The Scienti C Work of Wilhelm Cauer and Its Key Position at The

Total Page:16

File Type:pdf, Size:1020Kb

The Scienti C Work of Wilhelm Cauer and Its Key Position at The Pro c. 16th Eur. Meeting on Cyb ernetics and Systems Research EMCSR, Vienna, April 2 { 5, 2002, vol. 2, pp. 934-939 = Cyb ernetics and Systems, R. Trappl, ed., Austrian So c. for Cyb ernetics Studies. The Scienti c Work of Wilhelm Cauer and its Key Position at the Transition from Electrical Telegraph Techniques to Linear Systems Theory Rainer Pauli Munich UniversityofTechnology D { 80290 Munich Germany email: [email protected] Abstract together with their mutual relations which are de ned by the frequency-indep endent holonomic constraints The pap er sketches a line of historical con- imp osed byinterconnection rules. Therefore, network tinuity ranging from telegraph pioneers and theory ab initio was set up as a purely mathemati- early submarine cable technology of the 19th cal discipline. Most notably, under the standard as- century to some asp ects of mo dern systems sumptions of linearity and time-invariance, the the- and control theory. Sp ecial emphasis is laid ory of passive networks is equivalent to the theory of on the intermediary role of the scienti c work dissipative mechanical systems that p erform small os- of Wilhelm Cauer 1900-1945 on the synthe- cillations around a stable equilibrium. Esp ecially in sis of linear networks. [ ] his early pap ers on network synthesis Cauer, 1926 , [ ] Cauer, 1931b Cauer's mathematical starting p ointis this relation to classical analytical mechanics. Nev- 1 Intro duction ertheless, it is fair to recall that the motivation and While it is almost commonplace that mo dern metho ds detailed structure of the problem was rmly ro oted of data compaction, co ding and encryption in to day's in electrical telegraph techniques of the 19th century, communications all have their ro ots in the techniques esp ecially in submarine cable transmission problems; [ ] of the telegraph pioneers Beauchamp, 2001 , analo- [ ] [ ] [ see Belevitch, 1962 , Darlington, 1984 and Wunsch, gous facts concerning the evolution of classical net- ] 1985 . In order to keep the numb er of citations un- work and systems theory seem to fall into oblivion. der control, we refer the reader to these references for This is partly due to the dichotomy of the historical more details ab out the historical asp ects sketched in ro ots of mo dern system and control theory into ana- the subsequent section. lytical mechanics and into classical network theory in the style of Bo de, Cauer, Darlington, Foster, Youla, 2 Before Network Synthesis and many others combined with a widespread un- 2.1 Electrical Telegraph Techniques in willingness to lo ok b eyond the b orders of one's own the 19th Century eld of research. Additionally, in recent decades there has b een a dramatic decline of knowledge ab out clas- Although network analysis has emerged as a near- sical network theory that has resulted in the expulsion mathematical discipline in the mid of the 19th century, of the basic academic and educational asp ects of net- the development of submarine telegraph cables had a work mo dels from electrical engineering curricula and very imp ortant in uence on the progress of network a progressive fading out of network theory as an inde- theory, the main reasons b eing i the extremely com- [ ] p endent scienti c discipline Rohrer, 1990 . plicated dynamical b ehavior of transmission cables as Long b efore the advent of general electromagnetic compared to the ubiquitous RLC -circuits of mo dest theory rst formulated in 1873 by Maxwell in his complexity and ii the b oiling hot economic interest celebrated Treatise the theory of electrical networks in the advancement of electrical telegraph technology emerged as an indep endent discipline with original | comparable only to the Internet euphoria of to day. concepts and metho ds. These rst achievements were For a vivid p opular account on the remarkable paral- Ohm's law 1827, Kirchhoff's laws 1845 and the lels in the history of the electrical telegraph and the p ertaining top ological rules 1847, as well as the revolution in communications due to the Internet, see [ ] sup erp osition principle and the so-called Thevenin- Standage, 1998 though from a decidedly american equivalent circuits credited to Helmholtz 1853. viewp oint. Typically,aphysical device such as a resistor made of The rst working electrical telegraph had b een con- metallic wire or carb on is considered a black box de- structed in 1833 by Gau and Weber in Gottingen ned by a linear relation v = Ri between the external using de ected needle technology, followed in 1837 by electrical variables v and i . This abstraction turned Steinheil's recording telegraph in Munichaswell as the analysis of realistic physical devices into the study by similar exp eriments in the same year by Wheat- of sets or \systems" of well-de ned idealized ob jects stone in England and Morse in the USA. The rst protagonists Breisig, Campbell, Franke, Haus- cable to cross the English Channel was laid in 1851, rath, Kennelly, Strecker, to mention just a few. so on followed by the rst deep-sea cable b etween Sar- Many new circuits and devices such as arti cial lines, dinia and Tunisia in 1854. When the celebrated attenuators, hybrid coils, balancing networks, T - and transatlantic cable connecting Europ e and America -equivalent circuits for two-p orts, lters, and allpass went on-line in 1858 misconceptions and the lackof lattice sections and equalizers were designed. electrical mo dels for understanding transmission line op eration p osed serious practical diculties due to an At the same time complex calculus vulgarized in excessive spread of transmitted pulses. Telegraph en- electrical p ower engineering by Steinmetz b ecame gineering at that time was crude empiricism. Not even ubiquitous; rational functions and p oles and zeros Ohm's law had found its way to many of the early ex- gradually entered into engineering pap ers and the no- p erimentalists. tion of a multip ort and its various matrix descriptions emerged. LaCour 1903 seems to have b een the Various steps towards network mo delling of trans- rst to write down the equations for a symmetric two- mission lines had b een undertaken by Lord Kelvin p ort in chain matrix form that is also the solution to since 1855, but his mo dels were not well suited to ex- eqn.1 plain most of the practical diculties. After Bell's " invention of the \sp eaking telegraph" in 1876 pre- cosh g Z sinh g ceeded ab out 15 years by Reis these de ciencies b e- U U 1 2 = ; 2 1 sinh g cosh g came even more evident when engineers tried to trans- I I 1 2 Z mit sp eech signals over long aerial or mo dest subma- rine distances. In the early 1880's there were ab out while the general black box concept of a two-p ort was 150 000 kilometers of submarine telegraph cables op er- formulated by Breisig in 1921. Campbell and Fos- ating byhookorby cro ok when Heaviside prop osed ter established the theory of the ideal transformer as his celebrated analysis of transmission lines in terms a new network element and gave a complete enumera- of his telegraphist's equations tion of all realizations of lossless four-p orts comp osed [ ] of ideal transformers Campb ell, 1937, pp. 119-168 . @i @u The rst breakthrough towards a systematic syn- = Ri + L ; @x @t thesis of lters was achieved in 1924 by Foster in his @i @u [ ] pap er Areactance theorem Foster, 1924 . The im- = Gu + C : 1 @x @t p ortance of this celebrated theorem rests essentially in the giving of necessary and sucient conditions on Here, R; L or G; C are the p er unit length series re- the imp edance function of a lossless one-p ort in order sistance and inductance, or cross conductance and ca- that it b e realized by means of capacitors and induc- pacitance, resp ectively, of the well-known lump ed net- tors. Moreover, by use of a partial fraction decomp o- work mo del for an in nitesimal piece of transmission sition Foster presents a circuit con guration realiza- line. Initially, Heaviside's mo del was not much appre- tion that is canonical, in the sense that it can b e used ciated, though in 1893 he predicted on purely theoret- to realize any arbitrary lossless rational imp edance ical grounds that a distortion-free transmission of sig- function. nals is feasible by designing cables such that R; L; G; C For completeness, let us remark that even Foster's are related in a certain manner. 1924 pap er originated from work on submarine cables. \It might b e of some slight historical interest to note 2.2 First Steps Towards Network that the case of networks comp osed of resistors and Synthesis 1900 { 1924 capacitors was the rst for which the general solution At the turn of the century the situation changed al- was obtained, in the very early 1920's, in connection most abruptly when Pupin con rmed by exp eriment with the design of balancing networks for submarine the advantage of Heaviside's theoretical prop osal to in- telephone cables. But, when written up for publica- sert lump ed inductors in the line at uniformly spaced tion in 1924, it was presented in terms of inductors p oints. Miraculously, the increased series inductance [ ] and capacitors." Foster, 1962 did not further deteriorate the transmission prop er- ties; rather it turned out that these loaded lines ex- 3 Cauer's Program for Network hibited quite p erfect transmission characteristics up Synthesis 1926 { 1929 to a certain \cuto frequency" while presenting a re- markable increase of attenuation at higher frequencies.
Recommended publications
  • Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming
    1 Version 2 - Submitted November 28, 1998 for special issue of Computer Methods in Applied Mechanics and Engineering (CMAME journal) edited by David E. Goldberg and Kalyanmoy Deb. Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming J. R. Koza*,a, F. H Bennett IIIb, D. Andrec, M. A. Keaned aSection on Medical Informatics, Department of Medicine, School of Medicine, Stanford University, Stanford, California 94305 USA, [email protected] bChief Scientist, Genetic Programming Inc., Los Altos, California 94023 USA, [email protected] cDivision of Computer Science, University of California. Berkeley, California 94720 USA, [email protected] dChief Scientist, Econometrics Inc., 111 E. Wacker Drive, Chicago, Illinois 60601 USA, [email protected] * Corresponding author. Abstract The design (synthesis) of an analog electrical circuit entails the creation of both the topology and sizing (numerical values) of all of the circuit's components. There has previously been no general automated technique for automatically creating the design for an analog electrical circuit from a high-level statement of the circuit's desired behavior. This paper shows how genetic programming can be used to automate the design of eight prototypical analog circuits, including a lowpass filter, a highpass filter, a bandstop filter, a tri- state frequency discriminator circuit, a frequency-measuring circuit, a 60 dB amplifier, a computational circuit for the square root function, and a time-optimal robot controller circuit. 1. Introduction Design is a major activity of practicing mechanical, electrical, civil, and aeronautical engineers. The design process entails creation of a 2 complex structure to satisfy user-defined requirements.
    [Show full text]
  • Algorithm for Brune's Synthesis of Multiport Circuits
    Technische Universitat¨ Munchen¨ Lehrstuhl fur¨ Nanoelektronik Algorithm for Brune’s Synthesis of Multiport Circuits Farooq Mukhtar Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Information- stechnik der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eins Doktor - Ingenieurs genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. sc. techn. Andreas Herkersdorf Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. techn., Dr. h. c. Peter Russer (i.R.) 2. Univ.-Prof. Dr. techn., Dr. h. c. Josef A. Nossek Die Dissertation wurde am 10.12.2013 bei der Technischen Universit¨at M¨unchen eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 20.06.2014 angenommen. Fakultat¨ fur¨ Elektrotechnik und Informationstechnik Der Technischen Universitat¨ Munchen¨ Doctoral Dissertation Algorithm for Brune’s Synthesis of Multiport Circuits Author: Farooq Mukhtar Supervisor: Prof. Dr. techn. Dr. h.c. Peter Russer Date: December 10, 2013 Ich versichere, dass ich diese Doktorarbeit selbst¨andig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe. M¨unchen, December 10, 2013 Farooq Mukhtar Acknowledgments I owe enormous debt of gratitude to all those whose help and support made this work possible. Firstly to my supervisor Professor Peter Russer whose constant guidance kept me going. I am also thankful for his arrangement of the financial support while my work here and for the conferences which gave me an international exposure. He also involved me in the research cooperation with groups in Moscow, Russia; in Niˇs, Serbia and in Toulouse and Caen, France. Discussions on implementation issues of the algorithm with Dr. Johannes Russer are worth mentioning beside his other help in administrative issues.
    [Show full text]
  • Whiguqzgdrjracxb.Pdf
    Analog Filters Using MATLAB Lars Wanhammar Analog Filters Using MATLAB 13 Lars Wanhammar Department of Electrical Engineering Division of Electronics Systems Linkoping¨ University SE-581 83 Linkoping¨ Sweden [email protected] ISBN 978-0-387-92766-4 e-ISBN 978-0-387-92767-1 DOI 10.1007/978-0-387-92767-1 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2008942084 # Springer ScienceþBusiness Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceþBusiness Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Preface This book was written for use in a course at Linkoping¨ University and to aid the electrical engineer to understand and design analog filters. Most of the advanced mathematics required for the synthesis of analog filters has been avoided by providing a set of MATLAB functions that allows sophisticated filters to be designed. Most of these functions can easily be converted to run under Octave as well.
    [Show full text]
  • Implicit Network Descriptions of RLC Networks and the Problem of Re-Engineering
    City Research Online City, University of London Institutional Repository Citation: Livada, M. (2017). Implicit network descriptions of RLC networks and the problem of re-engineering. (Unpublished Doctoral thesis, City, University of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17916/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Implicit Network Descriptions of RLC Networks and the Problem of Re-engineering by Maria Livada A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) in Control Theory in the Systems and Control Research Centre School of Mathematics, Computer Science and Engineering July 2017 Abstract This thesis introduces the general problem of Systems Re-engineering and focuses to the special case of passive electrical networks. Re-engineering differs from classical control problems and involves the adjustment of systems to new requirements by intervening in an early stage of system design, affecting various aspects of the underlined system struc- ture that affect the final control design problem.
    [Show full text]
  • Acrobat Distiller, Job 64
    Human-competitive Applications of Genetic Programming John R. Koza Stanford Medical Informatics, Department of Medicine, School of Medicine, Department of Electrical Engineering, School of Engineering, Stanford University, Stanford, California 94305 E-mail: [email protected] Summary: Genetic programming is an automatic technique for producing a computer program that solves, or approximately solves, a problem. This chapter reviews several recent examples of human-competitive results produced by genetic programming. The examples all involve the automatic synthesis of a complex structure from a high-level statement of the requirements for the structure. The illustrative results include examples of automatic synthesis of both the topology and sizing (component values) for analog electrical circuits, automatic synthesis of placement and routing (as well as topology and sizing) for circuits, and automatic synthesis of both the topology and tuning (parameter values) of controllers. 1 Introduction Genetic programming is an automatic technique for producing a computer program that solves, or approximately solves, a problem. Genetic programming addresses the challenge of getting a computer to solve a problem without explicitly programming it. This challenge calls for an automatic system whose input is a high-level statement of a problem’s requirements and whose output is a working program that solves the problem. Paraphrasing Arthur Samuel (1959), this challenge concerns, “How can computers be made to do what needs to be done, without being told exactly how to do it?” Since many problems can be easily recast as a search for a computer program, genetic programming can potentially solve a wide range of types of problems, including problems of control, classification, system identification, and design.
    [Show full text]
  • Performance Analysis of Analog Butterworth Low Pass Filter As Compared to Chebyshev Type-I Filter, Chebyshev Type-II Filter and Elliptical Filter
    Circuits and Systems, 2014, 5, 209-216 Published Online September 2014 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2014.59023 Performance Analysis of Analog Butterworth Low Pass Filter as Compared to Chebyshev Type-I Filter, Chebyshev Type-II Filter and Elliptical Filter Wazir Muhammad Laghari1, Mohammad Usman Baloch1, Muhammad Abid Mengal1, Syed Jalal Shah2 1Electrical Engineering Department, BUET, Khuzdar, Pakistan 2Computer Systems Engineering Department, BUET, Khuzdar, Pakistan Email: [email protected], [email protected], [email protected], [email protected] Received 29 June 2014; revised 31 July 2014; accepted 11 August 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract A signal is the entity that carries information. In the field of communication signal is the time varying quantity or functions of time and they are interrelated by a set of different equations, but some times processing of signal is corrupted due to adding some noise in the information signal and the information signal become noisy. It is very important to get the information from cor- rupted signal as we use filters. In this paper, Butterworth filter is designed for the signal analysis and also compared with other filters. It has maximally flat response in the pass band otherwise no ripples in the pass band. To meet the specification, 6th order Butterworth filter was chosen be- cause it is flat in the pass band and has no amount of ripples in the stop band.
    [Show full text]
  • A 1980 Paper by Gray on the Same Subject. He Discusses Earlier Work
    Reviews / Historia Mathematica 35 (2008) 47–60 53 a 1980 paper by Gray on the same subject. He discusses earlier work on the rotation of rigid bodies beginning with Euler and notes that Rodrigues’s aim was to draw attention to rigid body motions as an important object of study. He argues that though the mathematical community was not aware of it, Rodrigues’s paper did, in fact, both make use of the idea of transformation groups and display a clear concern for the issue of noncommutativity of composition of rotations. These fundamental concepts were rediscovered independently, but Rodrigues’s work, due to lack of readership, remained unknown for some time. Eduardo Ortiz takes up the theme of later research on rotations in the final chapter. Following Hamilton’s discovery of quaternions in 1843, rotations were studied principally using this tool. Ortiz gives a nontechnical account focusing on their reception in the French context. This was a gradual process that began to bloom in the 1870s, due to the interests of Hoüel, Allégret, and others. Ortiz also provides an interesting picture of the next generations of Rodrigues’s mathematical family members: Hermite, Picard, and Borel are among them. Two other chapters, by Richard Askey and Ulrich Tamm, investigate details of other aspects of Rodrigues’s mathematical work. Askey draws a mathematical connection between one of Rodrigues’s formulae for Legendre polynomials and a later combinatorial result obtained by Rodrigues. He concludes that Rodrigues would likely have been surprised by this connection, an observation which underlines the primarily mathematical character of this pa- per.
    [Show full text]
  • Descendants of Nathan Spanier 17 Feb 2014 Page 1 1
    Descendants of Nathan Spanier 17 Feb 2014 Page 1 1. Nathan Spanier (b.1575-Stadthagen,Schaumburg,Niedersachsen,Germany;d.12 Nov 1646-Altona,SH,H,Germany) sp: Zippora (m.1598;d.5 Apr 1532) 2. Isaac Spanier (d.1661-Altona) 2. Freude Spanier (b.Abt 1597;d.25 Sep 1681-Hannover) sp: Jobst Joseph Goldschmidt (b.1597-witzenhausen,,,Germany;d.30 Jan 1677-Hannover) 3. Moses Goldschmidt 3. Abraham Goldschmidt sp: Sulke Chaim Boas 4. Sara Hameln 4. Samuel Abraham Hameln sp: Hanna Goldschmidt (b.1672) 3. Jente Hameln Goldschmidt (b.Abt 1623;d.25 Jul 1695-Hannover) sp: Solomon Gans (b.Abt 1620;d.6 Apr 1654-Hannover) 4. Elieser Suessmann Gans (b.Abt 1642;d.16 Oct 1724-Hannover) sp: Schoenle Schmalkalden 5. Salomon Gans (b.Abt 1674-Hameln;d.1733-Celle) sp: Gella Warburg (d.1711) 6. Jakob Salomon Gans (b.1702;d.1770-Celle) sp: Freude Katz (d.1734) 7. Isaac Jacob Gans (b.1723/1726;d.12 Mar 1798) sp: Pesse Pauline Warendorf (d.1 Dec 1821) 8. Fradchen Gans sp: Joachim Marcus Ephraim (b.1748-Berlin;d.1812-Berlin) 9. Susgen Ephraim (b.24 Sep 1778-Berlin) 9. Ephraim Heymann Ephraim (b.27 Aug 1784;d.Bef 1854) sp: Esther Manasse 10. Debora Ephraim sp: Heimann Mendel Stern (b.1832;d.1913) 11. Eugen Stern (b.1860;d.1928) sp: Gertrude Lachmann (b.1862;d.1940) 12. Franz Stern (b.1894;d.1960) sp: Ellen Hirsch (b.1909;d.2001) 13. Peter Stern Bucky (b.1933-Berlin;d.2001) sp: Cindy 10. Friederike Ephraim (b.1833;d.1919) sp: Leiser (Lesser) Lowitz (b.Abt 1827;m.11 Jan 1854) 9.
    [Show full text]
  • Microstrip Butterworth Lowpass Filter Design
    Owusu Prince Yeboah Microstrip Butterworth Lowpass Filter Design Metropolia University of Applied Sciences Bachelor of Engineering Electronics Engineering Bachelor’s Thesis 13th January 2020 Author Prince Yeboah Owusu Title Microstrip Butterworth Lowpass Filter Design Number of Pages 29 pages + 1 appendix Date 13th January 2020 Degree Bachelor of Engineering Degree Programme Electronics Engineering Professional Major Instructors Heikki Valmu, Principal Lecturer (Metropolia UAS) Lowpass filters of different kinds are almost ubiquitous in RF and microwave engineering applications. The design of filters therefore is crucial in the study of electronics. This thesis aims to explore the design of three different types of Lowpass Butterworth filter namely Lumped element, Stepped Impedance and Stubs designs, and then compare and contrast their various stimulated responses and actual responses. This paper gives a rather brief but succinct theoretical framework and, where necessary, some historical background to the subjects and focuses more on the design. There is a great amount of literature on the in-depth mathematical and design identities used in this paper. This thesis utilizes the available knowledge for the designs. The filters were designed with specific given parameters employing the NI AWR software for design and simulation. Finally, the designed layouts were printed using of a PCB printing machine and analyzed using a network analyzer. The results obtained weren’t as expected, the Lumped element design produced an unexpected accurate
    [Show full text]
  • Classical Circuit Theory
    Classical Circuit Theory Omar Wing Classical Circuit Theory Omar Wing Columbia University New York, NY USA Library of Congress Control Number: 2008931852 ISBN 978-0-387-09739-8 e-ISBN 978-0-387-09740-4 Printed on acid-free paper. 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. 9 8 7 6 5 4 3 2 1 springer.com To all my students, worldwide Preface Classical circuit theory is a mathematical theory of linear, passive circuits, namely, circuits composed of resistors, capacitors and inductors.
    [Show full text]
  • ELG4177 - DIGITAL SIGNAL PROCESSING Lab6
    ELG4177 - DIGITAL SIGNAL PROCESSING Lab6 By:Hitham Jleed http://www.site.uottawa.ca/~hjlee103/ © H. Jleed: 2018 ~ Assignment 06 IIR FILTER DESIGN © H. Jleed: 2018 ~ Butterworth Filter •Named after: British Physicist Stephen Butterworth •Butterworth filter response: the passband response offers the steepest roll-off without inducing a passband ripple. In addition to the flat passband response © H. Jleed: 2018 ~ a) Design a fifth-order digital Butterworth low-pass filter with a sampling frequency of 200 Hz and a passband edge of 60 Hz. Use the butter function. Plot the phase and magnitude frequency response using freqz. Find the zeros and the poles, and plot them on the same z-plane { option : old way: (using plot(roots(a),’x’) and plot(roots(b),’o’)}. Plot the significant (energetic) part of the impulse response of the filter, using impz. n = 5; fp = 60; fs = 200; [b, a] = butter(n,fp/(fs/2)); fvtool(b,a,'Fs',fs) © H. Jleed: 2018 ~ Chebyshev Filter •Named after: Russian mathematician Pafnuty Chebyshev •Chebyshev filter response: The Chebyshev filter is known for it's ripple response. This ripple response can be designed to be present in the passband (Chebyshev Type 1) or in the stopband (Chebyshev Type 2). © H. Jleed: 2018 ~ b) Repeat a) but use a Chebyshev type I filter with a passband ripple of 0.5 dB. Use the cheby1 function. Compare with the plots found in a). n = 5; fp = 60; fs = 200; Rp = 0.5; [b,a]=cheby1(n,Rp,fp/(fs/2)); fvtool(b,a,'Fs',fs) © H. Jleed: 2018 ~ c) Repeat a) but use a Chebyshev type 2 filter with stopband edge of 65 Hz and a stopband ripple 30 dB less than the passband.
    [Show full text]
  • Declaralion of Fhe Professors of the Universities Andtechnical Colleges of the German Empire
    Declaralion of fhe professors of the Universities andTechnical Colleges of the German Empire. * <23erltn, ben 23. Öftober 1914. (grfftfcung ber i)0d)fd)uttel)rer Declaration of the professors of the Universities and Technical Colleges of the German Empire. ^Btr £e£rer an ®eutfd)tanbg Slniöerjttäten unb iöod)= We, the undersigned, teachers at the Universities fcfyulen bienen ber <2Biffenfd^aff unb treiben ein <2Qett and Technical Colleges of Qermany, are scien­ be§ •Jrtebeng. 'tHber e3 erfüllt ung mit ©ttrüftung, tific men whose profession is a peaceful one. But bafj bie <5eittbe ©eutfcbjanbg, (Snglanb an ber Spttje, we feel indignant that the enemies of Germany, angeblich ju unfern ©unften einen ©egenfatj machen especially England, pretend that this scientific spirit wollen ättnfdjen bem ©elfte ber beutfd)en <2Biffenfct)aff is opposed to what they call Prussian Militarism unb bem, toag fte benpreufjif^enSOftlitariSmuS nennen. and even mean to favour us by this distinction. 3n bem beutfcfyen ioeere ift fein anberer ©eift als in The same spirit that rules the German army per- bem beutfd>en 93oKe, benn beibe ftnb eins, unb t»ir vades the whole German nation, for both are one gehören aucb, bagu. Slnfer £>eer pflegt aud) bie and we form part of it. Scientific research is culti- •JBiffenfcfyaft unb banft t^>r nicfyt gutn »enigften feine vated in our army, and to it the army owes £eiftungen. ©er ©tenft im &eere tnacfyt unfere Sugenb a large part of its successes. Military service tüct>tig aud) für alte "SBerfe be3 "JriebenS, aud) für trains the growing generation for all peaceful bie *3Biffenfd)aft.
    [Show full text]