Classical Circuit Theory

Total Page:16

File Type:pdf, Size:1020Kb

Classical Circuit Theory Classical Circuit Theory Omar Wing Classical Circuit Theory Omar Wing Columbia University New York, NY USA Library of Congress Control Number: 2008931852 ISBN 978-0-387-09739-8 e-ISBN 978-0-387-09740-4 Printed on acid-free paper. 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. 9 8 7 6 5 4 3 2 1 springer.com To all my students, worldwide Preface Classical circuit theory is a mathematical theory of linear, passive circuits, namely, circuits composed of resistors, capacitors and inductors. Like many a thing classical, it is old and enduring, structured and precise, simple and elegant. It is simple in that everything in it can be deduced from first principles based on a few physical laws. It is enduring in that the things we can say about linear, passive circuits are universally true, unchanging. No matter how complex a circuit may be, as long as it consists of these three kinds of elements, its behavior must be as prescribed by the theory. The theory tells us what circuits can and cannot do. As expected of any good theory, classical circuit theory is also useful. Its ulti- mate application is circuit design. The theory leads us to a design methodology that is systematic and precise. It is based on just two fundamental theorems: that the impedance function of a linear, passive circuit is a positive real function, and that the transfer function is a bounded real function, of a complex variable. In this book, we begin with basic principles of circuits, derive their analytic prop- erties in both the time and frequency domains, and state and prove the two important theorems. We then develop an algorithmic method to design common and uncom- mon types of circuits, such as prototype filters, lumped delay lines, constant phase difference circuits, and delay equalizers. Along the way, we learn about the relation between gain and phase, linear and minimum phase functions, group delay, sensi- tivity functions, scattering matrix, synthesis of transfer functions, approximation of filter functions, all-pass circuits, and circuit design by optimization. The book is written as a text suitable for use by seniors or first year graduate students in a second course in circuit theory. It can be covered in one semester or one quarter at a brisk pace. Chapter Two, which is on fundamentals, and Chapter Three, which is on circuits in the time domain, can be omitted, if the principal aim of the course is circuit design. In this age of digital signal processing and analog electronic filters, one may ask why we want to study passive filter design. The reason is that the operating frequency of a digital filter is limited by how fast we can sample an input signal and by how fast we can process the signal samples digitally. While digital circuitry has vii viii Preface made steady improvement in its operating speed, it is still too slow for some circuits used in many wireless communication systems. As to analog electronic filters, scores of configurations have been proposed over the years. The conventional design is to realize a transfer function as a cascade of second order sections, each of which is implemented in a circuit of resistors, capac- itors, integrators and summers. More recently, it is found that a better methodology is to first realize a passive filter as a lossless (inductor-capacitor) ladder terminated in resistors, and then to simulate the passive filter with integrators and summers. The new configuration has superior sensitivity properties. What all this means is that we need to know how passive filters are designed in the first place. Similarly, a microwave filter is usually first designed as a passive filter with in- ductors and capacitors. Then each inductor is replaced by a length of transmission line of certain characteristic impedance and each capacitor by another line of dif- ferent length and characteristic impedance. More commonly, the inductor-capacitor resonant sub-circuits in a passive filter are replaced by microwave resonators con- nected by short lengths of transmission lines. The basis of design is again classical circuit theory. Modern textbooks on analog electronic filters and microwave filters abound, but not those on classical circuit theory. It seems there is a need for a modern text on the mathematical foundations of passive circuit analysis and design, which are what classical circuit theory is all about. Classical circuit theory is old, but it has survived the test of time and it is still relevant today because it is basic. In writing this book, I have benefited from feedback from students at Columbia University, where the draft of the book had been classroom-tested three times. Their comments had been helpful and are hereby gratefully acknowledged. I also want to thank the Department of Electrical Engineering, Columbia Univer- sity, where I taught circuit theory for thirty-five years, for its continual support. In addition, I am grateful to the following institutions for having invited me to teach various aspects of circuit theory to a collective group of outstanding students. The institutions are: Chiao Tong University, Taiwan (1961); The Technical University of Denmark (1973); Indian Institute of Technology, Kanpur (1978); South China University of Technology (1979); Eindhoven University of Technology (1979-80); Shanghai Jiao Tong University (1982, 2000); East China University of Technology (1985, 1990); Beijing Post and Telecommunications University (1990); The Chinese University of Hong Kong (1991-98); Fudan University, Shanghai (2001, 2003); and Columbia Video Network (2005). A book is the work of its author. But to craft it into an endearing product requires the assistance of an experienced editorial and production staff. The staff at Springer played this role, to whom I am most grateful. Pomona, New York Omar Wing June 2008 Contents 1 Introduction ................................................... 1 1.1 A brief history . 1 1.2 What drives circuit theory? . 4 1.3 Scope of this book . 5 1.4 Mathematical programming tools . 6 1.5 Notable people in classical circuit theory . 7 2 Fundamentals ................................................. 11 2.1 Kirchhoff’s laws . 11 2.2 Linear and nonlinear elements . 12 2.3 Linear and nonlinear circuits . 14 2.4 Small-signal equivalent circuits . 15 2.5 Fundamental KVL equations . 16 2.5.1 Conventions . 17 2.5.2 KVL equations. 17 2.6 Fundamental KCL equations . 19 2.7 Tellegen’s theorem . 20 2.8 Energy in coupled inductors . 21 2.9 Passive circuits . 22 2.10 Modified node equations . 23 2.11 Numerical solution . 26 2.11.1 Backward Euler method . 27 2.11.2 Consistent initial conditions . 27 2.11.3 Verification of Tellegen’s theorem . 28 2.11.4 Remarks. 29 Problems . 29 3 Circuit Dynamics .............................................. 35 3.1 State equations . 35 3.1.1 A simple example . 35 3.1.2 Uniqueness of solution. 36 ix x Contents 3.1.3 Normal form . 37 3.2 Independent state variables. 38 3.2.1 Circuit with a capacitor loop . 38 3.2.2 Circuit with an inductor cutset . 39 3.3 Order of state equations . 40 3.3.1 Capacitor loops and inductor cut sets . 40 3.4 Formulation of state equations . 40 3.4.1 Circuits without capacitor loops or inductor cut sets . 41 3.4.2 Circuits with capacitor loops . 42 3.4.3 Circuits with inductor cut sets . 42 3.4.4 Remarks. 43 3.5 Solution of state equations . 44 3.5.1 Impulse response . 45 3.5.2 Examples . 46 3.6 Repeated eigenvalues . 48 3.7 Symbolic solution . 51 3.8 Numerical solution . 52 3.9 Analog computer simulation . 52 3.10 Exponential excitation . 53 Problems . 54 4 Properties in the Frequency Domain ............................. 59 4.1 Preliminaries . 59 4.2 Modified node equations . 60 4.3 Circuits with transconductances . 61 4.4 Reciprocity . 61 4.5 Impedance, admittance . 62 4.5.1 Poles and zeros . 63 4.5.2 Real and imaginary parts . 64 4.5.3 Impedance function from its real part . 64 4.6 Transfer function . 66 4.6.1 Frequency response . 67 4.6.2 Transfer function from its magnitude . 68 4.6.3 All-pass and minimum phase transfer functions . 69 4.6.4 Linear phase and group delay . 70 4.7 Relation between real and imaginary parts . 71 4.8 Gain and phase relation . 74 4.9 Sensitivity function . 76 4.9.1 Computation of sensitivity. ..
Recommended publications
  • Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram
    Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is common for the resistor R and the capacitor C, which is here the source current I (because it passes through both R and C without being divided). Figure (1) Series RC circuit * Now we know that I and resistor voltage VR are in phase or have the same phase angle (there zero crossings are the same on the time axis) and VR is greater than I in magnitude. * Since I equal the capacitor current IC and we know that IC leads the capacitor voltage VC by 90 degrees, we will add VC on the phasor diagram as follows: * Now, the source voltage VS equals the vector summation of VR and VC: Figure (2) Series RC circuit Phasor Diagram Prepared by: Eng. Wiam Anabousi - Important notes on the phasor diagram of series RC circuit shown in figure (2): A- All the vectors are rotating in the same angular speed ω. B- This circuit acts as a capacitive circuit and I leads VS by a phase shift of Ө (which is the current angle if the source voltage is the reference signal). Ө ranges from 0o to 90o (0o < Ө <90o). If Ө=0o then this circuit becomes a resistive circuit and if Ө=90o then the circuit becomes a pure capacitive circuit. C- The phase shift between the source voltage and its current Ө is important and you have two ways to find its value: a- b- = - = - D- Using the phasor diagram, you can find all needed quantities in the circuit like all the voltages magnitude and phase and all the currents magnitude and phase.
    [Show full text]
  • LABORATORY 3: Transient Circuits, RC, RL Step Responses, 2Nd Order Circuits
    Alpha Laboratories ECSE-2010 LABORATORY 3: Transient circuits, RC, RL step responses, 2nd Order Circuits Note: If your partner is no longer in the class, please talk to the instructor. Material covered: RC circuits Integrators Differentiators 1st order RC, RL Circuits 2nd order RLC series, parallel circuits Thevenin circuits Part A: Transient Circuits RC Time constants: A time constant is the time it takes a circuit characteristic (Voltage for example) to change from one state to another state. In a simple RC circuit where the resistor and capacitor are in series, the RC time constant is defined as the time it takes the voltage across a capacitor to reach 63.2% of its final value when charging (or 36.8% of its initial value when discharging). It is assume a step function (Heavyside function) is applied as the source. The time constant is defined by the equation τ = RC where τ is the time constant in seconds R is the resistance in Ohms C is the capacitance in Farads The following figure illustrates the time constant for a square pulse when the capacitor is charging and discharging during the appropriate parts of the input signal. You will see a similar plot in the lab. Note the charge (63.2%) and discharge voltages (36.8%) after one time constant, respectively. Written by J. Braunstein Modified by S. Sawyer Spring 2020: 1/26/2020 Rensselaer Polytechnic Institute Troy, New York, USA 1 Alpha Laboratories ECSE-2010 Written by J. Braunstein Modified by S. Sawyer Spring 2020: 1/26/2020 Rensselaer Polytechnic Institute Troy, New York, USA 2 Alpha Laboratories ECSE-2010 Discovery Board: For most of the remaining class, you will want to compare input and output voltage time varying signals.
    [Show full text]
  • Phasor Analysis of Circuits
    Phasor Analysis of Circuits Concepts Frequency-domain analysis of a circuit is useful in understanding how a single-frequency wave undergoes an amplitude change and phase shift upon passage through the circuit. The concept of impedance or reactance is central to frequency-domain analysis. For a resistor, the impedance is Z ω = R , a real quantity independent of frequency. For capacitors and R ( ) inductors, the impedances are Z ω = − i ωC and Z ω = iω L. In the complex plane C ( ) L ( ) these impedances are represented as the phasors shown below. Im ivL R Re -i/vC These phasors are useful because the voltage across each circuit element is related to the current through the equation V = I Z . For a series circuit where the same current flows through each element, the voltages across each element are proportional to the impedance across that element. Phasor Analysis of the RC Circuit R V V in Z in Vout R C V ZC out The behavior of this RC circuit can be analyzed by treating it as the voltage divider shown at right. The output voltage is then V Z −i ωC out = C = . V Z Z i C R in C + R − ω + The amplitude is then V −i 1 1 out = = = , V −i +ω RC 1+ iω ω 2 in c 1+ ω ω ( c ) 1 where we have defined the corner, or 3dB, frequency as 1 ω = . c RC The phasor picture is useful to determine the phase shift and also to verify low and high frequency behavior. The input voltage is across both the resistor and the capacitor, so it is equal to the vector sum of the resistor and capacitor voltages, while the output voltage is only the voltage across capacitor.
    [Show full text]
  • Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming
    1 Version 2 - Submitted November 28, 1998 for special issue of Computer Methods in Applied Mechanics and Engineering (CMAME journal) edited by David E. Goldberg and Kalyanmoy Deb. Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming J. R. Koza*,a, F. H Bennett IIIb, D. Andrec, M. A. Keaned aSection on Medical Informatics, Department of Medicine, School of Medicine, Stanford University, Stanford, California 94305 USA, [email protected] bChief Scientist, Genetic Programming Inc., Los Altos, California 94023 USA, [email protected] cDivision of Computer Science, University of California. Berkeley, California 94720 USA, [email protected] dChief Scientist, Econometrics Inc., 111 E. Wacker Drive, Chicago, Illinois 60601 USA, [email protected] * Corresponding author. Abstract The design (synthesis) of an analog electrical circuit entails the creation of both the topology and sizing (numerical values) of all of the circuit's components. There has previously been no general automated technique for automatically creating the design for an analog electrical circuit from a high-level statement of the circuit's desired behavior. This paper shows how genetic programming can be used to automate the design of eight prototypical analog circuits, including a lowpass filter, a highpass filter, a bandstop filter, a tri- state frequency discriminator circuit, a frequency-measuring circuit, a 60 dB amplifier, a computational circuit for the square root function, and a time-optimal robot controller circuit. 1. Introduction Design is a major activity of practicing mechanical, electrical, civil, and aeronautical engineers. The design process entails creation of a 2 complex structure to satisfy user-defined requirements.
    [Show full text]
  • Network Analysis
    LECTURE NOTES ON NETWORK ANALYSIS B. Tech III Semester (IARE-R18) Ms. S Swathi Asistant professor ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) DUNDIGAL, HYDERABAD - 50043 1 SYLLABUS MODULE-I NETWORK THEOREMS (DC AND AC) Network Theorems: Tellegen‘s, superposition, reciprocity, Thevenin‘s, Norton‘s, maximum power transfer, Milliman‘s and compensation theorems for DC and AC excitations, numerical problems. MODULE-II SOLUTION OF FIRST AND SECOND ORDER NETWORKS Transient response: Initial conditions, transient response of RL, RC and RLC series and parallel circuits with DC and AC excitations, differential equation and Laplace transform approach. MODULE-III LOCUS DIAGRAMS AND NETWORKS FUNCTIONS Locus diagrams: Locus diagrams of RL, RC, RLC circuits. Network Functions: The concept of complex frequency, physical interpretation, transform impedance, series and parallel combination of elements, terminal ports, network functions for one port and two port networks, poles and zeros of network functions, significance of poles and zeros, properties of driving point functions and transfer functions, necessary conditions for driving point functions and transfer functions, time domain response from pole-zero plot. MODULE-IV TWO PORTNETWORK PARAMETERS Two port network parameters: Z, Y, ABCD, hybrid and inverse hybrid parameters, conditions for symmetry and reciprocity, inter relationships of different parameters, interconnection (series, parallel and cascade) of two port networks, image parameters. MODULE-V FILTERS Filters: Classification of filters, filter networks, classification of pass band and stop band, characteristic impedance in the pass and stop bands, constant-k low pass filter, high pass filter, m- derived T-section, band pass filter and band elimination filter. Text Books: 1.
    [Show full text]
  • Algorithm for Brune's Synthesis of Multiport Circuits
    Technische Universitat¨ Munchen¨ Lehrstuhl fur¨ Nanoelektronik Algorithm for Brune’s Synthesis of Multiport Circuits Farooq Mukhtar Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Information- stechnik der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eins Doktor - Ingenieurs genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. sc. techn. Andreas Herkersdorf Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. techn., Dr. h. c. Peter Russer (i.R.) 2. Univ.-Prof. Dr. techn., Dr. h. c. Josef A. Nossek Die Dissertation wurde am 10.12.2013 bei der Technischen Universit¨at M¨unchen eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 20.06.2014 angenommen. Fakultat¨ fur¨ Elektrotechnik und Informationstechnik Der Technischen Universitat¨ Munchen¨ Doctoral Dissertation Algorithm for Brune’s Synthesis of Multiport Circuits Author: Farooq Mukhtar Supervisor: Prof. Dr. techn. Dr. h.c. Peter Russer Date: December 10, 2013 Ich versichere, dass ich diese Doktorarbeit selbst¨andig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe. M¨unchen, December 10, 2013 Farooq Mukhtar Acknowledgments I owe enormous debt of gratitude to all those whose help and support made this work possible. Firstly to my supervisor Professor Peter Russer whose constant guidance kept me going. I am also thankful for his arrangement of the financial support while my work here and for the conferences which gave me an international exposure. He also involved me in the research cooperation with groups in Moscow, Russia; in Niˇs, Serbia and in Toulouse and Caen, France. Discussions on implementation issues of the algorithm with Dr. Johannes Russer are worth mentioning beside his other help in administrative issues.
    [Show full text]
  • 33. RLC Parallel Circuit. Resonant Ac Circuits
    University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II -- Lecture Notes PHY 204: Elementary Physics II (2021) 12-4-2020 33. RLC parallel circuit. Resonant ac circuits Gerhard Müller University of Rhode Island, [email protected] Robert Coyne University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/phy204-lecturenotes Recommended Citation Müller, Gerhard and Coyne, Robert, "33. RLC parallel circuit. Resonant ac circuits" (2020). PHY 204: Elementary Physics II -- Lecture Notes. Paper 33. https://digitalcommons.uri.edu/phy204-lecturenotes/33https://digitalcommons.uri.edu/ phy204-lecturenotes/33 This Course Material is brought to you for free and open access by the PHY 204: Elementary Physics II (2021) at DigitalCommons@URI. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Lecture Notes by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. PHY204 Lecture 33 [rln33] AC Circuit Application (2) In this RLC circuit, we know the voltage amplitudes VR, VC, VL across each device, the current amplitude Imax = 5A, and the angular frequency ω = 2rad/s. • Find the device properties R, C, L and the voltage amplitude of the ac source. Emax ~ εmax A R C L V V V 50V 25V 25V tsl305 We pick up the thread from the previous lecture with the quantitative anal- ysis of another RLC series circuit. Here our reasoning must be in reverse direction compared to that on the last page of lecture 32. Given the
    [Show full text]
  • Whiguqzgdrjracxb.Pdf
    Analog Filters Using MATLAB Lars Wanhammar Analog Filters Using MATLAB 13 Lars Wanhammar Department of Electrical Engineering Division of Electronics Systems Linkoping¨ University SE-581 83 Linkoping¨ Sweden [email protected] ISBN 978-0-387-92766-4 e-ISBN 978-0-387-92767-1 DOI 10.1007/978-0-387-92767-1 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2008942084 # Springer ScienceþBusiness Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceþBusiness Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Preface This book was written for use in a course at Linkoping¨ University and to aid the electrical engineer to understand and design analog filters. Most of the advanced mathematics required for the synthesis of analog filters has been avoided by providing a set of MATLAB functions that allows sophisticated filters to be designed. Most of these functions can easily be converted to run under Octave as well.
    [Show full text]
  • Implicit Network Descriptions of RLC Networks and the Problem of Re-Engineering
    City Research Online City, University of London Institutional Repository Citation: Livada, M. (2017). Implicit network descriptions of RLC networks and the problem of re-engineering. (Unpublished Doctoral thesis, City, University of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17916/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Implicit Network Descriptions of RLC Networks and the Problem of Re-engineering by Maria Livada A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) in Control Theory in the Systems and Control Research Centre School of Mathematics, Computer Science and Engineering July 2017 Abstract This thesis introduces the general problem of Systems Re-engineering and focuses to the special case of passive electrical networks. Re-engineering differs from classical control problems and involves the adjustment of systems to new requirements by intervening in an early stage of system design, affecting various aspects of the underlined system struc- ture that affect the final control design problem.
    [Show full text]
  • 5 RC Circuits
    Physics 212 Lab Lab 5 RC Circuits What You Need To Know: The Physics In the previous two labs you’ve dealt strictly with resistors. In today’s lab you’ll be using a new circuit element called a capacitor. A capacitor consists of two small metal plates that are separated by a small distance. This is evident in a capacitor’s circuit diagram symbol, see Figure 1. When a capacitor is hooked up to a circuit, charges will accumulate on the plates. Positive charge will accumulate on one plate and negative will accumulate on the other. The amount of charge that can accumulate is partially dependent upon the capacitor’s capacitance, C. With a charge distribution like this (i.e. plates of charge), a uniform electric field will be created between the plates. [You may remember this situation from the Equipotential Surfaces lab. In the lab, you had set-ups for two point-charges and two lines of charge. The latter set-up represents a capacitor.] A main function of a capacitor is to store energy. It stores its energy in the electric field between the plates. Battery Capacitor (with R charges shown) C FIGURE 1 - Battery/Capacitor FIGURE 2 - RC Circuit If you hook up a battery to a capacitor, like in Figure 1, positive charge will accumulate on the side that matches to the positive side of the battery and vice versa. When the capacitor is fully charged, the voltage across the capacitor will be equal to the voltage across the battery. You know this to be true because Kirchhoff’s Loop Law must always be true.
    [Show full text]
  • Experiment 12: AC Circuits - RLC Circuit
    Experiment 12: AC Circuits - RLC Circuit Introduction An inductor (L) is an important component of circuits, on the same level as resistors (R) and capacitors (C). The inductor is based on the principle of inductance - that moving charges create a magnetic field (the reverse is also true - a moving magnetic field creates an electric field). Inductors can be used to produce a desired magnetic field and store energy in its magnetic field, similar to capacitors being used to produce electric fields and storing energy in their electric field. At its simplest level, an inductor consists of a coil of wire in a circuit. The circuit symbol for an inductor is shown in Figure 1a. So far we observed that in an RC circuit the charge, current, and potential difference grew and decayed exponentially described by a time constant τ. If an inductor and a capacitor are connected in series in a circuit, the charge, current and potential difference do not grow/decay exponentially, but instead oscillate sinusoidally. In an ideal setting (no internal resistance) these oscillations will continue indefinitely with a period (T) and an angular frequency ! given by 1 ! = p (1) LC This is referred to as the circuit's natural angular frequency. A circuit containing a resistor, a capacitor, and an inductor is called an RLC circuit (or LCR), as shown in Figure 1b. With a resistor present, the total electromagnetic energy is no longer constant since energy is lost via Joule heating in the resistor. The oscillations of charge, current and potential are now continuously decreasing with amplitude.
    [Show full text]
  • ELECTRICAL CIRCUIT ANALYSIS Lecture Notes
    ELECTRICAL CIRCUIT ANALYSIS Lecture Notes (2020-21) Prepared By S.RAKESH Assistant Professor, Department of EEE Department of Electrical & Electronics Engineering Malla Reddy College of Engineering & Technology Maisammaguda, Dhullapally, Secunderabad-500100 B.Tech (EEE) R-18 MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY II Year B.Tech EEE-I Sem L T/P/D C 3 -/-/- 3 (R18A0206) ELECTRICAL CIRCUIT ANALYSIS COURSE OBJECTIVES: This course introduces the analysis of transients in electrical systems, to understand three phase circuits, to evaluate network parameters of given electrical network, to draw the locus diagrams and to know about the networkfunctions To prepare the students to have a basic knowledge in the analysis of ElectricNetworks UNIT-I D.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C circuits (Series and parallel combinations) for D.C. excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - II A.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C Series circuits for sinusoidal excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - III THREE PHASE CIRCUITS: Phase sequence, Star and delta connection, Relation between line and phase voltages and currents in balanced systems, Analysis of balanced and Unbalanced three phase circuits UNIT – IV LOCUS DIAGRAMS & RESONANCE: Series and Parallel combination of R-L, R-C and R-L-C circuits with variation of various parameters.Resonance for series and parallel circuits, concept of band width and Q factor. UNIT - V NETWORK PARAMETERS:Two port network parameters – Z,Y, ABCD and hybrid parameters.Condition for reciprocity and symmetry.Conversion of one parameter to other, Interconnection of Two port networks in series, parallel and cascaded configuration and image parameters.
    [Show full text]