray (PAG) matter (p values between .001 and .05), the thalamus with the INS and PAG (both p values G .01), the INS with the putamen (p = .038), the PAG with the CAU (p = .038), the secondary somatosensory area with the motor cortex and PCC (both p values G .05), and the PCC with the superior temporal sulcus (p = .002) was also reduced in FM. -
I AMYLIN MEDIATES BRAINSTEM
AMYLIN MEDIATES BRAINSTEM CONTROL OF HEART RATE IN THE DIVING REFLEX A Dissertation Submitted to The Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Fan Yang May, 2012 Examination committee members: Dr. Nae J Dun (advisor), Dept. of Pharmacology, Temple University Dr. Alan Cowan, Dept. of Pharmacology, Temple University Dr. Lee-Yuan Liu-Chen, Dept. of Pharmacology, Temple University Dr. Gabriela Cristina Brailoiu, Dept. of Pharmacology, Temple University Dr. Parkson Lee-Gau Chong, Dept. of Biochemistry, Temple University Dr. Hreday Sapru (external examiner), Depts. of Neurosciences, Neurosurgery & Pharmacology/Physiology, UMDNJ-NJMS. i © 2012 By Fan Yang All Rights Reserved ii ABSTRACT AMYLIN’S ROLE AS A NEUROPEPTIDE IN THE BRAINSTEM Fan Yang Doctor of Philosophy Temple University, 2012 Doctoral Advisory Committee Chair: Nae J Dun, Ph.D. Amylin, or islet amyloid polypeptide is a 37-amino acid member of the calcitonin peptide family. Amylin role in the brainstem and its function in regulating heart rates is unknown. The diving reflex is a powerful autonomic reflex, however no neuropeptides have been described to modulate its function. In this thesis study, amylin expression in the brainstem involving pathways between the trigeminal ganglion and the nucleus ambiguus was visualized and characterized using immunohistochemistry. Its functional role in slowing heart rate and also its involvement in the diving reflex were elucidated using stereotaxic microinjection, whole-cel patch-clamp, and a rat diving model. Immunohistochemical and tract tracing studies in rats revealed amylin expression in trigeminal ganglion cells, which also contained vesicular glutamate transporter 2 positive. -
Abadie's Sign Abadie's Sign Is the Absence Or Diminution of Pain Sensation When Exerting Deep Pressure on the Achilles Tendo
A.qxd 9/29/05 04:02 PM Page 1 A Abadie’s Sign Abadie’s sign is the absence or diminution of pain sensation when exerting deep pressure on the Achilles tendon by squeezing. This is a frequent finding in the tabes dorsalis variant of neurosyphilis (i.e., with dorsal column disease). Cross References Argyll Robertson pupil Abdominal Paradox - see PARADOXICAL BREATHING Abdominal Reflexes Both superficial and deep abdominal reflexes are described, of which the superficial (cutaneous) reflexes are the more commonly tested in clinical practice. A wooden stick or pin is used to scratch the abdomi- nal wall, from the flank to the midline, parallel to the line of the der- matomal strips, in upper (supraumbilical), middle (umbilical), and lower (infraumbilical) areas. The maneuver is best performed at the end of expiration when the abdominal muscles are relaxed, since the reflexes may be lost with muscle tensing; to avoid this, patients should lie supine with their arms by their sides. Superficial abdominal reflexes are lost in a number of circum- stances: normal old age obesity after abdominal surgery after multiple pregnancies in acute abdominal disorders (Rosenbach’s sign). However, absence of all superficial abdominal reflexes may be of localizing value for corticospinal pathway damage (upper motor neu- rone lesions) above T6. Lesions at or below T10 lead to selective loss of the lower reflexes with the upper and middle reflexes intact, in which case Beevor’s sign may also be present. All abdominal reflexes are preserved with lesions below T12. Abdominal reflexes are said to be lost early in multiple sclerosis, but late in motor neurone disease, an observation of possible clinical use, particularly when differentiating the primary lateral sclerosis vari- ant of motor neurone disease from multiple sclerosis. -
Diabetic Ketoacidosis Associated with Guillain-Barre Syndromewith
CASE REPORT Diabetic Ketoacidosis Associated with Guillain-Barre Syndromewith AutonomicDysfunction Setsuko Fujiwara, Hiroyuki Oshika, Kenzo Motoki, Kenji Kubo*, Yukiaki Ryujin*, Masahiro Shinozaki**, Takuzo Hano*** and Ichiro Nishio*** Abstract Case Report A37-year-old womanwas admitted in a comatosestate, In March 1996, a 37-year-old womanwas admitted to Koyo after exhibiting fever and diarrhea. Diabetic ketoacidosis Hospital in a comatose state after fever, diarrhea and vomiting was diagnosed due to an increased blood glucose level (672 of 1-week duration. Diabetes mellitus was diagnosed in 1990, mg/dl), metabolic addosis, and positive urinary ketone bod- and the patient had taken anti-diabetic drugs for five years, but ies. On the fifth hospital day, despite recovery from the criti- follow-up was discontinued in 1995. She had no episodes of cal state of ketoacidosis, the patient suffered from dyspha- neurological deficit or fainting and was workingas a nurse. gia, hypesthesia and motor weakness, followed by respira- On admission, Kussmaul's breathing, blood pressure of 96/ tory failure. Cerebrospinal fluid analysis was suggestive of 56 mmHg,and a heart rate of 122/min were observed. DKA Guillain-Barre syndrome (GBS). Autonomic dysfunction was diagnosed on the basis of an increased blood glucose level was manifested as tachycardia and mild hypertension in (672 mg/dl), severe metabolic acidosis (arterial blood gas analy- the acute stage. Marked orthostatic hypotension persisted sis: pH 6.703, PCO2 13.8 mmHg, PO2 281.4 mmHg, HCO3 1.7 long after paresis was improved, indicating an atypical clini- jjmol//, BE -36.3 jimol//) and urinary ketone bodies. Other labo- cal course of GBS.