Ceramic Waveguide Bandpass Filters with Spurious Modes Suppression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers
Review A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers Vivek T. Rathod Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected]; Tel.: +1-517-249-5207 Received: 29 December 2018; Accepted: 29 January 2019; Published: 1 February 2019 Abstract: Any electric transmission lines involving the transfer of power or electric signal requires the matching of electric parameters with the driver, source, cable, or the receiver electronics. Proceeding with the design of electric impedance matching circuit for piezoelectric sensors, actuators, and transducers require careful consideration of the frequencies of operation, transmitter or receiver impedance, power supply or driver impedance and the impedance of the receiver electronics. This paper reviews the techniques available for matching the electric impedance of piezoelectric sensors, actuators, and transducers with their accessories like amplifiers, cables, power supply, receiver electronics and power storage. The techniques related to the design of power supply, preamplifier, cable, matching circuits for electric impedance matching with sensors, actuators, and transducers have been presented. The paper begins with the common tools, models, and material properties used for the design of electric impedance matching. Common analytical and numerical methods used to develop electric impedance matching networks have been reviewed. The role and importance of electrical impedance matching on the overall performance of the transducer system have been emphasized throughout. The paper reviews the common methods and new methods reported for electrical impedance matching for specific applications. The paper concludes with special applications and future perspectives considering the recent advancements in materials and electronics. -
Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming
1 Version 2 - Submitted November 28, 1998 for special issue of Computer Methods in Applied Mechanics and Engineering (CMAME journal) edited by David E. Goldberg and Kalyanmoy Deb. Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming J. R. Koza*,a, F. H Bennett IIIb, D. Andrec, M. A. Keaned aSection on Medical Informatics, Department of Medicine, School of Medicine, Stanford University, Stanford, California 94305 USA, [email protected] bChief Scientist, Genetic Programming Inc., Los Altos, California 94023 USA, [email protected] cDivision of Computer Science, University of California. Berkeley, California 94720 USA, [email protected] dChief Scientist, Econometrics Inc., 111 E. Wacker Drive, Chicago, Illinois 60601 USA, [email protected] * Corresponding author. Abstract The design (synthesis) of an analog electrical circuit entails the creation of both the topology and sizing (numerical values) of all of the circuit's components. There has previously been no general automated technique for automatically creating the design for an analog electrical circuit from a high-level statement of the circuit's desired behavior. This paper shows how genetic programming can be used to automate the design of eight prototypical analog circuits, including a lowpass filter, a highpass filter, a bandstop filter, a tri- state frequency discriminator circuit, a frequency-measuring circuit, a 60 dB amplifier, a computational circuit for the square root function, and a time-optimal robot controller circuit. 1. Introduction Design is a major activity of practicing mechanical, electrical, civil, and aeronautical engineers. The design process entails creation of a 2 complex structure to satisfy user-defined requirements. -
Elementary Filter Circuits
Modular Electronics Learning (ModEL) project * SPICE ckt v1 1 0 dc 12 v2 2 1 dc 15 r1 2 3 4700 r2 3 0 7100 .dc v1 12 12 1 .print dc v(2,3) .print dc i(v2) .end V = I R Elementary Filter Circuits c 2018-2021 by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License Last update = 13 September 2021 This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International Public License. A copy of this license is found in the last Appendix of this document. Alternatively, you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. ii Contents 1 Introduction 3 2 Case Tutorial 5 2.1 Example: RC filter design ................................. 6 3 Tutorial 9 3.1 Signal separation ...................................... 9 3.2 Reactive filtering ...................................... 10 3.3 Bode plots .......................................... 14 3.4 LC resonant filters ..................................... 15 3.5 Roll-off ........................................... 17 3.6 Mechanical-electrical filters ................................ 18 3.7 Summary .......................................... 20 4 Historical References 25 4.1 Wave screens ........................................ 26 5 Derivations and Technical References 29 5.1 Decibels ........................................... 30 6 Programming References 41 6.1 Programming in C++ ................................... 42 6.2 Programming in Python .................................. 46 6.3 Modeling low-pass filters using C++ ........................... 51 7 Questions 63 7.1 Conceptual reasoning ................................... -
The Self-Resonance and Self-Capacitance of Solenoid Coils: Applicable Theory, Models and Calculation Methods
1 The self-resonance and self-capacitance of solenoid coils: applicable theory, models and calculation methods. By David W Knight1 Version2 1.00, 4th May 2016. DOI: 10.13140/RG.2.1.1472.0887 Abstract The data on which Medhurst's semi-empirical self-capacitance formula is based are re-analysed in a way that takes the permittivity of the coil-former into account. The updated formula is compared with theories attributing self-capacitance to the capacitance between adjacent turns, and also with transmission-line theories. The inter-turn capacitance approach is found to have no predictive power. Transmission-line behaviour is corroborated by measurements using an induction loop and a receiving antenna, and by visualising the electric field using a gas discharge tube. In-circuit solenoid self-capacitance determinations show long-coil asymptotic behaviour corresponding to a wave propagating along the helical conductor with a phase-velocity governed by the local refractive index (i.e., v = c if the medium is air). This is consistent with measurements of transformer phase error vs. frequency, which indicate a constant time delay. These observations are at odds with the fact that a long solenoid in free space will exhibit helical propagation with a frequency-dependent phase velocity > c. The implication is that unmodified helical-waveguide theories are not appropriate for the prediction of self-capacitance, but they remain applicable in principle to open- circuit systems, such as Tesla coils, helical resonators and loaded vertical antennas, despite poor agreement with actual measurements. A semi-empirical method is given for predicting the first self- resonance frequencies of free coils by treating the coil as a helical transmission-line terminated by its own axial-field and fringe-field capacitances. -
Algorithm for Brune's Synthesis of Multiport Circuits
Technische Universitat¨ Munchen¨ Lehrstuhl fur¨ Nanoelektronik Algorithm for Brune’s Synthesis of Multiport Circuits Farooq Mukhtar Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Information- stechnik der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eins Doktor - Ingenieurs genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. sc. techn. Andreas Herkersdorf Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. techn., Dr. h. c. Peter Russer (i.R.) 2. Univ.-Prof. Dr. techn., Dr. h. c. Josef A. Nossek Die Dissertation wurde am 10.12.2013 bei der Technischen Universit¨at M¨unchen eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 20.06.2014 angenommen. Fakultat¨ fur¨ Elektrotechnik und Informationstechnik Der Technischen Universitat¨ Munchen¨ Doctoral Dissertation Algorithm for Brune’s Synthesis of Multiport Circuits Author: Farooq Mukhtar Supervisor: Prof. Dr. techn. Dr. h.c. Peter Russer Date: December 10, 2013 Ich versichere, dass ich diese Doktorarbeit selbst¨andig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe. M¨unchen, December 10, 2013 Farooq Mukhtar Acknowledgments I owe enormous debt of gratitude to all those whose help and support made this work possible. Firstly to my supervisor Professor Peter Russer whose constant guidance kept me going. I am also thankful for his arrangement of the financial support while my work here and for the conferences which gave me an international exposure. He also involved me in the research cooperation with groups in Moscow, Russia; in Niˇs, Serbia and in Toulouse and Caen, France. Discussions on implementation issues of the algorithm with Dr. Johannes Russer are worth mentioning beside his other help in administrative issues. -
Classic Filters There Are 4 Classic Analogue Filter Types: Butterworth, Chebyshev, Elliptic and Bessel. There Is No Ideal Filter
Classic Filters There are 4 classic analogue filter types: Butterworth, Chebyshev, Elliptic and Bessel. There is no ideal filter; each filter is good in some areas but poor in others. • Butterworth: Flattest pass-band but a poor roll-off rate. • Chebyshev: Some pass-band ripple but a better (steeper) roll-off rate. • Elliptic: Some pass- and stop-band ripple but with the steepest roll-off rate. • Bessel: Worst roll-off rate of all four filters but the best phase response. Filters with a poor phase response will react poorly to a change in signal level. Butterworth The first, and probably best-known filter approximation is the Butterworth or maximally-flat response. It exhibits a nearly flat passband with no ripple. The rolloff is smooth and monotonic, with a low-pass or high- pass rolloff rate of 20 dB/decade (6 dB/octave) for every pole. Thus, a 5th-order Butterworth low-pass filter would have an attenuation rate of 100 dB for every factor of ten increase in frequency beyond the cutoff frequency. It has a reasonably good phase response. Figure 1 Butterworth Filter Chebyshev The Chebyshev response is a mathematical strategy for achieving a faster roll-off by allowing ripple in the frequency response. As the ripple increases (bad), the roll-off becomes sharper (good). The Chebyshev response is an optimal trade-off between these two parameters. Chebyshev filters where the ripple is only allowed in the passband are called type 1 filters. Chebyshev filters that have ripple only in the stopband are called type 2 filters , but are are seldom used. -
Whiguqzgdrjracxb.Pdf
Analog Filters Using MATLAB Lars Wanhammar Analog Filters Using MATLAB 13 Lars Wanhammar Department of Electrical Engineering Division of Electronics Systems Linkoping¨ University SE-581 83 Linkoping¨ Sweden [email protected] ISBN 978-0-387-92766-4 e-ISBN 978-0-387-92767-1 DOI 10.1007/978-0-387-92767-1 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2008942084 # Springer ScienceþBusiness Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceþBusiness Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Preface This book was written for use in a course at Linkoping¨ University and to aid the electrical engineer to understand and design analog filters. Most of the advanced mathematics required for the synthesis of analog filters has been avoided by providing a set of MATLAB functions that allows sophisticated filters to be designed. Most of these functions can easily be converted to run under Octave as well. -
Implicit Network Descriptions of RLC Networks and the Problem of Re-Engineering
City Research Online City, University of London Institutional Repository Citation: Livada, M. (2017). Implicit network descriptions of RLC networks and the problem of re-engineering. (Unpublished Doctoral thesis, City, University of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17916/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Implicit Network Descriptions of RLC Networks and the Problem of Re-engineering by Maria Livada A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) in Control Theory in the Systems and Control Research Centre School of Mathematics, Computer Science and Engineering July 2017 Abstract This thesis introduces the general problem of Systems Re-engineering and focuses to the special case of passive electrical networks. Re-engineering differs from classical control problems and involves the adjustment of systems to new requirements by intervening in an early stage of system design, affecting various aspects of the underlined system struc- ture that affect the final control design problem. -
Superconducting Nano-Mechanical Diamond Resonators
Superconducting nano-mechanical diamond resonators Tobias Bautze,1,2, ∗ Soumen Mandal,1,2, † Oliver A. Williams,3, 4 Pierre Rodi`ere,1, 2 Tristan Meunier,1, 2 and Christopher B¨auerle1,2, ‡ 1Univ. Grenoble Alpes, Inst. NEEL, F-38042 Grenoble, France 2CNRS, Inst. NEEL, F-38042 Grenoble, France 3Fraunhofer-Institut f¨ur Angewandte Festk¨orperphysik, Tullastraße 72, 79108 Freiburg, Germany 4University of Cardiff, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA, United Kingdom (Dated: October 9, 2018) In this work we present the fabrication and characterization of superconducting nano-mechanical resonators made from nanocrystalline boron doped diamond (BDD). The oscillators can be driven and read out in their superconducting state and show quality factors as high as 40,000 at a resonance frequency of around 10 MHz. Mechanical damping is studied for magnetic fields up to 3 T where the resonators still show superconducting properties. Due to their simple fabrication procedure, the devices can easily be coupled to other superconducting circuits and their performance is comparable with state-of-the-art technology. I. INTRODUCTION II. FABRICATION The nano-mechanical resonators have been fabricated Nano-mechanical resonators allow to explore a vari- from a superconducting nanocrystaline diamond film, ety of physical phenomena. From a technological point grown on a silicon wafer with a 500 nm thick SiO2 layer. 1–3 of view, they can be used for ultra-sensitive mass , To be able to grow diamond on the Si/SiO2 surface, small force4–6, charge7,8 and displacement detection. On the diamond particles of a diameter smaller than 6 nm are more fundamental side, they offer fascinating perspec- seeded onto the silica substrate with the highest possi- tives for studying macroscopic quantum systems. -
Acrobat Distiller, Job 64
Human-competitive Applications of Genetic Programming John R. Koza Stanford Medical Informatics, Department of Medicine, School of Medicine, Department of Electrical Engineering, School of Engineering, Stanford University, Stanford, California 94305 E-mail: [email protected] Summary: Genetic programming is an automatic technique for producing a computer program that solves, or approximately solves, a problem. This chapter reviews several recent examples of human-competitive results produced by genetic programming. The examples all involve the automatic synthesis of a complex structure from a high-level statement of the requirements for the structure. The illustrative results include examples of automatic synthesis of both the topology and sizing (component values) for analog electrical circuits, automatic synthesis of placement and routing (as well as topology and sizing) for circuits, and automatic synthesis of both the topology and tuning (parameter values) of controllers. 1 Introduction Genetic programming is an automatic technique for producing a computer program that solves, or approximately solves, a problem. Genetic programming addresses the challenge of getting a computer to solve a problem without explicitly programming it. This challenge calls for an automatic system whose input is a high-level statement of a problem’s requirements and whose output is a working program that solves the problem. Paraphrasing Arthur Samuel (1959), this challenge concerns, “How can computers be made to do what needs to be done, without being told exactly how to do it?” Since many problems can be easily recast as a search for a computer program, genetic programming can potentially solve a wide range of types of problems, including problems of control, classification, system identification, and design. -
Comparison Between Resonance and Non-Resonance Type Piezoelectric Acoustic Absorbers
sensors Article Comparison between Resonance and Non-Resonance Type Piezoelectric Acoustic Absorbers Joo Young Pyun , Young Hun Kim , Soo Won Kwon, Won Young Choi and Kwan Kyu Park * Department of Convergence Mechanical Engineering, Hanyang University, Seoul 04763, Korea; [email protected] (J.Y.P.); [email protected] (Y.H.K.); [email protected] (S.W.K.); [email protected] (W.Y.C.) * Correspondence: [email protected] Received: 26 November 2019; Accepted: 18 December 2019; Published: 20 December 2019 Abstract: In this study, piezoelectric acoustic absorbers employing two receivers and one transmitter with a feedback controller were evaluated. Based on the target and resonance frequencies of the system, resonance and non-resonance models were designed and fabricated. With a lateral size less than half the wavelength, the model had stacked structures of lossy acoustic windows, polyvinylidene difluoride, and lead zirconate titanate-5A. The structures of both models were identical, except that the resonance model had steel backing material to adjust the center frequency. Both models were analyzed in the frequency and time domains, and the effectiveness of the absorbers was compared at the target and off-target frequencies. Both models were fabricated and acoustically and electrically characterized. Their reflection reduction ratios were evaluated in the quasi-continuous-wave and time-transient modes. Keywords: resonance model; non-resonance model; piezoelectric material 1. Introduction Piezoelectric transducers are used in various fields, such as nondestructive evaluation, image processing, acoustic signal detection, and energy harvesting [1–4]. Sound navigation and ranging (SONAR) is a technology for acoustic signal detection that can be used to detect objects under water. -
Design of Microwave Waveguide Filters with Effects of Fabrication Imperfections
FACTA UNIVERSITATIS Series: Electronics and Energetics Vol. 30, No 4, December 2017, pp. 431 - 458 DOI: 10.2298/FUEE1704431M DESIGN OF MICROWAVE WAVEGUIDE FILTERS WITH EFFECTS OF FABRICATION IMPERFECTIONS Marija Mrvić, Snežana Stefanovski Pajović, Milka Potrebić, Dejan Tošić University of Belgrade, School of Electrical Engineering, Belgrade, Serbia Abstract. This paper presents results of a study on a bandpass and bandstop waveguide filter design using printed-circuit discontinuities, representing resonating elements. These inserts may be implemented using relatively simple types of resonators, and the amplitude response may be controlled by tuning the parameters of the resonators. The proper layout of the resonators on the insert may lead to a single or multiple resonant frequencies, using single resonating insert. The inserts may be placed in the E-plane or the H-plane of the standard rectangular waveguide. Various solutions using quarter-wave resonators and split- ring resonators for bandstop filters, and complementary split-ring resonators for bandpass filters are proposed, including multi-band filters and compact filters. They are designed to operate in the X-frequency band and standard rectangular waveguide (WR-90) is used. Besides three dimensional electromagnetic models and equivalent microwave circuits, experimental results are also provided to verify proposed design. Another aspect of the research represents a study of imperfections demonstrated on a bandpass waveguide filter. Fabrication side effects and implementation imperfections are analyzed in details, providing relevant results regarding the most critical parameters affecting filter performance. The analysis is primarily based on software simulations, to shorten and improve design procedure. However, measurement results represent additional contribution to validate the approach and confirm conclusions regarding crucial phenomena affecting filter response.