The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Rtms Over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in Subjects with Treatment Refractory Schizophrenia
Effect of rTMS over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in subjects with treatment refractory Schizophrenia Robert J. Buchanan, M.D. Zoltan Nadasdy, Ph.D. James Underhill, Psy.D. Seton Brain and Spine Institute UT Austin Department of Psychology and The Neuroscience Institute. Protocol Document Date: August 23, 2013 NCT02242578 Effect of rTMS over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in subjects with treatment refractory Schizophrenia Robert J. Buchanan, M.D. Zoltan Nadasdy, Ph.D. James Underhill, Psy.D. Seton Brain and Spine Institute UT Austin Department of Psychology and The Neuroscience Institute. Hypotheses: 1) Cerebellar stimulation will cause activation of thalamic and frontal cortical networks associated with attentional processes. These attentional processes are a component of the “distracted” affect of schizophrenia (part of both positive and negative symptoms). 2) Cerebellar stimulation will cause activation of the reticular activating system (RAS), and this will allow the “mutism”, which is a negative symptom, to be partially improved. Purpose of Study, Anticipated Benefits The etiology of negative symptoms in schizophrenia which includes social withdrawal, affective flattening, poor motivation, and apathy is poorly understood. Symptomatic treatment of these negative symptoms with medications and psychotherapy are almost non-existent, whereas treatment of the positive symptoms (hallucinations and delusions) has been more effective with psychotropic medications. New methods of treating negative symptoms are needed. Background and Significance There is increasing evidence from neuropsychological and imaging studies that cerebellar function is relevant not only to motor coordination, but equally to cognition and behavior (M. Rapoport et al 2000). -
Pharnygeal Arch Set - Motor USMLE, Limited Edition > Neuroscience > Neuroscience
CNs 5, 7, 9, 10 - Pharnygeal Arch Set - Motor USMLE, Limited Edition > Neuroscience > Neuroscience PHARYNGEAL ARCH SET, CNS 5, 7, 9, 10 • They are derived from the pharyngeal (aka branchial) arches • They have special motor and autonomic motor functions CRANIAL NERVES EXIT FROM THE BRAINSTEM CN 5, the trigeminal nerve exits the mid/lower pons.* CN 7, the facial nerve exits the pontomedullary junction.* CN 9, the glossopharyngeal nerve exits the lateral medulla.* CN 10, the vagus nerve exits the lateral medulla.* CRANIAL NERVE NUCLEI AT BRAINSTEM LEVELS Midbrain • The motor trigeminal nucleus of CN 5. Nerve Path: • The motor division of the trigeminal nerve passes laterally to enter cerebellopontine angle cistern. Pons • The facial nucleus of CN 7. • The superior salivatory nucleus of CN 7. Nerve Path: • CN 7 sweeps over the abducens nucleus as it exits the brainstem laterally in an internal genu, which generates a small bump in the floor of the fourth ventricle: the facial colliculus • Fibers emanate from the superior salivatory nucleus, as well. Medulla • The dorsal motor nucleus of the vagus, CN 10 • The inferior salivatory nucleus, CN 9 1 / 3 • The nucleus ambiguus, CNs 9 and 10. Nerve Paths: • CNs 9 and 10 exit the medulla laterally through the post-olivary sulcus to enter the cerebellomedullary cistern. THE TRIGEMINAL NERVE, CN 5  • The motor division of the trigeminal nerve innervates the muscles of mastication • It passes ventrolaterally through the cerebellopontine angle cistern and exits through foramen ovale as part of the mandibular division (CN 5[3]). Clinical Correlation - Trigeminal Neuropathy THE FACIAL NERVE, CN 7  • The facial nucleus innervates the muscles of facial expression • It spans from the lower pons to the pontomedullary junction. -
The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2
667 The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2. The Cerebellar Hemispheres Gary A. Press 1 Thin (5-mm) sagittal high-field (1 .5-T) MR images of the cerebellar hemispheres James Murakami2 display (1) the superior, middle, and inferior cerebellar peduncles; (2) the primary white Eric Courchesne2 matter branches to the hemispheric lobules including the central, anterior, and posterior Dean P. Berthoty1 quadrangular, superior and inferior semilunar, gracile, biventer, tonsil, and flocculus; Marjorie Grafe3 and (3) several finer secondary white-matter branches to individual folia within the lobules. Surface features of the hemispheres including the deeper fissures (e.g., hori Clayton A. Wiley3 1 zontal, posterolateral, inferior posterior, and inferior anterior) and shallower sulci are John R. Hesselink best delineated on T1-weighted (short TRfshort TE) and T2-weighted (long TR/Iong TE) sequences, which provide greatest contrast between CSF and parenchyma. Correlation of MR studies of three brain specimens and 11 normal volunteers with microtome sections of the anatomic specimens provides criteria for identifying confidently these structures on routine clinical MR. MR should be useful in identifying, localizing, and quantifying cerebellar disease in patients with clinical deficits. The major anatomic structures of the cerebellar vermis are described in a companion article [1). This communication discusses the topographic relationships of the cerebellar hemispheres as seen in the sagittal plane and correlates microtome sections with MR images. Materials, Subjects, and Methods The preparation of the anatomic specimens, MR equipment, specimen and normal volunteer scanning protocols, methods of identifying specific anatomic structures, and system of This article appears in the JulyI August 1989 issue of AJNR and the October 1989 issue of anatomic nomenclature are described in our companion article [1]. -
The Impact of the Auditory and Visual Environments on Balance in Children with Bilateral Vestibular Loss and Cochlear Implantation
The Impact of the Auditory and Visual Environments on Balance in Children with Bilateral Vestibular Loss and Cochlear Implantation by Nikolaus Ernst Wolter A thesis submitted in conformity with the requirements for the degree of Master of Science Institute of Medical Sciences University of Toronto © Copyright by Nikolaus E Wolter 2014 The Impact of the Auditory and Visual Environments on Balance in Children with Bilateral Vestibular Loss and Cochlear Implantation Nikolaus Ernst Wolter Master of Science Institute of Medical Sciences University of Toronto 2014 Abstract Vestibular impairment is common in congenital sensorineural hearing loss yet children are remarkably able to remain upright. To understanding how these children compensate for their bilateral cochelovestibular loss (BVL) we investigated the effects visual and auditory virtual environments in children with BVL and bilateral cochlear implantation (CI), ages 8.5-17.9 years on balance. Children with BVL had significantly impaired balance compared to typically developing children. Body movement was greater in children with BVL balancing. Children with BVL relied on vision to a greater extent than their typically developing peers. Moving objects in the environment did not alter balance in either group. Balance and postural control improved in children with BVL when CI were on. Children with BVL rely on vision and auditory input through CI in order to balance but this does not restore balance to normal levels. Novel methods are required to reestablish vestibular-type input in this vulnerable population. ii Acknowledgments The completion of this work has depended on the support, guidance and kindness of a tremendous number of people. I cannot adequately express the debt of gratitude I have to all of you for your countless hours of support. -
Molar Tooth Sign of the Midbrain-Hindbrain Junction
American Journal of Medical Genetics 125A:125–134 (2004) Molar Tooth Sign of the Midbrain–Hindbrain Junction: Occurrence in Multiple Distinct Syndromes Joseph G. Gleeson,1* Lesley C. Keeler,1 Melissa A. Parisi,2 Sarah E. Marsh,1 Phillip F. Chance,2 Ian A. Glass,2 John M. Graham Jr,3 Bernard L. Maria,4 A. James Barkovich,5 and William B. Dobyns6** 1Division of Pediatric Neurology, Department of Neurosciences, University of California, San Diego, California 2Division of Genetics and Development, Children’s Hospital and Regional Medical Center, University of Washington, Washington 3Medical Genetics Birth Defects Center, Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 4Department of Child Health, University of Missouri, Missouri 5Departments of Radiology, Pediatrics, Neurology, Neurosurgery, University of California, San Francisco, California 6Department of Human Genetics, University of Chicago, Illinois The Molar Tooth Sign (MTS) is defined by patients with these variants of the MTS will an abnormally deep interpeduncular fossa; be essential for localization and identifica- elongated, thick, and mal-oriented superior tion of mutant genes. ß 2003 Wiley-Liss, Inc. cerebellar peduncles; and absent or hypo- plastic cerebellar vermis that together give KEY WORDS: Joubert; molar tooth; Va´ r- the appearance of a ‘‘molar tooth’’ on axial adi–Papp; OFD-VI; COACH; brain MRI through the junction of the mid- Senior–Lo¨ ken; Dekaban– brain and hindbrain (isthmus region). It was Arima; cerebellar vermis; first described in Joubert syndrome (JS) hypotonia; ataxia; oculomo- where it is present in the vast majority of tor apraxia; kidney cysts; patients with this diagnosis. -
Bilateral Cerebellar Dysfunctions in a Unilateral Meso-Diencephalic Lesion
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.44.4.361 on 1 April 1981. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1981, 44, 361-363 Short report Bilateral cerebellar dysfunctions in a unilateral meso-diencephalic lesion D VON CRAMON From the Max-Planck-Institute for Psychiatry, Munich, Germany SUMMARY The clinical syndrome of a 65-year-old patient with a slit-shaped right-sided meso- diencephalic lesion was analysed. A cerebellar syndrome with limb-kinetic ataxia, intention tremor and hypotonicity in all extremities as well as ataxic dysarthria was found. The disruption of the two cerebello-(rubro)-thalamic pathways probably explained the signs of bilateral cere- bellar dysfunction. The uncrossed ascending limb of the right, and the crossed one of the left brachium conjunctivum may have been damaged by the unilateral lesion extending between caudal midbrain and dorsal thalamus. Protected by copyright. Most of the fibres which constitute the superior general hospital where neurological examination cerebellar peduncle leave the cerebellum and showed bilateral miosis, convergent strabism, vertical originate in cells of the dentate nucleus but also gaze paresis on upward gaze with gaze-paretic nystag- arise from neurons of the globose and emboli- mus, flaccid sensori-motor hemiparesis with increased stretch reflexes and Babinski sign on the left side, forme nuclei. The crossed ascending fibres of the and dysmetric movements of the right upper extremity. brachia conjunctiva constitute the major outflow The CT scan showed an acute haemorrhage in the from the cerebellum, they form the cerebello- right mesodiencephalic area. On 19 February 1979 (rubro)-thalamic and dentato-thalamic tracts.' the patient was admitted to our department. -
Introduction
Cambridge University Press 978-1-316-64693-9 — The Brain and Behavior 4th Edition Excerpt More Information Chapter1 Introduction Introduction Theneuraxisinthehumanrunsasanimaginary straight line through the center of the spinal cord Human behavior is a direct reflection of the anatomy and brainstem (Figure 1.1). At the level of the junc- and physiology of the central nervous system. The goal tion of the midbrain and diencephalon, however, the of the behavioral neuroscientist is to uncover the neu- neuraxis changes orientation and extends from the roanatomical substrates of behavior. Complex mental occipital pole to the frontal pole (Figure 1.1). processes are represented in the brain by their elemen- The neuraxis located above the midbrain is the neur- tary components. Elaborate mental functions consist of axis of the cerebrum and is sometimes called the subfunctions and are constructed from both serial and horizontal neuraxis. A cross-section taken perpendi- parallel interconnections of several brain regions. cular to the horizontal neuraxis is called a coronal An introduction to the nervous system covers general (frontal) section. terminology and the ventricular system. With regard to the neuraxis of the spinal cord and brainstem: Major Subdivisions • Dorsal (posterior) means toward the back. The nervous system is divided anatomically into the • Ventral (anterior) means toward the abdomen. central nervous system (CNS) and the peripheral ner- • Rostral means toward the nose. vous system (PNS). • Caudal means toward the tail. • The CNS is made up of the brain and spinal cord. • The sagittal (midsagittal) plane is the vertical • The PNS consists of the cranial nerves and spinal plane that passes through the neuraxis. -
Facial Nerve Disorders Cn7 (1)
FACIAL NERVE DISORDERS CN7 (1) Facial Nerve Disorders Last updated: January 18, 2020 FACIAL PALSY .......................................................................................................................................... 1 ETIOLOGY .............................................................................................................................................. 1 GUIDE TO LESION SITE LOCALIZATION ................................................................................................... 2 CLINICAL GRADING OF SEVERITY .......................................................................................................... 2 House-Brackmann grading scale ........................................................................................... 2 CLINICO-ANATOMICAL SYNDROMES ..................................................................................................... 2 Supranuclear (Central) Palsy ................................................................................................. 2 Nuclear Lesion ...................................................................................................................... 3 Cerebellopontine Angle Syndrome ....................................................................................... 3 Facial Canal Syndrome ......................................................................................................... 3 Stylomastoid Foramen Syndrome ........................................................................................ -
Telovelar Approach to the Fourth Ventricle: Microsurgical Anatomy
J Neurosurg 92:812–823, 2000 Telovelar approach to the fourth ventricle: microsurgical anatomy ANTONIO C. M. MUSSI, M.D., AND ALBERT L. RHOTON, JR., M.D. Department of Neurological Surgery, University of Florida, Gainesville, Florida Object. In the past, access to the fourth ventricle was obtained by splitting the vermis or removing part of the cere- bellum. The purpose of this study was to examine the access to the fourth ventricle achieved by opening the tela cho- roidea and inferior medullary velum, the two thin sheets of tissue that form the lower half of the roof of the fourth ven- tricle, without incising or removing part of the cerebellum. Methods. Fifty formalin-fixed specimens, in which the arteries were perfused with red silicone and the veins with blue silicone, provided the material for this study. The dissections were performed in a stepwise manner to simulate the exposure that can be obtained by retracting the cerebellar tonsils and opening the tela choroidea and inferior medullary velum. Conclusions. Gently displacing the tonsils laterally exposes both the tela choroidea and the inferior medullary velum. Opening the tela provides access to the floor and body of the ventricle from the aqueduct to the obex. The additional opening of the velum provides access to the superior half of the roof of the ventricle, the fastigium, and the superolater- al recess. Elevating the tonsillar surface away from the posterolateral medulla exposes the tela, which covers the later- al recess, and opening this tela exposes the structure forming -
The Clinical Treatment and Outcome of Cerebellopontine Angle
www.nature.com/scientificreports OPEN The clinical treatment and outcome of cerebellopontine angle medulloblastoma: a retrospective study of 15 cases Tao Wu 1,4, Pei-ran Qu3,4, Shun Zhang2, Shi-wei Li1, Jing Zhang1, Bo Wang2, Pinan Liu 1,2, Chun-de Li1,2 & Fu Zhao 1,2 ✉ Medulloblastoma (MB) is the most common malignant pediatric brain tumor arising in the cerebellum or the 4th ventricle. Cerebellopontine angle (CPA) MBs are extremely rare tumors, with few cases previously described. In this study, we sought to describe the clinical characteristics, molecular features and outcomes of CPA MB. We retrospectively reviewed a total of 968 patients who had a histopathological diagnosis of MB at the Beijing Neurosurgical Institute between 2002 and 2016. The demographic characteristics, clinical manifestations and radiological features were retrospectively analyzed. Molecular subgroup was evaluated by the expression profling array or immunohistochemistry. Overall survival (OS) and progression-free survival (PFS) were calculated using Kaplan-Meier analysis. In this study, 15 patients (12 adults and 3 children) with a mean age at diagnosis of 25.1 years (range 4–45 years) were included. CPA MBs represented 1.5% of the total cases of MB (15/968). Two molecular subgroups were identifed in CPA MBs: 5 WNT-MBs (33%) and 10 SHH-MBs (67%). CPA WNT-MBs had the extracerebellar growth with the involvement of brainstem (P = 0.002), whereas CPA SHH-MBs predominantly located within the cerebellar hemispheres (P = 0.004). The 5-year OS and PFS rates for CPA MB were 80.0% ± 10.3% and 66.7% ± 12.2%, respectively. -
Differentiation of the Cerebellum 2463
Development 128, 2461-2469 (2001) 2461 Printed in Great Britain © The Company of Biologists Limited 2001 DEV1660 Inductive signal and tissue responsiveness defining the tectum and the cerebellum Tatsuya Sato, Isato Araki‡ and Harukazu Nakamura* Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Seiryo-machi 4-1, Aoba-ku, Sendai 980- 8575, Japan ‡Present address: Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany *Author for correspondence (e-mail: [email protected]) Accepted 11 April 2001 SUMMARY The mes/metencephalic boundary (isthmus) has an Fgf8b repressed Otx2 expression, but upregulated Gbx2 and organizing activity for mesencephalon and metencephalon. Irx2 expression in the mesencephalon. As a result, Fgf8b The candidate signaling molecule is Fgf8 whose mRNA is completely changed the fate of the mesencephalic alar plate localized in the region where the cerebellum differentiates. to cerebellum. Quantitative analysis showed that Fgf8b Responding to this signal, the cerebellum differentiates in signal is 100 times stronger than Fgf8a signal. Co- the metencephalon and the tectum differentiates in the transfection of Fgf8b with Otx2 indicates that Otx2 is a key mesencephalon. Based on the assumption that strong Fgf8 molecule in mesencephalic generation. We have shown by signal induces the cerebellum and that the Fgf8b signal is RT-PCR that both Fgf8a and Fgf8b are expressed, Fgf8b stronger than that of Fgf8a, we carried out experiments to expression prevailing in the isthmic region. The results all misexpress Fgf8b and Fgf8a in chick embryos. Fgf8a did not support our working hypothesis that the strong Fgf8 signal affect the expression pattern of Otx2, Gbx2 or Irx2. -
Anatomy of Cerebellum Rajasekhar Sajja Srinivasa Siva Naga
Chapter Anatomy of Cerebellum Rajasekhar Sajja Srinivasa Siva Naga Abstract The cerebellum receives inputs from spinal cord, cerebrum, brainstem, and sensory systems of the body and controls the motor system of the body. The Cerebellum harmonizes the voluntary motor activities such as maintenance of posture and equilibrium, and coordination of voluntary muscular activity including learning of the motor behaviours. Cerebellum occupies posterior cranial fossa, and it is relatively a small part of the brain. It weighs about one tenth of the total brain. Cerebellar lesions do not cause motor or cognitive impairment. However, they cause slowing of movements, tremors, lack of equilibrium/balance. Complex motor action becomes shaky and faltering. Keywords: Cerebellum, Spinocerebellar ataxia, Cortex, Medulla, Peduncles, Nuclei 1. Introduction The Cerebellum is the largest part of the hindbrain and develops from the alar plates (rhombic lips) of the metencephalon. It lies between the temporal and occipital lobes of cerebrum and the brainstem in the posterior cranial fossa. It is attached to the posterior surface of the brainstem by three large white fibre bundles. It is attached to the midbrain by superior cerebel- lar peduncle, pons by middle cerebellar peduncle, and medulla by inferior cerebellar peduncle. Cerebellum is concerned with three primary functions: a) coordination of voluntary motor functions of the body initiated by the cerebral cortex at an uncon- scious level, b) maintenance of balance, and posture, c) Maintenance of muscle tone. It receives and integrates the sensory inputs from the cerebrum and the spinal cord necessary for a planning and smooth coordination of the movements [1]. Cerebellar lesions result in irregular and uncoordinated, awkward intentional muscle movements.