Computed Tomography of the Brain Stem with Intrathecal Metrizamide. Part I: the Normal Brain Stem

Total Page:16

File Type:pdf, Size:1020Kb

Computed Tomography of the Brain Stem with Intrathecal Metrizamide. Part I: the Normal Brain Stem Computed Tomography of the Brain Stem with Intrathecal Metrizamide. Part I: The Normal Brain Stem Michel E. Mawad 1 Detailed anatomy of the brain stem and cervicomedullary junction can be accurately A. John Silver demonstrated with metrizamide computed tomographic cisternography. Specifically. Sadek K. Hilal surface anatomy is unusually well outlined. Nine distinct and easily recognizable levels S. Ramaiah Ganti of section are described: four levels in the medulla, three in the pons, and two in the mesencephalon. Surface features of the brain stem, fine details in the floor of the fourth ventricle, cranial nerves, and vascular structures are shown and discussed. Reliably accurate imaging of the brain stem and cervicomedullary junction has now become available using high-resolution computed tomographic (CT) scan­ ning following intrathecal admini stration of metrizamide [1 -6]. The demonstration of surface features of the brain stem such as the ventral fissure, ventrolateral su lcus, pyramids, and olivary protuberance has become commonplace; suc h details have not been routinely demonstrable in the past. Many authors [1, 2] have already emphasized the value of metrizamide CT cisternography and its superiority to both angiography and pneumoencephalog­ raphy. These latter procedures rely on subtle displacement of vessels or distor­ tion of the air-filled fourth ventricle and posterior fossa cisterns. Compared with air, metrizamide spreads much more readily in th e entire subarachnoid space without the problem of meniscus formation or " air lock. " CT permits the sepa­ ration of the various collections of contrast agent and avoids th e superimposition of features encountered in nontomographic contrast studies. Improved visualization of the details of the brain stem by metrizamide CT has allowed the detection of subtle morphologic changes in the brain stem and subarachnoid space not previously appreciated. Di stortion of th e brain stem by tortuous vessels, focal atrophic changes, and early changes of mass lesions are good examples of the value of this method. A detailed famili arity with the normal anatomy of the brain stem, cerebellum , and fourth ventricle on CT cisternography is essential in order to fully utilize th e diagnostic capability of metrizamide CT. Materials and Methods From those patients who had a metrizamide CT c isternogram at the New York Neurolog­ This article appears in the January / February ical Institute in an 18 month period for a variety of indications, we analyze the morphology 1983 issue of AJNR and the March 1983 issue of the brain stem in 30 who had no c linical signs or symptoms of brain stem involvement. of AJR. Metrizamide was introduced in the subarachnoid space through a lumbar puncture or Received March 2, 1982; accepted after revi­ more often through a C1-C2 puncture, wh ich allowed us to use a lesser amount of contrast sion July 23, 1982. medium. The average amount used was 8 ml of contrast material at 170 mg / ml, except in 'All aulhors: Department of Radiology, Neuro­ children. The use of metrizamide in children is not recommended by the manufacturer, logical In stilule, Columbia-Presbyteri an Medical however, in our experience, the diagnosti c va lue of this method may outweigh the potential Center, 7 10 W. 168th St., New York, NY 10032. Address reprint requests to M . E. Mawad . ri sks of the contrast agent in difficult cases. Scanning was performed in the supine position in the hour after injection. All patients were scanned on an 0450 Pfizer high-reSOlution AJNR 4:1-11 , January/ February 1983 0195-6108/ 83/ 0401-0001 $00.00 scanner using primary reconstru c ti on of an area of interest measuring about 10 cm in © Ameri can Roentgen Ray Society diameter on a 512 x 5 12 matri x. Th e usual sli ce thickness was 5 mm , bu t we often used 2 MAWAD ET AL. AJNR:4. Jan./Feb. 1983 Optic Chiasma and Tracts Infundibulum of III Ventricle Cerebral Peduncle Mamillary Bodies 9 Interpeduncular Fossa Oculomotor Nerve 8 Trochlear Nerve 7 Pons Trigeminal Nerve 6 Middle Cerebellar Peduncle Abducens Nerve 5 Facial and Vestibulocochlear Nerves Glossopharyngeal Nerve Cerebellar Flocculus Lateral Recess of IV Ventricle 3 Vagus Nerve - - - / Spinal Accessory Nerve 2 Hypoglossal Nerve ------./ Olivary Eminence Pyramid of the Medulla Pyramidal Decussation Ventral Median Fissure Antero Lateral Sulcus Lateral Funiculus A Fi g. 1.- Anteri or (A) and posterior (6) views of brain stem show th e nine tevets of section. The plane of section is usually higher anteriorly than posteriorl y. thinner sli ces of 2- 4 mm ; the average increment between two 2. transition from closed to open me­ consecutive slices was 5 mm . Th e angle of secti on was th at used dulla (obex; foramen of Ma­ for the standard examinati on of the brain , about 10°-15° inclinati on gendie) above the canthomeatalline. The anatomic description in this work 3. open medulla (olivary nu cleus; floor refers to characteristic secti ons most commonly encountered. Of­ of fourth ventricle) ten, however, because of difference in skull configurati on or degree 4. medullary pontine junction of angulati on, the plane of section is not precisely reproduced , and one may obtain an image combining the anteri or aspect of one Pons: 5. lower pons (seventh and eighth standard level of th e brain stem with the posterior aspect of an nerves) adjacent one. The description of coronal sections will be the subject 6 . mid pons (fifth nerve) of a future report. 7. isthmus of the pons Mesencephalon : 8. inferior colliculus 9 . superior colliculus (third nerve) Results: Normal Brain Stem and Surrounding Spaces We subdivide the brain stem into th e following nine distinct 1. Closed Medulla (fig . 2) and recognizabl e levels (fig. 1): This extends from the first cervi cal roots, which are usu­ Medulla: 1. closed medulla (C1 roots to obex) ally slightly below th e foramen magnum, to the obex. In AJ NR:4 . Jan./Feb. 1983 CT OF NORMAL BRAIN STEM 3 ~~~----\---- Pineal Gland ~-r--+--ri-- Pu Ivi nar 9 JII',"""",-,!'" i~=~~~~ Superior Colliculus 8 Inferior Colliculus ~---- Trochlear Nerve 7 /::::':::!I:lF-<--~"""------ Superior Medullary Velum 6 ."..--4Ir----- - Superior Cerebellar Peduncle ~;----- Middle Cerebellar Peduncle 5 ./""- -\----- Inferior Cerebellar Peduncle '><...,.:::...l,--- i---- Median Sulcus l Floor of IV 4 ~k-----'r--+---- Medial Emminencel Ventricle .r"":r~""'''''''----- Lateral Recess of IV Ventricle ~F-"f--:,----'~!I---- Inferior Medullary Velum Cuneate Nucleus Foramen of Magendie '-------- Obex '--------Gracile Nucleus .......f.--j '-fl--------- Dorsal Median Fissure ftH-.---------Gracile and Cuneate Fasciculi ~+-------- Postero Lateral Sulcus ,..,.---- ---- Lateral Funiculus B cross section, the closed medulla has a pear-shaped ap­ a normal variant as it does not correlate with any underlying pearance with a narrow ventral surface featuring a short, pathology. often oblique, median fissure and a broader, dorsal surface with a less pronounced dorsal median fissure. Anteriorly, on 2. Transitional Medulla (fig. 3) either side of the ventral fissure are two eminences that correspond to the pyramids of the medulla (largely formed Starting at the obex, the posteri or aspect of the med ulla by the corticospinal tracts). The ventrolateral sulcus is a is cleft by a narrow midline groove th at corresponds to the very shallow groove posterior and lateral to the pyramidal most caudal part of the fourth ventricle and gives to th e eminence. The vertebral arteries usually lie close to this medulla the posteriorly open appearance on cross section . ventrolateral sulcus. The lateral and posterior medullary The obex is the point of transition from the closed medulla segments of the posterior inferior cerebellar artery are often to what we choose to call th e open medulla. Th e lower, seen lateral and posterior to the medulla within the medullary open med ulla is a short segment, only a few millimeters cistern . The hypoglossal and accessory nerves arise re­ thick, extending from the obex to the upper margin of the spectively from the ventrolateral sulcus and the lateral sur­ foramen Magendie. The latter foramen is sometimes seen in face of the medulla, but they are very rarely seen on metri­ the midline bounded on both sides by a thin membrane that zamide CT scanning. comprises the ependyma and the choroid. Lateral to th is On several occasions, we have found an axial rotation of membrane are the em in ences of the gracile and cuneate the medulla in a well positioned scan; we consider this to be nuclei. Anteri orly, the cross section at this level features th e 4 MAWAD ET AL. AJNR:4 , Jan./ Feb. 1983 LATERAL FUNICULUS OF THE MEOULLA DORSAL COLUMNS DORSAL MEDIAN FISSUR E A B Fig. 2. -Level 1. Closed medulla at level of foramen magnum is pear-shaped and usually somewhat rotated. olivary emin ence, which is lateral to the pyramid and cor­ ventral fissure, the open medulla has two: the medullary responds to a large underlying cellular structure called the pyramid medially and the olivary eminence laterally. The inferior olivary nucleus. The anterior surface characteristics preolivary sulcus separates the olivary eminence from the of the medulla are better discussed on the following higher pyramid. Lateral to the olive is the shallow postolivary sul­ section where the olivary nucleus is somewhat more prom­ cus, which gives to the open medulla its laterally biconcave inent. symmetry. The dorsal aspect of the medulla is now formed by the floor of the fourth ventricle where one can sometimes recognize the eminences of the nuclei of the twelfth, tenth, 3 . Open Medulla (fig. 4) and eighth nerves located on either side of the median Above th e foramen of Magendie, the medulla (which is sulcus in this order from medial to lateral. The roof of the now open posteriorly) has, on cross section, a characteristic fourth ventricle is formed by the inferior medullary velum, laterally biconcave appearance due to the shallow postoli­ which can be identified on CT.
Recommended publications
  • Pharnygeal Arch Set - Motor USMLE, Limited Edition > Neuroscience > Neuroscience
    CNs 5, 7, 9, 10 - Pharnygeal Arch Set - Motor USMLE, Limited Edition > Neuroscience > Neuroscience PHARYNGEAL ARCH SET, CNS 5, 7, 9, 10 • They are derived from the pharyngeal (aka branchial) arches • They have special motor and autonomic motor functions CRANIAL NERVES EXIT FROM THE BRAINSTEM CN 5, the trigeminal nerve exits the mid/lower pons.* CN 7, the facial nerve exits the pontomedullary junction.* CN 9, the glossopharyngeal nerve exits the lateral medulla.* CN 10, the vagus nerve exits the lateral medulla.* CRANIAL NERVE NUCLEI AT BRAINSTEM LEVELS Midbrain • The motor trigeminal nucleus of CN 5. Nerve Path: • The motor division of the trigeminal nerve passes laterally to enter cerebellopontine angle cistern. Pons • The facial nucleus of CN 7. • The superior salivatory nucleus of CN 7. Nerve Path: • CN 7 sweeps over the abducens nucleus as it exits the brainstem laterally in an internal genu, which generates a small bump in the floor of the fourth ventricle: the facial colliculus • Fibers emanate from the superior salivatory nucleus, as well. Medulla • The dorsal motor nucleus of the vagus, CN 10 • The inferior salivatory nucleus, CN 9 1 / 3 • The nucleus ambiguus, CNs 9 and 10. Nerve Paths: • CNs 9 and 10 exit the medulla laterally through the post-olivary sulcus to enter the cerebellomedullary cistern. THE TRIGEMINAL NERVE, CN 5&NBSP; • The motor division of the trigeminal nerve innervates the muscles of mastication • It passes ventrolaterally through the cerebellopontine angle cistern and exits through foramen ovale as part of the mandibular division (CN 5[3]). Clinical Correlation - Trigeminal Neuropathy THE FACIAL NERVE, CN 7&NBSP; • The facial nucleus innervates the muscles of facial expression • It spans from the lower pons to the pontomedullary junction.
    [Show full text]
  • The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2
    667 The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2. The Cerebellar Hemispheres Gary A. Press 1 Thin (5-mm) sagittal high-field (1 .5-T) MR images of the cerebellar hemispheres James Murakami2 display (1) the superior, middle, and inferior cerebellar peduncles; (2) the primary white­ Eric Courchesne2 matter branches to the hemispheric lobules including the central, anterior, and posterior Dean P. Berthoty1 quadrangular, superior and inferior semilunar, gracile, biventer, tonsil, and flocculus; Marjorie Grafe3 and (3) several finer secondary white-matter branches to individual folia within the lobules. Surface features of the hemispheres including the deeper fissures (e.g., hori­ Clayton A. Wiley3 1 zontal, posterolateral, inferior posterior, and inferior anterior) and shallower sulci are John R. Hesselink best delineated on T1-weighted (short TRfshort TE) and T2-weighted (long TR/Iong TE) sequences, which provide greatest contrast between CSF and parenchyma. Correlation of MR studies of three brain specimens and 11 normal volunteers with microtome sections of the anatomic specimens provides criteria for identifying confidently these structures on routine clinical MR. MR should be useful in identifying, localizing, and quantifying cerebellar disease in patients with clinical deficits. The major anatomic structures of the cerebellar vermis are described in a companion article [1). This communication discusses the topographic relationships of the cerebellar hemispheres as seen in the sagittal plane and correlates microtome sections with MR images. Materials, Subjects, and Methods The preparation of the anatomic specimens, MR equipment, specimen and normal volunteer scanning protocols, methods of identifying specific anatomic structures, and system of This article appears in the JulyI August 1989 issue of AJNR and the October 1989 issue of anatomic nomenclature are described in our companion article [1].
    [Show full text]
  • Basal Ganglia & Cerebellum
    1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte.
    [Show full text]
  • The Interpeduncular Fossa Approach for Resection of Ventromedial Midbrain Lesions
    TECHNICAL NOTE J Neurosurg 128:834–839, 2018 The interpeduncular fossa approach for resection of ventromedial midbrain lesions *M. Yashar S. Kalani, MD, PhD, Kaan Yağmurlu, MD, and Robert F. Spetzler, MD Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona The authors describe the interpeduncular fossa safe entry zone as a route for resection of ventromedial midbrain le- sions. To illustrate the utility of this novel safe entry zone, the authors provide clinical data from 2 patients who under- went contralateral orbitozygomatic transinterpeduncular fossa approaches to deep cavernous malformations located medial to the oculomotor nerve (cranial nerve [CN] III). These cases are supplemented by anatomical information from 6 formalin-fixed adult human brainstems and 4 silicone-injected adult human cadaveric heads on which the fiber dissection technique was used. The interpeduncular fossa may be incised to resect anteriorly located lesions that are medial to the oculomotor nerve and can serve as an alternative to the anterior mesencephalic safe entry zone (i.e., perioculomotor safe entry zone) for resection of ventromedial midbrain lesions. The interpeduncular fossa safe entry zone is best approached using a modi- fied orbitozygomatic craniotomy and uses the space between the mammillary bodies and the top of the basilar artery to gain access to ventromedial lesions located in the ventral mesencephalon and medial to the oculomotor nerve. https://thejns.org/doi/abs/10.3171/2016.9.JNS161680 KEY WORDS brainstem surgery; interpeduncular fossa; mesencephalon; safe entry zone; surgical technique; ventromedial midbrain HE human brainstem serves as a relay center for the pyramidal tract, which is located in the middle three- ascending and descending fiber tracts that are es- fifths of the cerebral peduncle, to remove ventral lesions sential for motor and sensory control.
    [Show full text]
  • Bilateral Cerebellar Dysfunctions in a Unilateral Meso-Diencephalic Lesion
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.44.4.361 on 1 April 1981. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1981, 44, 361-363 Short report Bilateral cerebellar dysfunctions in a unilateral meso-diencephalic lesion D VON CRAMON From the Max-Planck-Institute for Psychiatry, Munich, Germany SUMMARY The clinical syndrome of a 65-year-old patient with a slit-shaped right-sided meso- diencephalic lesion was analysed. A cerebellar syndrome with limb-kinetic ataxia, intention tremor and hypotonicity in all extremities as well as ataxic dysarthria was found. The disruption of the two cerebello-(rubro)-thalamic pathways probably explained the signs of bilateral cere- bellar dysfunction. The uncrossed ascending limb of the right, and the crossed one of the left brachium conjunctivum may have been damaged by the unilateral lesion extending between caudal midbrain and dorsal thalamus. Protected by copyright. Most of the fibres which constitute the superior general hospital where neurological examination cerebellar peduncle leave the cerebellum and showed bilateral miosis, convergent strabism, vertical originate in cells of the dentate nucleus but also gaze paresis on upward gaze with gaze-paretic nystag- arise from neurons of the globose and emboli- mus, flaccid sensori-motor hemiparesis with increased stretch reflexes and Babinski sign on the left side, forme nuclei. The crossed ascending fibres of the and dysmetric movements of the right upper extremity. brachia conjunctiva constitute the major outflow The CT scan showed an acute haemorrhage in the from the cerebellum, they form the cerebello- right mesodiencephalic area. On 19 February 1979 (rubro)-thalamic and dentato-thalamic tracts.' the patient was admitted to our department.
    [Show full text]
  • Introduction
    Cambridge University Press 978-1-316-64693-9 — The Brain and Behavior 4th Edition Excerpt More Information Chapter1 Introduction Introduction Theneuraxisinthehumanrunsasanimaginary straight line through the center of the spinal cord Human behavior is a direct reflection of the anatomy and brainstem (Figure 1.1). At the level of the junc- and physiology of the central nervous system. The goal tion of the midbrain and diencephalon, however, the of the behavioral neuroscientist is to uncover the neu- neuraxis changes orientation and extends from the roanatomical substrates of behavior. Complex mental occipital pole to the frontal pole (Figure 1.1). processes are represented in the brain by their elemen- The neuraxis located above the midbrain is the neur- tary components. Elaborate mental functions consist of axis of the cerebrum and is sometimes called the subfunctions and are constructed from both serial and horizontal neuraxis. A cross-section taken perpendi- parallel interconnections of several brain regions. cular to the horizontal neuraxis is called a coronal An introduction to the nervous system covers general (frontal) section. terminology and the ventricular system. With regard to the neuraxis of the spinal cord and brainstem: Major Subdivisions • Dorsal (posterior) means toward the back. The nervous system is divided anatomically into the • Ventral (anterior) means toward the abdomen. central nervous system (CNS) and the peripheral ner- • Rostral means toward the nose. vous system (PNS). • Caudal means toward the tail. • The CNS is made up of the brain and spinal cord. • The sagittal (midsagittal) plane is the vertical • The PNS consists of the cranial nerves and spinal plane that passes through the neuraxis.
    [Show full text]
  • Facial Nerve Disorders Cn7 (1)
    FACIAL NERVE DISORDERS CN7 (1) Facial Nerve Disorders Last updated: January 18, 2020 FACIAL PALSY .......................................................................................................................................... 1 ETIOLOGY .............................................................................................................................................. 1 GUIDE TO LESION SITE LOCALIZATION ................................................................................................... 2 CLINICAL GRADING OF SEVERITY .......................................................................................................... 2 House-Brackmann grading scale ........................................................................................... 2 CLINICO-ANATOMICAL SYNDROMES ..................................................................................................... 2 Supranuclear (Central) Palsy ................................................................................................. 2 Nuclear Lesion ...................................................................................................................... 3 Cerebellopontine Angle Syndrome ....................................................................................... 3 Facial Canal Syndrome ......................................................................................................... 3 Stylomastoid Foramen Syndrome ........................................................................................
    [Show full text]
  • Telovelar Approach to the Fourth Ventricle: Microsurgical Anatomy
    J Neurosurg 92:812–823, 2000 Telovelar approach to the fourth ventricle: microsurgical anatomy ANTONIO C. M. MUSSI, M.D., AND ALBERT L. RHOTON, JR., M.D. Department of Neurological Surgery, University of Florida, Gainesville, Florida Object. In the past, access to the fourth ventricle was obtained by splitting the vermis or removing part of the cere- bellum. The purpose of this study was to examine the access to the fourth ventricle achieved by opening the tela cho- roidea and inferior medullary velum, the two thin sheets of tissue that form the lower half of the roof of the fourth ven- tricle, without incising or removing part of the cerebellum. Methods. Fifty formalin-fixed specimens, in which the arteries were perfused with red silicone and the veins with blue silicone, provided the material for this study. The dissections were performed in a stepwise manner to simulate the exposure that can be obtained by retracting the cerebellar tonsils and opening the tela choroidea and inferior medullary velum. Conclusions. Gently displacing the tonsils laterally exposes both the tela choroidea and the inferior medullary velum. Opening the tela provides access to the floor and body of the ventricle from the aqueduct to the obex. The additional opening of the velum provides access to the superior half of the roof of the ventricle, the fastigium, and the superolater- al recess. Elevating the tonsillar surface away from the posterolateral medulla exposes the tela, which covers the later- al recess, and opening this tela exposes the structure forming
    [Show full text]
  • The Clinical Treatment and Outcome of Cerebellopontine Angle
    www.nature.com/scientificreports OPEN The clinical treatment and outcome of cerebellopontine angle medulloblastoma: a retrospective study of 15 cases Tao Wu 1,4, Pei-ran Qu3,4, Shun Zhang2, Shi-wei Li1, Jing Zhang1, Bo Wang2, Pinan Liu 1,2, Chun-de Li1,2 & Fu Zhao 1,2 ✉ Medulloblastoma (MB) is the most common malignant pediatric brain tumor arising in the cerebellum or the 4th ventricle. Cerebellopontine angle (CPA) MBs are extremely rare tumors, with few cases previously described. In this study, we sought to describe the clinical characteristics, molecular features and outcomes of CPA MB. We retrospectively reviewed a total of 968 patients who had a histopathological diagnosis of MB at the Beijing Neurosurgical Institute between 2002 and 2016. The demographic characteristics, clinical manifestations and radiological features were retrospectively analyzed. Molecular subgroup was evaluated by the expression profling array or immunohistochemistry. Overall survival (OS) and progression-free survival (PFS) were calculated using Kaplan-Meier analysis. In this study, 15 patients (12 adults and 3 children) with a mean age at diagnosis of 25.1 years (range 4–45 years) were included. CPA MBs represented 1.5% of the total cases of MB (15/968). Two molecular subgroups were identifed in CPA MBs: 5 WNT-MBs (33%) and 10 SHH-MBs (67%). CPA WNT-MBs had the extracerebellar growth with the involvement of brainstem (P = 0.002), whereas CPA SHH-MBs predominantly located within the cerebellar hemispheres (P = 0.004). The 5-year OS and PFS rates for CPA MB were 80.0% ± 10.3% and 66.7% ± 12.2%, respectively.
    [Show full text]
  • CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations.
    [Show full text]
  • Neurologic Outcomes in Friedreich Ataxia: Study of a Single-Site Cohort E415
    Volume 6, Number 3, June 2020 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Neurologic outcomes in Friedreich ataxia: Study of a single-site cohort e415 ARTICLE Prevalence of RFC1-mediated spinocerebellar ataxia in a North American ataxia cohort e440 ARTICLE Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy e428 ARTICLE Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy revisited: Genotype-phenotype correlations of all published cases e434 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2020 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com CEO, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Mary E.
    [Show full text]
  • Nucleus Dorsalis Superficialis (Lateralis Dorsalis) of the Thalamus and the Limbic System in Man
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.7.765 on 1 July 1974. Downloaded from Joutrnal of Neur)ology, Neurosurgery, and Psychiatry, 1974, 37, 765-789 Nucleus dorsalis superficialis (lateralis dorsalis) of the thalamus and the limbic system in man J. M. VAN BUREN AND R. C. BORKE Fr-om the Surgical Neurology Branch, National Institute of Neurological Diseases and Str-oke, National Institutes of Health, Bethesda, Maryland, U.S.A. SYNOPSIS Although the earlier supposition was that the n. dorsalis superficialis (n. lateralis dorsalis) of the thalamus projected to the parietal region, more recent evidence has linked it to the posterior cingulate gyrus and possibly adjacent regions near the splenium of the corpus callosum. An afferent supply from lower levels was in more doubt, although some report had been made of cell and fibre degeneration in the n. dorsalis superficialis after extensive temporal resections and section of the fornix in lower primates. The five human hemispheres of the present study all had lesions of long duration below the level of the splenium of the corpus callosum in the posteromedial temporal region. All showed marked degeneration in the fornix and n. dorsalis superficialis. In favourably Protected by copyright. stained cases, gliotic fascicles could be followed from the descending column of the fornix to the n. dorsalis superficialis via the region lateral to the stria medullaris thalami. The cell loss in the nucleus thus appeared to be an instance of anterograde transynaptic degeneration. These cases provided an interesting instance in which human infarctions provided natural lesions that would have been hard to duplicate in experimental animals.
    [Show full text]