1 Version 2 - Submitted November 28, 1998 for special issue of Computer Methods in Applied Mechanics and Engineering (CMAME journal) edited by David E. Goldberg and Kalyanmoy Deb. Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming J. R. Koza*,a, F. H Bennett IIIb, D. Andrec, M. A. Keaned aSection on Medical Informatics, Department of Medicine, School of Medicine, Stanford University, Stanford, California 94305 USA,
[email protected] bChief Scientist, Genetic Programming Inc., Los Altos, California 94023 USA,
[email protected] cDivision of Computer Science, University of California. Berkeley, California 94720 USA,
[email protected] dChief Scientist, Econometrics Inc., 111 E. Wacker Drive, Chicago, Illinois 60601 USA,
[email protected] * Corresponding author. Abstract The design (synthesis) of an analog electrical circuit entails the creation of both the topology and sizing (numerical values) of all of the circuit's components. There has previously been no general automated technique for automatically creating the design for an analog electrical circuit from a high-level statement of the circuit's desired behavior. This paper shows how genetic programming can be used to automate the design of eight prototypical analog circuits, including a lowpass filter, a highpass filter, a bandstop filter, a tri- state frequency discriminator circuit, a frequency-measuring circuit, a 60 dB amplifier, a computational circuit for the square root function, and a time-optimal robot controller circuit. 1. Introduction Design is a major activity of practicing mechanical, electrical, civil, and aeronautical engineers. The design process entails creation of a 2 complex structure to satisfy user-defined requirements.