Implicit Network Descriptions of RLC Networks and the Problem of Re-Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Implicit Network Descriptions of RLC Networks and the Problem of Re-Engineering City Research Online City, University of London Institutional Repository Citation: Livada, M. (2017). Implicit network descriptions of RLC networks and the problem of re-engineering. (Unpublished Doctoral thesis, City, University of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17916/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Implicit Network Descriptions of RLC Networks and the Problem of Re-engineering by Maria Livada A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) in Control Theory in the Systems and Control Research Centre School of Mathematics, Computer Science and Engineering July 2017 Abstract This thesis introduces the general problem of Systems Re-engineering and focuses to the special case of passive electrical networks. Re-engineering differs from classical control problems and involves the adjustment of systems to new requirements by intervening in an early stage of system design, affecting various aspects of the underlined system struc- ture that affect the final control design problem. Addressing problems of re-engineering requires the development of a system representation able to embody these structural changes. In the case of Re-engineering in passive electrical networks, certain types of re- engineering transformations involve alterations of values or nature of existing elements, modification of network's topology and possible evolution of the network. We resort to the Implicit Network Description W (s) as a unifying representation, which stems from the Impedance/Admittance integral-differential models, since it enables the representa- tion of such parametric and structural changes of the system as perturbations on it. By using tools and results from classical network theory and algebraic systems theory, the thesis deals with the development and study of fundamental system aspects of this new description in terms of McMillan degree, regularity and other system properties of the implicit network description. The thesis also examines the effect of transformations that preserve network cardinality on the Implicit Network Description and particularly in the natural frequencies of the network. This leads to the formulation of Determinantal Frequency Assignment Problems for natural frequency improvements. Using the exte- rior algebra, algebraic geometry framework we prove sufficient conditions for complex frequency assignability for a special case of network transformations and we examine whether real solutions to the problem exist. Additionally, transformations linked to the variation of network cardinality, are represented as augmentation or reduction in terms of dimension of the Implicit Network Description and by identifying those that remain intact we are in position to define fixed dynamics, enabling the formulation of partial i structure assignment problems. The results derived in this thesis provide the means for addressing the general systems re-engineering problem in a rather structured setup. Maria Livada City, University of London, July 18, 2017 ii Acknowledgements Undertaking this PhD has been a truly life-changing experience for me and it would not have been possible to do without the support and guidance that I received from many people. First and foremost, I would like to express my deepest gratitude to my supervisor Profes- sor N. Karcanias for giving me inspiration, motivation and guidance during my research studies. Without his supervision, immense knowledge and support the development of my Thesis would not have been possible and without his directions and suggestions on several aspects I would not have managed to overcome the difficulties faced during my research studies. In a more personal level, I would also like to acknowledge the moral support he provided me and the fact that he stood always by me throughout my years in London. I also wish to pay special tribute to Dr. J. Leventides for sharing his knowledge with me, for his support and for his constructive suggestions during my research. The important work he has conducted along with his in-depth knowledge in the fields of Mathemat- ics and Control made the discussions we had invaluable and offered me the chance to consider from a different perspective the subject matter of this Thesis. I also would like to thank all the members of the Research Control Centre in City, University of London for their excellent collaboration and feedback during this work. A special thanks to Dr. E. Milonidis and Professor G. Halikias for their collaboration along with moral support and understanding during the best and the worst of times. Moreover, I would like to acknowledge the external examiner, Professor G. Papavasilopoulos, for his comments and suggestions during Viva examination towards the improvement of my Thesis. Finally, I would like to thank my family for standing by me everywhere, anywhere and for everything, regardless the distance and the circumstances and for believing in me. I am and will be grateful for life for everything you are doing for me. Last but not least, a great thanks goes to my friends, especially those who have or had a similar experience with mine, for being there for me when I needed them most, for all the good and bad times we had and for all their understanding and support throughout these years. iii Declaration of Authorship I, Maria Livada, hereby declare that this thesis titled, `Implicit Network Descriptions of RLC Networks and the Problem of Re-engineering' and the work presented in it are my own. I also confirm that: The work presented in this Thesis is my own unless stated and referenced in the text accordingly. Where I have consulted the published work of others, this is always clearly at- tributed. I have acknowledged all main sources of help. I grant powers of discretion to the Librarian of City University London to allow single copies of this Thesis for study purposes, subject to normal conditions of acknowledgement. Signed: Date: v Contents List of Figures ix List of Tables xi Abbreviations xiii Notation xv 1 Introduction1 2 Systems and Mathematics Background7 2.1 Introduction...................................7 2.2 Background of Graph Theory and Properties................8 2.3 Polynomial Matrices and Matrix Pencils................... 14 2.4 Determinantal Assignment Problem..................... 20 2.5 Tools from Exterior Algebra.......................... 23 2.6 Laplace Expansion Technique......................... 26 2.7 Complex, Real Varieties and Morphisms................... 27 2.8 Intersection Theory of Complex Algebraic Varieties............. 30 2.9 Conclusions................................... 37 3 Systems Re-engineering and Networks: Problem Statement, Litera- ture Review and Research Agenda 39 3.1 Introduction................................... 39 3.2 The Re-engineering Problem......................... 40 3.3 Review of Network Research.......................... 45 3.4 Research Agenda: Systems Theory and Redesign of Internal Implicit Models 56 3.5 Conclusions................................... 57 4 Implicit Network Descriptions and Their Properties 59 4.1 Introduction................................... 59 4.2 Impedance Modeling, Loop Topology and Selection of Independent Loops 60 4.3 Admittance Modeling and Vertex Topology................. 68 4.4 The Internal Network Operator W(s) and the Implicit Network Description 78 4.5 Relationship Between Impedance and Admittance Operators....... 79 4.6 The Network Pencil and its Relationship to the Internal Network Descrip- tion....................................... 82 vii Contents viii 4.7 Network Regularity and Invertibility of W(s)................ 84 4.8 Natural Frequencies and the Network Pencil................. 96 4.9 Conclusions................................... 102 5 Properties of Implicit Network Descriptions and The McMillan De- gree 103 5.1 Introduction................................... 103 5.2 Implicit McMillan Degree and Its Calculation................ 104 5.3 Necessary and Sufficient Conditions For Determining The Implicit McMil- lan Degree.................................... 108 5.4 Graph Systematic Approach of Necessary and Sufficient Conditions.............................. 115 5.5 The Network Pencil P(s) and Links to the McMillan Degree of the Network121 5.6 Examples.................................... 123 5.7 Conclusions................................... 133 6 System Transformations Preserving or Altering Network Cardinality and Possibly the McMillan Degree 135 6.1 Introduction................................... 135 6.2 RLC Network Transformations Preserving McMillan Degree and Network Cardinality................................... 136 6.3 RLC Network Transformations Preserving Cardinality but Altering McMil- lan Degree...................................
Recommended publications
  • Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming
    1 Version 2 - Submitted November 28, 1998 for special issue of Computer Methods in Applied Mechanics and Engineering (CMAME journal) edited by David E. Goldberg and Kalyanmoy Deb. Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming J. R. Koza*,a, F. H Bennett IIIb, D. Andrec, M. A. Keaned aSection on Medical Informatics, Department of Medicine, School of Medicine, Stanford University, Stanford, California 94305 USA, [email protected] bChief Scientist, Genetic Programming Inc., Los Altos, California 94023 USA, [email protected] cDivision of Computer Science, University of California. Berkeley, California 94720 USA, [email protected] dChief Scientist, Econometrics Inc., 111 E. Wacker Drive, Chicago, Illinois 60601 USA, [email protected] * Corresponding author. Abstract The design (synthesis) of an analog electrical circuit entails the creation of both the topology and sizing (numerical values) of all of the circuit's components. There has previously been no general automated technique for automatically creating the design for an analog electrical circuit from a high-level statement of the circuit's desired behavior. This paper shows how genetic programming can be used to automate the design of eight prototypical analog circuits, including a lowpass filter, a highpass filter, a bandstop filter, a tri- state frequency discriminator circuit, a frequency-measuring circuit, a 60 dB amplifier, a computational circuit for the square root function, and a time-optimal robot controller circuit. 1. Introduction Design is a major activity of practicing mechanical, electrical, civil, and aeronautical engineers. The design process entails creation of a 2 complex structure to satisfy user-defined requirements.
    [Show full text]
  • Algorithm for Brune's Synthesis of Multiport Circuits
    Technische Universitat¨ Munchen¨ Lehrstuhl fur¨ Nanoelektronik Algorithm for Brune’s Synthesis of Multiport Circuits Farooq Mukhtar Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Information- stechnik der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eins Doktor - Ingenieurs genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. sc. techn. Andreas Herkersdorf Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. techn., Dr. h. c. Peter Russer (i.R.) 2. Univ.-Prof. Dr. techn., Dr. h. c. Josef A. Nossek Die Dissertation wurde am 10.12.2013 bei der Technischen Universit¨at M¨unchen eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 20.06.2014 angenommen. Fakultat¨ fur¨ Elektrotechnik und Informationstechnik Der Technischen Universitat¨ Munchen¨ Doctoral Dissertation Algorithm for Brune’s Synthesis of Multiport Circuits Author: Farooq Mukhtar Supervisor: Prof. Dr. techn. Dr. h.c. Peter Russer Date: December 10, 2013 Ich versichere, dass ich diese Doktorarbeit selbst¨andig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe. M¨unchen, December 10, 2013 Farooq Mukhtar Acknowledgments I owe enormous debt of gratitude to all those whose help and support made this work possible. Firstly to my supervisor Professor Peter Russer whose constant guidance kept me going. I am also thankful for his arrangement of the financial support while my work here and for the conferences which gave me an international exposure. He also involved me in the research cooperation with groups in Moscow, Russia; in Niˇs, Serbia and in Toulouse and Caen, France. Discussions on implementation issues of the algorithm with Dr. Johannes Russer are worth mentioning beside his other help in administrative issues.
    [Show full text]
  • Whiguqzgdrjracxb.Pdf
    Analog Filters Using MATLAB Lars Wanhammar Analog Filters Using MATLAB 13 Lars Wanhammar Department of Electrical Engineering Division of Electronics Systems Linkoping¨ University SE-581 83 Linkoping¨ Sweden [email protected] ISBN 978-0-387-92766-4 e-ISBN 978-0-387-92767-1 DOI 10.1007/978-0-387-92767-1 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2008942084 # Springer ScienceþBusiness Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceþBusiness Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Preface This book was written for use in a course at Linkoping¨ University and to aid the electrical engineer to understand and design analog filters. Most of the advanced mathematics required for the synthesis of analog filters has been avoided by providing a set of MATLAB functions that allows sophisticated filters to be designed. Most of these functions can easily be converted to run under Octave as well.
    [Show full text]
  • Scattering Parameters - Wikipedia, the Free Encyclopedia Page 1 of 13
    Scattering parameters - Wikipedia, the free encyclopedia Page 1 of 13 Scattering parameters From Wikipedia, the free encyclopedia Scattering parameters or S-parameters (the elements of a scattering matrix or S-matrix ) describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals. The parameters are useful for electrical engineering, electronics engineering, and communication systems design, and especially for microwave engineering. The S-parameters are members of a family of similar parameters, other examples being: Y-parameters,[1] Z-parameters,[2] H- parameters, T-parameters or ABCD-parameters.[3][4] They differ from these, in the sense that S-parameters do not use open or short circuit conditions to characterize a linear electrical network; instead, matched loads are used. These terminations are much easier to use at high signal frequencies than open-circuit and short-circuit terminations. Moreover, the quantities are measured in terms of power. Many electrical properties of networks of components (inductors, capacitors, resistors) may be expressed using S-parameters, such as gain, return loss, voltage standing wave ratio (VSWR), reflection coefficient and amplifier stability. The term 'scattering' is more common to optical engineering than RF engineering, referring to the effect observed when a plane electromagnetic wave is incident on an obstruction or passes across dissimilar dielectric media. In the context of S-parameters, scattering refers to the way in which the traveling currents and voltages in a transmission line are affected when they meet a discontinuity caused by the insertion of a network into the transmission line. This is equivalent to the wave meeting an impedance differing from the line's characteristic impedance.
    [Show full text]
  • Acrobat Distiller, Job 64
    Human-competitive Applications of Genetic Programming John R. Koza Stanford Medical Informatics, Department of Medicine, School of Medicine, Department of Electrical Engineering, School of Engineering, Stanford University, Stanford, California 94305 E-mail: [email protected] Summary: Genetic programming is an automatic technique for producing a computer program that solves, or approximately solves, a problem. This chapter reviews several recent examples of human-competitive results produced by genetic programming. The examples all involve the automatic synthesis of a complex structure from a high-level statement of the requirements for the structure. The illustrative results include examples of automatic synthesis of both the topology and sizing (component values) for analog electrical circuits, automatic synthesis of placement and routing (as well as topology and sizing) for circuits, and automatic synthesis of both the topology and tuning (parameter values) of controllers. 1 Introduction Genetic programming is an automatic technique for producing a computer program that solves, or approximately solves, a problem. Genetic programming addresses the challenge of getting a computer to solve a problem without explicitly programming it. This challenge calls for an automatic system whose input is a high-level statement of a problem’s requirements and whose output is a working program that solves the problem. Paraphrasing Arthur Samuel (1959), this challenge concerns, “How can computers be made to do what needs to be done, without being told exactly how to do it?” Since many problems can be easily recast as a search for a computer program, genetic programming can potentially solve a wide range of types of problems, including problems of control, classification, system identification, and design.
    [Show full text]
  • Performance Analysis of Analog Butterworth Low Pass Filter As Compared to Chebyshev Type-I Filter, Chebyshev Type-II Filter and Elliptical Filter
    Circuits and Systems, 2014, 5, 209-216 Published Online September 2014 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2014.59023 Performance Analysis of Analog Butterworth Low Pass Filter as Compared to Chebyshev Type-I Filter, Chebyshev Type-II Filter and Elliptical Filter Wazir Muhammad Laghari1, Mohammad Usman Baloch1, Muhammad Abid Mengal1, Syed Jalal Shah2 1Electrical Engineering Department, BUET, Khuzdar, Pakistan 2Computer Systems Engineering Department, BUET, Khuzdar, Pakistan Email: [email protected], [email protected], [email protected], [email protected] Received 29 June 2014; revised 31 July 2014; accepted 11 August 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract A signal is the entity that carries information. In the field of communication signal is the time varying quantity or functions of time and they are interrelated by a set of different equations, but some times processing of signal is corrupted due to adding some noise in the information signal and the information signal become noisy. It is very important to get the information from cor- rupted signal as we use filters. In this paper, Butterworth filter is designed for the signal analysis and also compared with other filters. It has maximally flat response in the pass band otherwise no ripples in the pass band. To meet the specification, 6th order Butterworth filter was chosen be- cause it is flat in the pass band and has no amount of ripples in the stop band.
    [Show full text]
  • Traveling Waves and Scattering in Control of Chains
    Traveling waves and scattering in control of chains ZdenˇekHur´ak November 2015 (Version with corrected typos: June 2017) Preface In this text I present my recent research results in the area of distributed control of spatially distributed and/or interconnected dynamical systems. In particular, I approach modeling, analysis and control synthesis for chains of dynamical sys- tems by adopting the traveling-wave and scattering frameworks popular among electrical engineers, and I hope that through this work (and the related publica- tions) I will contribute to (re)introducing these powerful concepts into the control systems engineering community. The broader domain of spatially distributed systems, into which I include both distributed-parameter systems and interconnected lumped systems, has been re- cently witnessing a surge of interest among systems and controls researchers. I am no exception because the topic indeed seems to be of growing practical importance due to ubiquitous networking on one side and MEMS technology and lightweight robotics on the other side. Together with my students we have been investigat- ing the topic for the last several years. Mainly we tried to take advantage of the strong footing on the polynomial (or input-output, or frequency-domain) theo- retical grounds thanks to our great teachers and colleagues like Vladim´ırKuˇcera, Michael Sebek,ˇ Jan Jeˇzekand Didier Henrion, who significantly contributed to the development of those techniques in the previous decades. With my students Petr Augusta, Ivo Herman and Dan Martinec we have even succeeded in pub- lishing some of our results in archival journals. It was only in 2013 that I was made aware of an alternative and not widely popular approach to control of chains of mechanical systems such as masses in- terconnected with springs and dampers|the traveling wave approach based on the concept of a wave transfer function (WTF) as introduced and promoted re- cently by William J.
    [Show full text]
  • The Scienti C Work of Wilhelm Cauer and Its Key Position at The
    Pro c. 16th Eur. Meeting on Cyb ernetics and Systems Research EMCSR, Vienna, April 2 { 5, 2002, vol. 2, pp. 934-939 = Cyb ernetics and Systems, R. Trappl, ed., Austrian So c. for Cyb ernetics Studies. The Scienti c Work of Wilhelm Cauer and its Key Position at the Transition from Electrical Telegraph Techniques to Linear Systems Theory Rainer Pauli Munich UniversityofTechnology D { 80290 Munich Germany email: [email protected] Abstract together with their mutual relations which are de ned by the frequency-indep endent holonomic constraints The pap er sketches a line of historical con- imp osed byinterconnection rules. Therefore, network tinuity ranging from telegraph pioneers and theory ab initio was set up as a purely mathemati- early submarine cable technology of the 19th cal discipline. Most notably, under the standard as- century to some asp ects of mo dern systems sumptions of linearity and time-invariance, the the- and control theory. Sp ecial emphasis is laid ory of passive networks is equivalent to the theory of on the intermediary role of the scienti c work dissipative mechanical systems that p erform small os- of Wilhelm Cauer 1900-1945 on the synthe- cillations around a stable equilibrium. Esp ecially in sis of linear networks. [ ] his early pap ers on network synthesis Cauer, 1926 , [ ] Cauer, 1931b Cauer's mathematical starting p ointis this relation to classical analytical mechanics. Nev- 1 Intro duction ertheless, it is fair to recall that the motivation and While it is almost commonplace that mo dern metho ds detailed structure of the problem was rmly ro oted of data compaction, co ding and encryption in to day's in electrical telegraph techniques of the 19th century, communications all have their ro ots in the techniques esp ecially in submarine cable transmission problems; [ ] of the telegraph pioneers Beauchamp, 2001 , analo- [ ] [ ] [ see Belevitch, 1962 , Darlington, 1984 and Wunsch, gous facts concerning the evolution of classical net- ] 1985 .
    [Show full text]
  • A 1980 Paper by Gray on the Same Subject. He Discusses Earlier Work
    Reviews / Historia Mathematica 35 (2008) 47–60 53 a 1980 paper by Gray on the same subject. He discusses earlier work on the rotation of rigid bodies beginning with Euler and notes that Rodrigues’s aim was to draw attention to rigid body motions as an important object of study. He argues that though the mathematical community was not aware of it, Rodrigues’s paper did, in fact, both make use of the idea of transformation groups and display a clear concern for the issue of noncommutativity of composition of rotations. These fundamental concepts were rediscovered independently, but Rodrigues’s work, due to lack of readership, remained unknown for some time. Eduardo Ortiz takes up the theme of later research on rotations in the final chapter. Following Hamilton’s discovery of quaternions in 1843, rotations were studied principally using this tool. Ortiz gives a nontechnical account focusing on their reception in the French context. This was a gradual process that began to bloom in the 1870s, due to the interests of Hoüel, Allégret, and others. Ortiz also provides an interesting picture of the next generations of Rodrigues’s mathematical family members: Hermite, Picard, and Borel are among them. Two other chapters, by Richard Askey and Ulrich Tamm, investigate details of other aspects of Rodrigues’s mathematical work. Askey draws a mathematical connection between one of Rodrigues’s formulae for Legendre polynomials and a later combinatorial result obtained by Rodrigues. He concludes that Rodrigues would likely have been surprised by this connection, an observation which underlines the primarily mathematical character of this pa- per.
    [Show full text]
  • Descendants of Nathan Spanier 17 Feb 2014 Page 1 1
    Descendants of Nathan Spanier 17 Feb 2014 Page 1 1. Nathan Spanier (b.1575-Stadthagen,Schaumburg,Niedersachsen,Germany;d.12 Nov 1646-Altona,SH,H,Germany) sp: Zippora (m.1598;d.5 Apr 1532) 2. Isaac Spanier (d.1661-Altona) 2. Freude Spanier (b.Abt 1597;d.25 Sep 1681-Hannover) sp: Jobst Joseph Goldschmidt (b.1597-witzenhausen,,,Germany;d.30 Jan 1677-Hannover) 3. Moses Goldschmidt 3. Abraham Goldschmidt sp: Sulke Chaim Boas 4. Sara Hameln 4. Samuel Abraham Hameln sp: Hanna Goldschmidt (b.1672) 3. Jente Hameln Goldschmidt (b.Abt 1623;d.25 Jul 1695-Hannover) sp: Solomon Gans (b.Abt 1620;d.6 Apr 1654-Hannover) 4. Elieser Suessmann Gans (b.Abt 1642;d.16 Oct 1724-Hannover) sp: Schoenle Schmalkalden 5. Salomon Gans (b.Abt 1674-Hameln;d.1733-Celle) sp: Gella Warburg (d.1711) 6. Jakob Salomon Gans (b.1702;d.1770-Celle) sp: Freude Katz (d.1734) 7. Isaac Jacob Gans (b.1723/1726;d.12 Mar 1798) sp: Pesse Pauline Warendorf (d.1 Dec 1821) 8. Fradchen Gans sp: Joachim Marcus Ephraim (b.1748-Berlin;d.1812-Berlin) 9. Susgen Ephraim (b.24 Sep 1778-Berlin) 9. Ephraim Heymann Ephraim (b.27 Aug 1784;d.Bef 1854) sp: Esther Manasse 10. Debora Ephraim sp: Heimann Mendel Stern (b.1832;d.1913) 11. Eugen Stern (b.1860;d.1928) sp: Gertrude Lachmann (b.1862;d.1940) 12. Franz Stern (b.1894;d.1960) sp: Ellen Hirsch (b.1909;d.2001) 13. Peter Stern Bucky (b.1933-Berlin;d.2001) sp: Cindy 10. Friederike Ephraim (b.1833;d.1919) sp: Leiser (Lesser) Lowitz (b.Abt 1827;m.11 Jan 1854) 9.
    [Show full text]
  • Pursuit of the Universal
    Arnold Beckmann · Laurent Bienvenu Nataša Jonoska (Eds.) Pursuit LNCS 9709 of the Universal 12th Conference on Computability in Europe, CiE 2016 Paris, France, June 27 – July 1, 2016 Proceedings 123 Lecture Notes in Computer Science 9709 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, Lancaster, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Zürich, Switzerland John C. Mitchell Stanford University, Stanford, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen TU Dortmund University, Dortmund, Germany Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbrücken, Germany More information about this series at http://www.springer.com/series/7407 Arnold Beckmann • Laurent Bienvenu Nataša Jonoska (Eds.) Pursuit of the Universal 12th Conference on Computability in Europe, CiE 2016 Paris, France, June 27 – July 1, 2016 Proceedings 123 Editors Arnold Beckmann Nataša Jonoska Computer Science Mathematics and Statistics Swansea University University of South Florida Swansea Tampa, FL UK USA Laurent Bienvenu IRIF Université Paris-Diderot - Paris 7 Paris France ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-319-40188-1 ISBN 978-3-319-40189-8 (eBook) DOI 10.1007/978-3-319-40189-8 Library of Congress Control Number: 2016940339 LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues © Springer International Publishing Switzerland 2016 This work is subject to copyright.
    [Show full text]
  • Microstrip Butterworth Lowpass Filter Design
    Owusu Prince Yeboah Microstrip Butterworth Lowpass Filter Design Metropolia University of Applied Sciences Bachelor of Engineering Electronics Engineering Bachelor’s Thesis 13th January 2020 Author Prince Yeboah Owusu Title Microstrip Butterworth Lowpass Filter Design Number of Pages 29 pages + 1 appendix Date 13th January 2020 Degree Bachelor of Engineering Degree Programme Electronics Engineering Professional Major Instructors Heikki Valmu, Principal Lecturer (Metropolia UAS) Lowpass filters of different kinds are almost ubiquitous in RF and microwave engineering applications. The design of filters therefore is crucial in the study of electronics. This thesis aims to explore the design of three different types of Lowpass Butterworth filter namely Lumped element, Stepped Impedance and Stubs designs, and then compare and contrast their various stimulated responses and actual responses. This paper gives a rather brief but succinct theoretical framework and, where necessary, some historical background to the subjects and focuses more on the design. There is a great amount of literature on the in-depth mathematical and design identities used in this paper. This thesis utilizes the available knowledge for the designs. The filters were designed with specific given parameters employing the NI AWR software for design and simulation. Finally, the designed layouts were printed using of a PCB printing machine and analyzed using a network analyzer. The results obtained weren’t as expected, the Lumped element design produced an unexpected accurate
    [Show full text]