A Study of the Synthesis of 3-Port Electrical Filters with Chebyshev Or Elliptic Response Characteristics Bruce Vaughn Smith Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effects of High Frequency Current Ripple on Electric Vehicle Battery Performance
Original citation: Uddin, Kotub , Moore, Andrew D. , Barai, Anup and Marco, James. (2016) The effects of high frequency current ripple on electric vehicle battery performance. Applied Energy, 178 . pp. 142-154. Permanent WRAP URL: http://wrap.warwick.ac.uk/80006 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Applied Energy 178 (2016) 142–154 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy The effects of high frequency current ripple on electric vehicle battery performance ⇑ Kotub Uddin , Andrew D. Moore, Anup Barai, James Marco WMG, International Digital Laboratory, The University of Warwick, Coventry CV4 7AL, UK highlights Experimental study into the impact of current ripple on li-ion battery degradation. 15 cells exercised with 1200 cycles coupled AC–DC signals, at 5 frequencies. Results highlight a greater spread of degradation for cells exposed to AC excitation. Implications for BMS control, thermal management and system integration. article info abstract Article history: The power electronic subsystems within electric vehicle (EV) powertrains are required to manage both Received 8 April 2016 the energy flows within the vehicle and the delivery of torque by the electrical machine. -
Emotion Perception and Recognition: an Exploration of Cultural Differences and Similarities
Emotion Perception and Recognition: An Exploration of Cultural Differences and Similarities Vladimir Kurbalija Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia +381 21 4852877, [email protected] Mirjana Ivanović Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia +381 21 4852877, [email protected] Miloš Radovanović Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia +381 21 4852877, [email protected] Zoltan Geler Department of Media Studies, Faculty of Philosophy, University of Novi Sad dr Zorana Đinđića 2, 21000 Novi Sad, Serbia +381 21 4853918, [email protected] Weihui Dai School of Management, Fudan University Shanghai 200433, China [email protected] Weidong Zhao School of Software, Fudan University Shanghai 200433, China [email protected] Corresponding author: Vladimir Kurbalija, tel. +381 64 1810104 ABSTRACT The electroencephalogram (EEG) is a powerful method for investigation of different cognitive processes. Recently, EEG analysis became very popular and important, with classification of these signals standing out as one of the mostly used methodologies. Emotion recognition is one of the most challenging tasks in EEG analysis since not much is known about the representation of different emotions in EEG signals. In addition, inducing of desired emotion is by itself difficult, since various individuals react differently to external stimuli (audio, video, etc.). In this article, we explore the task of emotion recognition from EEG signals using distance-based time-series classification techniques, involving different individuals exposed to audio stimuli. -
Theory and Techniques of Network Sensitivity Applied to Electrical Device Modelling and Circuit Design
r THEORY AND TECHNIQUES OF NETWORK SENSITIVITY APPLIED TO ELECTRICAL DEVICE MODELLING AND CIRCUIT DESIGN • A thesis submitted for the degree of Doctor of Philosophy, in the Faculty of Engineering, University of London by Pedro Antonio Villalaz Communications Section, Department of Electrical Engineering Imperial College of Science and Technology, University of London September 1972 SUMMARY Chapter 1 is meant to provide a review of modelling as used in computer aided circuit design. Different types of model are distinguished according to their form or their application, and different levels of modelling are compared. Finally a scheme is described whereby models are considered as both isolated objects, and as objects embedded in their circuit environment. Chapter 2 deals with the optimization of linear equivalent circuit models. After some general considerations on the nature of the field of optimization, providing a limited survey, one particular optimization algorithm, the 'steepest descent method' is explained. A computer program has been written (in Fortran IV), using this method in an iterative process which allows to optimize the element values as well as (within certain limits) the topology of the models. Two different methods for the computation of the gradi- ent, which are employed in the program, are discussed in connection with their application. To terminate Chapter 2 some further details relevant to the optimization procedure are pointed out, and some computed examples illustrate the performance of the program. The next chapter can be regarded as a preparation for Chapters 4 and 5. An efficient method for the computation of large, change network sensitivity is described. A change in a network or equivalent circuit model element is simulated by means of an addi- tional current source introduced across that element. -
Switching-Ripple-Based Current Sharing for Paralleled Power Converters
Switching-ripple-based current sharing for paralleled power converters The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Perreault, D.J., K. Sato, R.L. Selders, and J.G. Kassakian. “Switching-Ripple-Based Current Sharing for Paralleled Power Converters.” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 46, no. 10 (1999): 1264–1274. © 1999 IEEE As Published http://dx.doi.org/10.1109/81.795839 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Final published version Citable link http://hdl.handle.net/1721.1/86985 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. 1264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 10, OCTOBER 1999 Switching-Ripple-Based Current Sharing for Paralleled Power Converters David J. Perreault, Member, IEEE, Kenji Sato, Member, IEEE, Robert L. Selders, Jr., and John G. Kassakian, Fellow, IEEE Abstract— This paper presents the implementation and ex- perimental evaluation of a new current-sharing technique for paralleled power converters. This technique uses information naturally encoded in the switching ripple to achieve current sharing and requires no intercell connections for communicating this information. Practical implementation of the approach is addressed and an experimental evaluation, based on a three-cell prototype system, is also presented. It is shown that accurate and stable load sharing is obtained over a wide load range. Finally, an alternate implementation of this current-sharing technique is described and evaluated. -
IIR Filterdesign
UNIVERSITY OF OSLO IIR filterdesign Sverre Holm INF34700 Digital signalbehandling DEPARTMENT OF INFORMATICS UNIVERSITY OF OSLO Filterdesign 1. Spesifikasjon • Kjenne anven de lsen • Kjenne designmetoder (hva som er mulig, FIR/IIR) 2. Apppproksimas jon • Fokus her 3. Analyse • Filtre er som rege l spes ifiser t i fre kvens domene t • Også analysere i tid (fase, forsinkelse, ...) 4. Realisering • DSP, FPGA, PC: Matlab, C, Java ... DEPARTMENT OF INFORMATICS 2 UNIVERSITY OF OSLO Sources • The slides about Digital Filter Specifications have been a dap te d from s lides by S. Mitra, 2001 • Butterworth, Chebychev, etc filters are based on Wikipedia • Builds on Oppenheim & Schafer with Buck: Discrete-Time Signal Processing, 1999. DEPARTMENT OF INFORMATICS 3 UNIVERSITY OF OSLO IIR kontra FIR • IIR filtre er mer effektive enn FIR – færre koe ffisi en ter f or samme magnitu de- spesifikasjon • Men bare FIR kan gi eksakt lineær fase – Lineær fase symmetrisk h[n] ⇒ Nullpunkter symmetrisk om |z|=1 – Lineær fase IIR? ⇒ Poler utenfor enhetssirkelen ⇒ ustabilt • IIR kan også bli ustabile pga avrunding i aritme tikken, de t kan ikke FIR DEPARTMENT OF INFORMATICS 4 UNIVERSITY OF OSLO Ideal filters • Lavpass, høypass, båndpass, båndstopp j j HLP(e ) HHP(e ) 1 1 – 0 c c – c 0 c j j HBS(e ) HBP (e ) –1 1 – –c1 – – c2 c2 c1 c2 c2 c1 c1 DEPARTMENT OF INFORMATICS 5 UNIVERSITY OF OSLO Prototype low-pass filter • All filter design methods are specificed for low-pass only • It can be transformed into a high-pass filter • OiOr it can be p lace -
Output Ripple Voltage for Buck Switching Regulator (Rev. A)
Application Report SLVA630A–January 2014–Revised October 2014 Output Ripple Voltage for Buck Switching Regulator Surinder P. Singh, Ph.D., Manager, Power Applications Group............................. WEBENCH® Design Center ABSTRACT Switched-mode power supplies (SMPSs) are used to regulate voltage to a certain level. SMPSs have an inherent switching action, which causes the currents and voltages in the circuit to switch and fluctuate. The output voltage also has ripple on top of the regulated steady-state DC value. Designers of power systems consider the output voltage ripple to be both a key parameter for design considerations and a key figure of merit. The online WEBENCH® Power Designer recognizes the key importance of peak-to-peak voltage output ripple voltage—the ripple voltage is calculated and reported in the visualizer [1]. This application report presents a closed-form analytical formulation for the output voltage ripple waveform and the peak-to-peak ripple voltage. This formulation is accurate over all regions of operation and harmonizes the peak-to-peak ripple voltage calculation over all regions of operation. The new analytical formulation presented in this application report gives an accurate evaluation of the output ripple as compared to the simplified linear or root-mean square (RMS) approximations often used. In this application report, the analytical model for output voltage waveform and peak-to-peak ripple voltage for buck is derived. This model is validated against SPICE TINA-TI simulations. This report presents the behavior of ripple peak-to-voltage for various input conditions and choices of output capacitor and compare it against SPICE TINA-TI results. -
13.2 Analog Elliptic Filter Design
CHAPTER 13 IIR FILTER DESIGN 13.2 Analog Elliptic Filter Design This document carries out design of an elliptic IIR lowpass analog filter. You define the following parameters: fp, the passband edge fs, the stopband edge frequency , the maximum ripple Mathcad then calculates the filter order and finds the zeros, poles, and coefficients for the filter transfer function. Background Elliptic filters, so called because they employ elliptic functions to generate the filter function, are useful because they have equiripple characteristics in the pass and stopband regions. This ensures that the lowest order filter can be used to meet design constraints. For information on how to transform a continuous-time IIR filter to a discrete-time IIR filter, see Section 13.1: Analog/Digital Lowpass Butterworth Filter. For information on the lowest order polynomial (as opposed to elliptic) filters, see Section 14: Chebyshev Polynomials. Mathcad Implementation This document implements an analog elliptic lowpass filter design. The definitions below of elliptic functions are used throughout the document to calculate filter characteristics. Elliptic Function Definitions TOL ≡10−5 Im (ϕ) Re (ϕ) ⌠ 1 ⌠ 1 U(ϕ,k)≡1i⋅ ⎮――――――dy+ ⎮―――――――――dy ‾‾‾‾‾‾‾‾‾‾‾‾2‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾2‾ ⎮ 2 ⎮ 2 ⌡ 1−k ⋅sin(1j⋅y) ⌡ 1−k ⋅sin(1j⋅ Im(ϕ)+y) 0 0 ϕ≡1i sn(uk, )≡sin(root(U(ϕ,k)−u,ϕ)) π ― 2 ⌠ 1 L(k)≡⎮――――――dy ‾‾‾‾‾‾‾‾‾‾2‾ ⎮ 2 ⌡ 1−k ⋅sin(y) 0 ⎛⎛ ⎞⎞ 2 1− ‾1‾−‾k‾2‾ V(k)≡――――⋅L⎜⎜――――⎟⎟ 1+ ‾1‾−‾k‾2‾ ⎝⎜⎝⎜ 1+ ‾1‾−‾k‾2‾⎠⎟⎠⎟ K(k)≡if(k<.9999,L(k),V(k)) Design Specifications First, the passband edge is normalized to 1 and the maximum passband response is set at one. -
Advanced Electronic Systems Damien Prêle
Advanced Electronic Systems Damien Prêle To cite this version: Damien Prêle. Advanced Electronic Systems . Master. Advanced Electronic Systems, Hanoi, Vietnam. 2016, pp.140. cel-00843641v5 HAL Id: cel-00843641 https://cel.archives-ouvertes.fr/cel-00843641v5 Submitted on 18 Nov 2016 (v5), last revised 26 May 2021 (v8) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. advanced electronic systems ST 11.7 - Master SPACE & AERONAUTICS University of Science and Technology of Hanoi Paris Diderot University Lectures, tutorials and labs 2016-2017 Damien PRÊLE [email protected] Contents I Filters 7 1 Filters 9 1.1 Introduction . .9 1.2 Filter parameters . .9 1.2.1 Voltage transfer function . .9 1.2.2 S plane (Laplace domain) . 11 1.2.3 Bode plot (Fourier domain) . 12 1.3 Cascading filter stages . 16 1.3.1 Polynomial equations . 17 1.3.2 Filter Tables . 20 1.3.3 The use of filter tables . 22 1.3.4 Conversion from low-pass filter . 23 1.4 Filter synthesis . 25 1.4.1 Sallen-Key topology . 25 1.5 Amplitude responses . 28 1.5.1 Filter specifications . 28 1.5.2 Amplitude response curves . -
Algorithm for Brune's Synthesis of Multiport Circuits
Technische Universitat¨ Munchen¨ Lehrstuhl fur¨ Nanoelektronik Algorithm for Brune’s Synthesis of Multiport Circuits Farooq Mukhtar Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Information- stechnik der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eins Doktor - Ingenieurs genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. sc. techn. Andreas Herkersdorf Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. techn., Dr. h. c. Peter Russer (i.R.) 2. Univ.-Prof. Dr. techn., Dr. h. c. Josef A. Nossek Die Dissertation wurde am 10.12.2013 bei der Technischen Universit¨at M¨unchen eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 20.06.2014 angenommen. Fakultat¨ fur¨ Elektrotechnik und Informationstechnik Der Technischen Universitat¨ Munchen¨ Doctoral Dissertation Algorithm for Brune’s Synthesis of Multiport Circuits Author: Farooq Mukhtar Supervisor: Prof. Dr. techn. Dr. h.c. Peter Russer Date: December 10, 2013 Ich versichere, dass ich diese Doktorarbeit selbst¨andig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe. M¨unchen, December 10, 2013 Farooq Mukhtar Acknowledgments I owe enormous debt of gratitude to all those whose help and support made this work possible. Firstly to my supervisor Professor Peter Russer whose constant guidance kept me going. I am also thankful for his arrangement of the financial support while my work here and for the conferences which gave me an international exposure. He also involved me in the research cooperation with groups in Moscow, Russia; in Niˇs, Serbia and in Toulouse and Caen, France. Discussions on implementation issues of the algorithm with Dr. Johannes Russer are worth mentioning beside his other help in administrative issues. -
T/HIS 15.0 User Manual
For help and support from Oasys Ltd please contact: UK The Arup Campus Blythe Valley Park Solihull B90 8AE United Kingdom Tel: +44 121 213 3399 Email: [email protected] China Arup 39/F-41/F Huaihai Plaza 1045 Huaihai Road (M) Xuhui District Shanghai 200031 China Tel: +86 21 3118 8875 Email: [email protected] India Arup Ananth Info Park Hi-Tec City Madhapur Phase-II Hyderabad 500 081, Telangana India Tel: +91 40 44369797 / 98 Email: [email protected] Web:www.arup.com/dyna or contact your local Oasys Ltd distributor. LS-DYNA, LS-OPT and LS-PrePost are registered trademarks of Livermore Software Technology Corporation User manual Version 15.0, May 2018 T/HIS 0 Preamble 0.1 Text conventions used in this manual 0.1 1 Introduction 1.1 1.1 Program Limits 1.1 1.2 Running T/HIS 1.2 1.3 Command Line Options 1.4 2 Using Screen Menus 2.1 2.1 Basic screen menu layout 2.1 2.2 Mouse and keyboard usage for screen-menu interface 2.2 2.3 Dialogue input in the screen menu interface 2.4 2.4 Window management in the screen interface 2.4 2.5 Dynamic Viewing (Using the mouse to change views). 2.5 2.6 "Tool Bar" Options 2.6 3 Graphs and Pages 3.1 3.1 Creating Graphs 3.1 3.2 Page Size 3.2 3.3 Page Layouts 3.2 3.3.1 Automatic Page Layout 3.2 3.4 Pages 3.6 3.5 Active Graphs 3.6 4 Global Commands and Pages 4.1 4.1 Page Number 4.1 4.2 PLOT (PL) 4.1 4.3 POINT (PT) 4.2 4.4 CLEAR (CL) 4.2 4.5 ZOOM (ZM) 4.2 4.6 AUTOSCALE (AU) 4.2 4.7 CENTRE (CE) 4.2 4.8 MANUAL 4.2 4.9 STOP 4.2 4.10 TIDY 4.2 4.11 Additional Commands 4.3 5 Main Menu 5.1 5.0 Selecting Curves -
Synthesis of Multiterminal RC Networks with the Aid of a Matrix
SNTHES IS OF MULT ITER? INAL R C ETWO RKS WITH TIIF OF A I'.'ATRIX TRANSFOiATIO by 1-CHENG CHAG A THESIS submitted to OREGO STATF COLLEOEt in partial fulfillment of the requirements for the degree of !1ASTER OF SCIENCE Jurie 1961 APPROVED: Redacted for privacy Associate Professor of' Electrical Erigineerthg In Charge of Major Re6acted for privacy Head of the Department of Electrical Engineering Redacted for privacy Chairman of School Graduate Committee / Redacted for_privacy________ Dean of Graduate School Date thesis is presented August 9, 1960 Tyred by J nette Crane A CKNOWLEDGMENT This the3ls was accomplished under the supervision cf Associate professor, Hendrick Oorthuys. The author wishos to exnress his heartfelt thanks to Professor )orthuys for his ardent help and constant encourap;oment. TABL1 OF CONTENTS page Introductior , . i E. A &eneral ranfrnat1on Theory for Network Synthesis . 3 II. Synthesis of Multitermin.. al RC etworks from a rescribec Oren- Circuit Iì'ipedance atrix . 9 A. Open-Circuit Impedance latrix . 10 B. Node-Admittance 1atries . 11 C, Synthesis Procedure ....... 16 III. RC Ladder Synthesis . 23 Iv. Conclusion ....... 32 V. ii11io;raphy ...... * . 35 Apoendices ....... 37 LIST OF FIGURES Fig. Page 1. fetwork ytheszing Zm(s). Eq. (2.13) . 22 2 Alternato Realization of Z,"'). 22 Eq. (2.13) .......... ietwor1?. , A Ladder ........ 31 4. RC Ladder Realization of Z(s). r' L) .Lq. \*)...J.......... s s . s s S1TTHES I S OF ULT ITERM INAL R C NETWORKS WITH THE AID OF A MATRIX TRANSFOMATIO11 L'TRODUCT ION in the synthesis of passive networks, one of the most Imoortant problems is to determine realizability concU- tions. -
Classic Filters There Are 4 Classic Analogue Filter Types: Butterworth, Chebyshev, Elliptic and Bessel. There Is No Ideal Filter
Classic Filters There are 4 classic analogue filter types: Butterworth, Chebyshev, Elliptic and Bessel. There is no ideal filter; each filter is good in some areas but poor in others. • Butterworth: Flattest pass-band but a poor roll-off rate. • Chebyshev: Some pass-band ripple but a better (steeper) roll-off rate. • Elliptic: Some pass- and stop-band ripple but with the steepest roll-off rate. • Bessel: Worst roll-off rate of all four filters but the best phase response. Filters with a poor phase response will react poorly to a change in signal level. Butterworth The first, and probably best-known filter approximation is the Butterworth or maximally-flat response. It exhibits a nearly flat passband with no ripple. The rolloff is smooth and monotonic, with a low-pass or high- pass rolloff rate of 20 dB/decade (6 dB/octave) for every pole. Thus, a 5th-order Butterworth low-pass filter would have an attenuation rate of 100 dB for every factor of ten increase in frequency beyond the cutoff frequency. It has a reasonably good phase response. Figure 1 Butterworth Filter Chebyshev The Chebyshev response is a mathematical strategy for achieving a faster roll-off by allowing ripple in the frequency response. As the ripple increases (bad), the roll-off becomes sharper (good). The Chebyshev response is an optimal trade-off between these two parameters. Chebyshev filters where the ripple is only allowed in the passband are called type 1 filters. Chebyshev filters that have ripple only in the stopband are called type 2 filters , but are are seldom used.