<<

. .._ “5+6.a H75%4’ C.5 National Academy ““”v of Sciences ! National Research Council

NUCLEAR SCIENCE SERIES

The Radiochemistry of

. . I COMMlllEE ON NUCLEAR SCIENCE L.F.CUHTIM,Chd- HOBLliWD.EVANS,ViC#Ckal- N6ibndBureanofSbudar& MMU~ttn InatUubofTechdcsY

J.A. DeJOHHN, .SwmItmy WeOUnglmussHleotrbCorpxntbn C.J.MMtK~ J.w.mvmx,JR. OakRidgeNatid I.mbOmtorg Mastiudts hBtiblb d TeohmlosY ROBERTG.COCWEAN E.D.KLEMA TaX8#AgriOultaualandMechaldd NorthwesternIJnlveralty collage W.WAYNBMSINKE SAMUELEP61’KIN Untvern[&ofMtuhlgna Cdlfomln hmtihrteofTeahmlc# J.J.NIC-N u.FANO MemorialHoaPlt4NewYork NatlandBureauofShndar& HOBBETI.PLATZMAN EHBBERTGO~ IahOlatdredeChimlePhyOiqw IUndearmvelopmemtcorponnon0! D.M. VAN PATTER Amarl13a BmtolEaseorahF~on

LIAISONMEMBERS

PAULC,.AEB~LD ~S K. REED Atomfo EnmsY Cammlmdon U.E.Ah Force J.HOWABDMo~ WILLIAME.WRIGHT NatlondSdem?aFoundation Ofbsd NavalRmenrah

SUBCOMMlllEEON RADIOCHEMISTRY W,WAYNEMEINKS,Chairman EARLHYDE Unlv8r0i~ofMicblgnn Unlvmsi~.ofCdfomda(Berkeley) NATNANBALI.OU JUIJANNIEIAEN Nwd HxIIologlcalDefense Iabmalory HanfordIatarntc.fien GREQORYFLCHOPPIN G.DAVIDO’IOZLLEY PloritiStatsUntveraItg OakHidseNntlonalIahorntnry GEORGEA CCfWAN ELIJSP.STEINBERG I.DOAlamoaS4ientfficIabxatory ArEonneNation.dI.mlwrbry ARTHUHW,FAIRHALL PETERC.STEVENSON Ur&ersiWofWn9htrgbm Untveral&ofCdlfOrnln(Ltvermore) JEROMEHuDIS DUANEN,SUNDEHMAN BnmkhavmNauonnlLaboratory BaUd10MeumrldInstitita

CONSULTANTS HERBERTM.CI.AHK JOHNW.WINCHESTER R&mluerPolytedmlcInstitute MamwtwettaJnsuhJwofTectmdc@y $wd. pq94r%p CHEMISTRY ..h C*5

The Radiochemistry of Phosphorus

W. T. MULLINS and G. W. LEDDICOTTE

Oak Ridge National Laboratory Oak Ridge, Tennessee

IssuanceDate:?vlarch1962

LQs AIAMos scmNTIFxc LABORATORY

MAY4-1962

ImmARIEs PROPERTY

Subcommittee on Radiochemistry NationalAcademy of Sciences—National Research Council

PrintedInUSA.Price$0.50.AvatlablefromtheOfficeofTed.mical Services,DeparbnentofCommerce,Washington25,D.C. FOREWORD

The Subcommittee on Radlochem36try Is one of a number of subcommittees working under the Committee on Nuclear science within the National Academy of Sclencee - National Research council . Its members represent government, industrial, and university laboratories @ the areas of nuclear chemlBtry and analytical chemistry.

The Subcommittee has concerned Itself with thoee areas of nuclear science which involve the chemist, such as the collec- tion and dlstrlbutlon of radlochemlcal procedures, the estab- lishment of speclf~catlons for radlochemically pure reagents, avallablllty of cyclotron tti for service irradiations, the place of radlochemlstry In the undergraduate college program, etc.

This series of monographs has grown out of the need for up-to-date compilations of radlochemical tiformatlon and pro- cedures. The Subcommittee has endeavored to present a series which will be of maximum use to the workin&Bclentlst and which contains the latest available information. Each mono- graph collects in one volume the pertinent information required for radlochemlcal wark with en individual element or a of closely related elements.

An e~ert In the radlochemistry of the particular element haB written the monograph, following a standard format developed by the Subcommittee. The Atomic ”Energy Commieslon has spon60red the printing of the series.

The Subcommittee is confident these publications will be useful not only to the radiochemist but also ,to the research worker in other fields such as physics, biochemistry or medictie who wlshee to use radlochemical techniques to solve a specific p~blem .

W. Wayne Meinke, .Wizman Subcommittee on Radiochemistry

111 INTRODUCTION

This volume which deals with the radlochemlatry of phosphorous is one of a series of monographs on radiochemlstry of the elements. There is Included a review of the nuclear and chemical features of particular interest to the radlochemlst , a discussion of prob- lems”of dissolution of a sample and counting techniques, and finally, a collection of radlochemlcal procedures for the element as found in the literature.

The series of monographs will cover all elements for which radlochemlcal procedures are pertinent. Plans Include revision of the monograph periodically as new techniques and procedures warrant. The rehder is therefore encotiraged to call to the attention of the author any published cirunpublished materfal on the radlochemlstry of phosphorous which might be included In a re- vised version of the monograph.

iv CONTENTS

I. GeneralReferenceson the Inorganicand Analytical. Chemistryofphosphonla...... 1

II. The RadioactiveNuclldesof l%osphoms ...... 1

The GeneralChemistryof phosphorus...... 2 A. ElementaryFnosphorue...... B. The chemical.Gm@uude of phosphorus...... : 1. Reactiormwith ...... 2. Reactionswith ...... 4 3. ReaCtiOIISwith ~ti...... 6 k. Reaction5with the ~O@M ...... 6 5. Reactionswith Nitrogea...... 7 6. Reactionswith Metal~...... 7

Iv. The AnalY-tid Chemistryof PhosphQrua...... -I A. Separationby Precipitation...... 8 B. Separationby Electroly6ism...... 9 c. Separationby Volatility...... 9 l.).SolvsntExtractionSeptiona ...... 10 E. ChrWL9to17raDhicSePamtions...... 10 1. With-In&nic-Adeofbent6...... 10 2. By Ion ExchangeRestis ...... I-1 3. By Paper Cbmm3togmphy ...... I-1

v. Dissolutionof SamplesContainingphosphorus...... 12

VI. &fe’qyRactices ...... 12

VII. CountingTechniquesfor the RadioactivePhoephorueIsotopes.. . 13

VIII. RadiochemlcalProceduresfor the phosphorusFdlonuclldes. . . . 13

References...... %...... 29

v The Radioch6mistry of Phosphorus

W. T. MULLINS and G. W. LkDDIC@TE Oak Ridge National Laboratory* Oak Ridge, Tennessee

I. GENERALREFERENCESON THE INoRGAmc AND ANALYTICALCHmImRY OF PHOSPHORUS

Renw,H., Treatim on Inorgsmlc Chelmtry, Volume1, Elsevier, Ametedsm (1956).

Kleinberg,J., Argersinger,W. J., Jr., and Griswold,E., bor”@nlc Chemistry,Heath,Boston (1960).

Hilleb&nd,”W. F., Luudell,G. E. F., Bright,H. A., and Hoffman, J. L., ApplledInorgmic Analysis,JohnWiley and Sons,New York, 1958.

Wilson,C. L.,“andWilson,D. W., ComprehensiveAnalyticalchemistry, Elaevier,hetemhu, 1959.

Slenko,M. J., and Plane,“R.A., Cheroistqy,McGraw-EHU, New York, 1957.

Ckrlot, G., and Bezier,D., @antltativeInorganicAndy ala, John Wiley and Sons,New York,.1957.

Sidgwick,N. V., The Chemical.Elementsand Their Compounde,university Press,oxford,1951.

Vea Wazer,J. R., Phosphome and Its cow und.e: VolumeI: Chemistzy, Intersclence,New York, 1958.

Hutchh.eon,E., Chemistti- The Elementsand TheirReactions, Saunders,Pbiladelphla,1959.

II. RADIOACTIVE~S OF PHOmORUS

The radioactivenuclideaof phosphorusthat are of Interestin the rsdlo- chemistzyof phosphorusare .@venin Table I. Tbls tiblehas been coqlled

*Operatedfor U. S. AtomicEnergyCommissionby Ubion CarbideCorporation. (1) ihum InformationappearingIn reportaby Strondnger,et al., and by I&he. Imd Harvey.(’)

TABLE I

. THE RADIOAGHVE NUCLIDFSOF PHOSPHORUS

Radio- Half- Mode of Energyof ——nucllde 13fe = Radiation ProducedBy $9 4.6 s P+ Y 1.28,2.42 Si-p-n,Si-d-n,P-y-’n #o 2.55 m P+ p+ S.Labs Al-inn,Si-p-n,Si-He3-p, P-n-h, P-7-n,S-d-% C1-y-a,n Fe 14.3 d. P- @- 1.70 S5-d-y,Si-d-p,Si-He3-p P-d-p,P-n-7,S-n-p,S-d-a, Cl-n-a,C1-7-~n, Cl-d-pa

~33 25.4 d B- P- 0.2$ abO S-n-p, S-7-p,Cl-y-a

p+ 1.2.4E B- P- 5.1, 3.2 S-n-p,Cl-n-a

III. THE GEKEHAL_STRY OFPHOSPHORUS

Phosphorusis neverfound in natureas the element. The Mef sources

of phosphorusare phosphaterock,Ca (F04)2,and apatite,W2”3W3(F04)2. 3 Itis usuallyobtainedfrom these sourcesbyr&ing coke and m.ndwith the

crushedrock or ore and heatjngthe mixturein an electficfurnace. Since the temperatureof the reactionIs”quitehigh, the phosphorusdistillsaway frau the reactlm~ and is tn3~ed and condensedunderwater as yellow

or whitephosphorus.

A. Elemen@y Fhos@mle

phosphorusexistsh at leastthreeallotropicforma. The white phos- phorus (or yellowphosphorus,if it is hpure) obtitiedby a titillation of phcmphoruehas a nmltingpoint of 4h°C.It dissolvesin organicliquids,

crya~~zes h the cubicform,and burns spontaneouslyin air. When heated in the absenceof air to a tempe=+mxe of 250° C, it is convertedto

red phosphorus. The colorand physicalpropertiesof red phosphorus

depe&ieupen the temperatureand the lengthof the heatingpetibd.” It ui.12cryetdJlze in the rhoniboh~ fozm,and it is stablein air at room temperatllm.Red phoephozueIs insolublein organicIlquids. A b@ck allotropicform of phoephorueIs obtainedby heatingwhlte phoaphoms at 200° C and at a FJ.=ssm of about13,000aizuospheres.It Is rhombohednd in form and is a &ad ele’i+cricalconductor.Black phosphoruscanbe convertedto red phosphorusby heatingat &rperatures above 500°.

B. The ChemicalConP3undsOf Phcmphorue

Tho~phorusexhibitsoxidationet%tesOf -3, -2, +1, +2, +3, +4, and

+5. The principleoxidationstateof phosphorus1S +5; however,+3 cm- poundeare not uncommon. Phosphoruscan form compmnds ulth hydrogen,oxygen, m.dfur,the ,and . It can reactwith certainmetalEto form phosphides. Table II liEtsmany of the phosphoruscompcmndeand givesinfor- mationon their solublli~ in and otheragents. Some geneml ll&onm- tion abouttheeeand otherphoephoruecompouudeis @ven below. More specific informationhae been given in reviewsby Vsm Wazer‘3) and Hutcldneon.(4)

mm. sOlubiutvOfPllamc~

Sol*lain(sls,m~maakwrln

SOlllbl.einether, ham, cblOrO— *, a32mrldccl~

~inaadmlmndadd

Ir9dmlla

3 1. Reactionswith Hydrown

The hydrogencompoundsof phosphome cannotbe preparedby a direct uuion of the elements. Phospbine,PH~, ~ ~P~EPMne, “p2H4,Sre USUdW fonnedby heatingvbitephosphorusin the presenceof aqueoussodiumhydrotide

or by hydrolyzingaluminumphospbidewith m.dfuricacid. PH3 ip extremely volatileand is &l.aumble In air. Phosphinela a toxic compoundand la

conBide&blylese solublein water thau 16 smmmla. It is a much weaksr b&.aethan auimonla,foming “onlya few phoaphofi~ PH4+,saltsilth the halides.

These saltSati ❑ti’onglyhydrolyzedin solutionand exhibitstr%ngacid

charactefisticE. Diphosptie is not basic and formsno salt conpunib.

2. Reactionstith Oxygen

Phoaphome formsthreeoxideccqoundS with cxggen: the trioxidej P203, the tetroxlde,P20h, and the pentoxide,P205. The trioiidead

the pentoxideaI@ the mst importantof the oxygencOmpounds.JRrequentl.y,

the formulasare writtenas Pk06 ~d P4010becauseof the densitiesof

th@r vapors.

,~e trioxldeis producedby burningwbltephosphorusin a llmlted

supplyof oxygen. P406 is a cclorlesssolidwhichmeltm at 24° aud bolls

at 173°. PLOIO,a colorleesliquid,8ubljnEBat tMqeraimreBabove 3643Q. . Phosphorustetroxide,P~O~, is’formedby heat&g P406 b lzemperature# o above200 . It Is 6 solid,havinga melting“pointhigherthan 160b. he

~entoxideis fonnedby burningphosphorusin oxygen. . .. : Pbo8 reacte vigorouslywith water to form the oxyacld,phosphorous

H3FQ3 CL alEo be f,oxmedvery alow~ by reacti& P406with =’ ‘3m3 “ coldwater. In hot water,the H3P03that formsrapidlydeccmqmsesto pro-

duce~hospQoric‘acidand ~hoaphlne. also.reactmvlgorpuplywith ~4%o water to ,flrst.pxuce uet.a-phospho~cacid,lIPO, and then~, a “further 3 hydrolysisreaction,orthophosphoricacid,H3m4.

Phospho& acid,H FU cau also be fornmdby reactingphosphome 3 3’ halides,i.e.,““PC1 and P13 &th water. 3’ ‘r3’ H3~.3 is a ~olorlees

crYstdJ_lneBolldwhichmelts at 73°. When heatedabove~’”,’it d.eCOIIP .. poeeE to eve ~hospliiheand phosphoricacid. phosphon~ acid is an active reducingagentbecq~e it can be readilyoxidizedto phosphoricacid. Its

4 alkallsalts (suchas NaH#03) wILL lose waterwhen heatedto 1.60°to give

a w- spbdtisalt,e.g.,W2~p205.

Hy@phoephoroueacid,H3P02,,isprcduced as tmspnt cv’etals W the reactionof bezlumsaltsof phosphoruswith H2SOh. The crystalsmelt at 26.5°. .+(), and ita adts,the hypophospmtes, m strongreducing

agentt3(P.has an wdiatlon stateof P+l b these ccmpounde) and can be used to reducesuch elementsas the halogensand Fe+3 ions,e.g.,chlotie

to cwotide and ferr5c”ions ta .

Metsphosphorousacid,HF02, can be fomed by burdng phosphlnein a

limitedsupplyof oxygen. *- acid’‘4p20Z’‘a a cOIOrless solidthat Is fo-d by heating.slkalInehypcphosphites,e.g.,NsH PO , 23 at 160°. H4P2O~ melts at ~“ and It tilldecompxe when it is heated

above l~”. ~2 ~ H4p205are mpld~ convetia b H3~3 in the presence of water. The @ Qsphorousacids containphosphorusIn the +3 oxidation

Etate. All of theseacidsand their salts=e ~ducing agenta.

, at variousdegreesof _tion, react6to form the sefies ‘4°10 of oxyacidsof phosphorushewn as the phosphoricacids. Orthophosphorlc

% H3~4, is fomed by reactingPkO1owith an adequat=supplyof water. H3~ is a colorlesssolidthat melts at l@°C. It is very 6olubleIn

water. It ~ ~t tith ~t of the metalsto form oi%hophosphateS81tS,

claaslfledeitheras @rary, Eecondary,or norml phosphates. The prim3ry,

or dihydmgen, phosphates,e.g.,NaH2P04,are solublein water and yield

S~@~ acid solutions. The secondary,or monohydrcgen,phoaphtes, e.g.,

Na#04, althougho- slightlysolublein inter yield alkalinesolutions. The ~, or triphosphates,e.g.,NZ3P04,are more completelySQzed

h aqueoussolutionto yield alkalinesolutions. The pm and secondary

@OSPhSteS deco-e =pldly when heatedinto“metaphosphatesand =hosphates. The triphosphatesare stablet.uwazdheat. H3R34 loseswater u it Is he@4d to 250° C, sad it 10 gmdually

convertedto pyrophosphoricacid,HbP207. Pyrophosphorlcacid will tryst.slJlzefrom the melt as a colorlesssolld. The solidmelts at

55°. ‘4P207 can also be prwiucedby stronglyheatingNa2~4. It yieldstwu seriesof saltsh its reactionswith otherelements; ~~, nOrmSISdta, such as NakP207or ~P2C17, and di_8en s~tB,

fluch.ssNa2E2P207. The alkalimetal saltsof both aetiesare soluble

h most reagents;however,only the dihydrogensaltsof othermetal

ions are readilysoluble. ~P207, mgaesiumpyrophosphate,ia an

acceptedgravimetficweighingform for the quantitativedeterrdnation

of eitherphosphateiOnS,~k -3, or magnesi~in many differenttypes

of samplematetials.(5) The insolublecompound,M@HkP04, is first

precipitatedand then convertedbyheat into the pyrophosphatecompound.

1~ H4P207is heatedto 200°, it will losewater to form metaphosphoric,

or The acid is very eolublein water and

it will.chaugeslowlyin cold water into orthophoaphoricacid,H3POb. In

hot water (lOO°C)thischan&ais very rapid. The saltsof this acid are

the metaphosphatea,e.g., (M~3)30r (H~3)6. Other ccmplexes,having the formula,(Ns.F03)X,are also known. The hexa metaphosphatee,such as

(Na~3)G form solublecomplexeswith many ImiLti%aU!ntC8tiOn6,e.g.,Na2~2pb0i8*

3. Reactionstith PhOSphONS and s-r can combinedirectlywith each otherto form

sdfur compounds. If whitephosphorusis used,an explosivereactionoccurs.

When red phosphorusand ,mdJ%rare mixed,chemicalcombinationoccureand

proceed6qpiet~,an~according to the proportloneused for each element,

will form eitherPLS3,PkS5,P4S7, or P4S10. Tetraphosphorustrisulfide,

P4S3J Is the nmst inprtant of the @msPhoIm6 BU~ide compounds,beiw used chieflyin the manufactureof “sttike-anwhere”Mtches. Phosphorlae

yentas~ide, PhSlo,u be hydro~ed to H3POk,and this reactionwith

watermJses It possibleto uae p4S10 to introducethe groupSH in the place

of the hydroIwlgroupinto organiccompoundE. 4. Reactionwwlththe Halogens

Trivalentphosphoruscan combinedirectlywith all of the halogens

to fomn the trihalides,PF3, PC13,PBr3,and P13. Pentavalentphospho=

will only form pentahalldeswith ,chlofine,and brcmdne. The pentatidideis not known;however,a tetraiodide,P214, cm be fo~d by

dis661vinghydrogenand iodineh carbonMatiide, Severalmixedhalides

.ofthe type PF2Brare als’oknown.

6 The ttihalidecompoundereactreadilywith water to form hydrogen

halidesand hypophosphorousacid,H FU Sincethe trlhal.ideecontain 3 3“

phosphorusin the +3 oxidationstate,they are easilyoxld3.zed.FOr

example,PCl reactswith air to room tempsmture to form the oxyhalide 3 POC13 or mixed oxyhalldesof the type,F0F2cl. PC13 and PBr3 can react

with chlotie and brcmdne,respectively,to form the pentamalenthalides,

PC15 and PBr5.

The pntaballde compoundeare all napidlyattackedby water ta form

hydrogenhalidesand phosphoricacid,H3F134.PF5 18 stabletowardheat

but PC15 and PBr5 can ea611ydissociateInto free halogenand the trivalent

phosphorushalidewhen heated. The phosphoruspentahal.idecompoundscan

undergohydrolysisto form oxyhalidesof the type,POF3,POC1 and POBr . 3’ 3 5. Reactionswith NitroUen

Phosphorusand nitrogendo not combinedirectly;however,a n.itx%ie,

cm be fomed by heatingPhSIO In en ammla atmosphereat a ‘3N5’ temperatureof 230°. P3N5 is a colorlessaolddwhich can be decomposed at 800° b give nitrogenand anothernlttide,PN. Hot inter”till hYdrOIYZeboth nitfidesto form amnonia -d oxyacldeof phosphorus. h reactionsof the phosphoruspen~dee with anmonlawill producephos- phorue-mltrogenhalidesof tha type,PNC~. All of these compoundewill

-Qze ~ produceSmm3niaand oxyacidsof phoBpho?ms.

6. Reactionswith Metals

Phoephome can alEo reactdirectlywith m?talsto form~hosphides,

,suchas CeP, canbe prepared e.g.,Ha+. Seveti metal phosphldes 32 by reducingthe correepmdlngphosphatewith . The metalpliosphides are rapidlyhydrolyzedby water or decoxqcmedby acide to form phoaphlne and metallicions.

IV. TEE MAHIWAL CHMLSEW OF PHosFmRus

Phosphorus,afterits separationfrom other chemicalelemente,Is mst frequerrtlyconvertedto orthophospborlcacid,and the orthophoephateIon determinedgravlmtz%cally. Such precipitating~ts ae megneeiandxture,(5) (8) ferriccblorldeand anmmniumacetate,(6,7)~imowl chloride, and mly-

7 (11) btic acid,(5’9)bariumacetate, thalliumacetiteand silvernit=te, and oxlne(w) have been used to precipitate!F04---- The precipitationof

‘---,tith stiate has alsobeen used in ‘he ‘hoBp&te ‘on’ ‘2°7 (13-15) the gzwlmetric detennl.nationof phosphozms. ‘me Ccmpouuds resulting -3 from tne reactions of theseagentsulth FOk are 8s follows: aIm!lonlum magnesiumphosphate,[email protected]~O; iron POSX te, Fernh;zirconylhydrwwn

@lOS~bte, (ZIO)HP04; anmoniumphosphomlyb date, (NH4)3(MC03)~m~ ‘osp~te’ ‘k; ‘i~ver‘h-w ‘tispkte’ %TH4; *W ON.P205.2h1003”llH20;ad zincphosphate, 24-mubdo-2-phOs@ate’ 6C99 m4 .

Any one of the above gravlinetrlcforms can be w“ed in a carrier radiocnemicalprocedurefor radioactivephosphorus.However,it is not alwzysnecessaryto obtainthe phosphoruscarrierand the radioactivity in a preclpitiblefomn befon?the tioactlvlty measurements.One of the phasesobkined In .ssolventexhactlon uthod or an allquotof an eluate froman ion-exchangeseparationcolumncouldbe used. Thus, the informationthat followsgenemlly reportson current analysisideas used in Isolathg and determiningnonradicmctlvephosphoms. The same tecbnlquescan be easilyappliedto analyticaldeterminationsof radi- oactivepho8phonm.

A,. Separationby Precipitation

A completeseparationof phosphorusfrom many other elementscsm be obtainedby precipitatingphosphorusin nitficacid soltiionas azmmnium phosphonmlybdate.(5,9) Sodiumhydroxidewill precipitateand completely aep&ate iron,,,trivalentchromium,,and from phospho?.ua.The acid-sulfideelementscan be easilyeeperatedby saturatinga mineralacid solutionwith ~ide. The volatility of arsenicand gem.aniumchloridescan be used to separatetheseelements from phosphorus.

The amzonlmnphosphoudybdateprecipitationis usuallyconsidereda preliminaryseparationnethod,sincea stoichiometric.compositionof the phosphoudybdate.c@pound is dlfflcultto achieve. Thus,this compound

8“ 18 subsequentlyt=ated and the phosphoms precipitatedin some otherform.

The most frequerctlyused methodinvolvesa pmcipltsticmsa magneslum (5) amxmium phos**> ~4~4” @#J ~~ ~sia ~m. The phosphate

=mOund is then ignitedto ~es ium P’yTQphos**, ~p207, in a muffle furmce at 10~ to 11OO” C.

Mwnic, end modemte smunts of fin, alumhum, ,zinc,tti, ,,titanium,or zirconium can interfere in the phosphate precipitation.However,amenlc may be renmvedby addingso~d anosonium bmxuideti the solutionsand boilhg the solutionto near dryness. The otherelemmts can be cmqplexedby addingcitricacid to the solutionbefore the additionof an excessof the ma~esia mlxtums. ,vanadium,and tuagstancan also be sqpzwatedfrom plmspboms by precipitatingit with

=@-i= -WS at a 10V tewem- and in the presenceof tartrates. CcmpletesepanX.ionsof iron,vandiuts,ZirCOnilllll,titanium,, ,d @Mm frm phosphoms can be obtainedby precipitatingthese elamentsfrcm ice-coldsolutionscontainingfreemineml or organicacids with cqpferrOn.(16-M)Alumimun,berylJium,,~ese, nickel,and umnium can intefierein this separation.

B. Sep tionby Electzdysis

Althoughphosphoruscannotbe se-ted from mlution by electrcdepsi- (1>23) tion, it can be effectivelys-ted by electrolysiswith a Mrcury cathde.

Chraaim, iron, cobalt,nickel,cop&er,zinc,,,molybdecnull, ,~u, ,,indlum,, rhmium, ,platinm, ,mmury, ,ti - meadilydepositedupn the cathode* dilute@J?uxlc acid solutions. Phosphom (d aluminum, titium, vansdlum,zirconium,and umsnium)ulll not depositon the

~phorue can be llberatd fras an acid solution(HC1)as phosphine (24,2s) In a swee@ig atmsphere of . Generallyapplledto the deter- mimitionof phosphorusin alumimm mtd or its alloys,this se~tion

freesphosphorus frm mmy of the elements. Siliconand organic-tter

9 are the chiefIntetierencee;however,theme can be mn!a’vedby (khydm3tlon with perCbkXiC 8Cid.

D. solvent&5x’actionSepratlona

P+5 can be partiallyextracted(about151) frcm a 21 M W adutlon uIti ethylether.(26) In such s systemmly Nb+5,!l’a+5,and Re+7 are extracted +4 +4 +4, ~+3, ~+5, ~+6 -t= * X%; *+2, *% AS+3,Ae=, Ta, Ge , Se 9 and Sb+jWI1l abo Sm-tiallyextract. P+5 as (NH4)2m ~ is p3rtiaUy erwac- ted (about21%) from an 8 g -3 inta ethylether.(2’7)Underthet3econdi- tions,Au‘3 Is completelyextractedvbllaUA, Zr+4,Th*, T.1+3,Hgw, Cr+6~ ~+4 +3 ,Bi,‘3 end AB are extractedin variedconcentrations.

~OS@lOl’US as the heterOPO~ scid.JW~@lOSphOfiC Uid CCIQhX = be s~ted from nd.ybdosilicicacidby extinctionsulth ethylacetoacetite,(28) ewl acetate, or butjl acetate.(y) It can also M extractedf= ~tee~ uitb a mWs.me of l-butanol(20%by volume)in chlorofona.(3) Ether(=)”sad isobu&mol(33)have alsobeen used to ext=ct phosphorusheteropolyacids fmxu otherelements.

The solubilltyof H3P0k (andH#Ok) in ether can be wed for the separationof phosphate.(*) P04 can be quantitativelyextractedby convert- it b H3POkby the additionof concentrated~S04 - *=c- ting the H~4 with excessE&Oh Inia ethylether. h, m, V, *, m, and U are @ially or completelydissolvedin the solventmixture. Ag,

Pb, Bi, Cu, Cd, Sn, &, Al, Ti, Th, Ca, Ba, Sr, Iii,Ch, Mn, Zn, M& Ma,

K, and the rare earthsare practicallyinsolubleunder thesecondltione.

A butanol-cblomfom mixtureb been used to extinctPfrcma

5 ~ EUJ03solution.(35) Mn, S1, Cr, and V do not interfereb this extrac- tion.

Solventextractionmethodshave also been used in the carrier-f- sepration of P= (1A.3 d) neutron-irmdiatedsdfur -S. (36-*)

E. Chrcma%ographic Sepamtiona

1. Inorganic Absorbents

POh+3 ~ been separated- a mixtureof at least12 otheranions by use of aluminacolmuuspm-treated with nitticacid.(39) ml(k)

10 b8a also extendedthismethodto the separationof ~k +3 frml q other anione.

Carder-free P= (14.3d) has been s~ted frcm neutmon-lz.~ted elementarymdfur by adsorptioneitheron a sildcagel columnfrom a CS2 solution or on aluminafran an alkalisolution.(4’2)The efficiencyof adsorptionof #’ wea about 95*.

2. By Ion tichangeResins

Samuelaonand Ruoneberg(43)reportthat mny applicationsusingion- exchangaresin columnsare possiblefor eitherthe quantitativedetermina- tion of phosphateions on their segtion frm! other elanautsand anions.

These extensivestudiesshouldbe consulted. In additionto these studies, exchangeresinmethodshavebeen developedeitherta determinephosphate (45) in rock,(w) phmphoms h copperand ferrmuealloys or _& se~te cationsprevloueto the determinationof phosphates.(46-49) phosphorus

(andsulfurand ar6enic)have been separatedfrmn nickeld copperby ion exchange. Theo~tical studieson the elutionof orthophosphate,

JJyrophosphate, tri-, Iaeta-, and tdmta-phosphate from a Dcuex l-no resin columnwith differentCl- concentmtionsand at different@l havebeen tie by Benhenkang,et al.‘z) .0B-(53) has separatedorthophoaphatea from arsenatesby a similarmethod.

3. ~ Paper ChrcmatoP@y Phosphateions,P04-3, show a distinctrate of - enentin paper (54) chrcunatograp~systamausing such solventsas butanol-HClmixtures, (56) alcohol-EN03rldsturea,(55)and bu-1-~r mixtures. Phosphateions have been separatedf- ferrocyanide,ferricymide, sulfide,arsenate, and iodideions by use of butanol-ethanol-watermixturesas solwmts.(57}

Nimioezmuaanionsof P+5 km b- s~~ted by ‘el - ‘0- (58)using flter paperwashedwith HC1 or treatedwith &~ 1*. phosphates, phosphates,and hypphoephateshave sepazatadon HC1-waehedpper using eqti VOI~S of n-butanol,dioxan,and 1 ~ NS40Has a solvent.(59) Other

studiesconcernedwith phosphateMums includedthosei.nvemtigatedby ~el, (60-62) Yamg-ucbi,(63)Gauthier,(64)Meissner,’65)Crowther,(&)ml

11 Ueed EillcicScid-xgmated ppar and SolventsWA M phenol-dimilled ua- (D3 gto & g) - n-bu~@mpionic acid-waterndrturenta aepamta photapiloruaM phoaphmidefl. Benaau,et al.,(=) and BeMon(’3) have 13qKu33tedthe phoaphatidec~tOofamirture on piper prior to an activatlm in a nuclear ~. v. DIsmun!Iom cm~mlmnmm PmEmomm

Moatnfthemtilods ued to de~e phoaphoma-bem5mg =te*

-e~ti—~ epkte f’-.(”) matoi’the phouphorua

-cd aaltaare madlly eohiblein Iutar or Uluti acid. Mat mtala tiauoyacoddadng @IOS- -t be nt into molutionwith a tam

&dizlng acid EIuchaa HH03 in order to prevent lim loan aa phosphine.

If EFtiueed, izflbuldbe ~ afterdismolutiml-byeva~tion.

Wcke ad minemle are uaualJy fused uiti sodim cmtmnate or ~, endmmltdracted Vith -tar. Frolon@ fuaionavitb ~ulfate can reoultin s- 10ss of phmphonla -byVolauty.

Biologicalmteriab, such M tissues,bdy flulda,vegetation,etc., can be dec~oed vith HCl, ~3, ~3-~b, or ~3-_& ndrtwm.(7~~76)

Cqpmmda of phonphonlemixedVith or-c mteri@ mlat not be igaitedh (74) - platinlml-unleEngood oddizing Catiula are -~.

If any of tine dissolutiontichuiqpeacum used in a mdl~cal sep- rationot phoaphoruamdioactivity,the additim of inactivepboephoma carrier to the Colllbilizhg~ wmll.demtit in dllming m ieubpic axcknge between the radioactivead inactivephoa~rua atma.

VI. 9AFE.LTEmm’Im

I%edod de~ition and procemdng of any aqmplemterial can be kaardow . Adewte EM- pmcautiona fcm procanahg my nezllplemterial

m’) -mb ~ lxavebeen recentlydencribed by Thk@enB and Creygbtm. # aa welJ aa othera on laboratory mfety, ohould be ~ulted bafqm -q

WIe 10 -drtakenm

12 Wbeneverradioactive uderlal Is processed in a laboratorymea, the needsfor stie latmmtory practicesare greatlyma@mlfied. A dlsckge of miloactivltyInto a laboratoryares by evolutionor spillagecan

resultb hasardousconditionsfor ~sonnel and possiblewide spreadcon-

~tion tbrou@ut the Laboratoryarea. Me handlingp-ices for procese~ mdloactive materials appear In such e.oukces as the Oak Ridge

IUationalIabomto~~s MasterAnalyticalIianual(m) and in the International

AtaulcEner~ Agency’spublication,entitled,“~e-~ Or WOfSO~- pea.‘(79~ Many other similarsourcesof @fonustlon existand shouldbe

consulted.

VII. WUIWEIO TECJ331QUES FOR TEE RADI~ PHOSPfK2RlJSISOl?OPES

The nuclearcharacteristicsof the tioactive isotupesof phosphorus

are sumarlzed h Table I of this ~Ph. The mat frequentlymeasuredphosphoms mdioiso~ is P= (14.3d).

It emits1.70-Mevbeta mdiatione in its decay,and its mdloactivitycan be nwmred by such countingtechniquesas Geiger-Muellercountingor propm-

tionaJcmtins.(~’a’) Generally,the samplemterlal contairdngP3 must be processedzadlochemicallybeforethe *oactivi@ measummnts are made.

m. COILBOPIOli OF DEMILED RADIOCEE41CALPR~ FOR PEOSI%CEUJS-32

Most of the IZ@IOchemicalproceduresthat followhave been developed

eitherto obtain14.3 day P= as* tracer~&) or to separateIt from fission

Products,(a’)or to use P= ti the determinationof stablephosphorush a (84,85) tiety of samplemterials by the mdloactivationanalysismethod.

This saalysismethd ha alreadybeen used to detetine phosphorusin aluminumaUoys, ‘m)niobium,’86),‘M) alumina,‘w’w) aluminumphos- phate,(M) biologicalmat.erlsls,(wm) gzvMte,(*) kxUne,(%) sillcon,(lmJIO1)

-, (lo2-lo5)~chl(lo5) _~im, (106)and or~c carpmmds.(97)

Both carder and carrier-freetechniqueshave been used in these

procedures. This Info-tion, * well as that concernedwith the type of Ird.erialamdyssd, nuclOarbmbardmnt, m“thcd,t- requiredfor separation, 32 and decon~tlon of P fmm otherradiofMtivltles,appearsm part of

each PZ’OCdlUWI .

13 tint of the pn2ceallmEIIElltialleain tae mferwlcemarewluuym

-inthst the phoqmma 10 firetPn5cipitatea aa the phoaphmK@Mate, d thafinalpmcipititaanM2EE4P04”40d~ VE- ~. - pmcealreB Chosenfor thle mmograph ae Illuatd=tia of P= ~cal mpmationa we= basedmetly on the =- of the oau@le,the reactor faci-

Iltg Ued for Iamdlatian,Wla the dismlwtion of the Irmaiatad aemplea.

The pmc~a ueedby Ueblad ad othem, (9,91) _el(*) ~ser and Jerche~(93)Spencerand othere,‘*) Tbbiaaand Ihmn,(95’*) lwov - ~, (*) (1.05) Her#@ Ov.. d ~,(los) ‘I=* - othare,(~~)Thmpaom, and Dow(M)Uea techliqllmsimilarto tlmae”givenin the pu’ocealrmEl in thm aectikm

RocEbmEl

Pmcdure Uned In: ~tim of # tmcer Method: Precipitation

Type Mdxmial Analyzed: l&pe of’Euclear~: a. 60” Cyclutlxm(37Mev a.pllae,9.5 Mew ProtcOE, 19 Mev deuterone) b. le4” cyclotron($E!Mev al ,348Mev pm-, 19 WV deutem r meaime By: Batzel (Rewrted by Meink (@) )

0epan3tionmm?: 2 houm

Chemkal Yield of carrier: @“ Decon~tion: Factarof 100 fram all activitiespresentexceptvauadium; pmbebly a factor of 50 frm veaadlum.

EquipmentHeeded: atanama

PrOclidure:

1. Dissolwu*get k HR03. Aad5mg Paa Po4 of free acidultb EEL(YH.

2. m!cellJln Euo3anaw wnllmliumlmlybdateto the Ualm solution (X)OC) (add6ml ofmlybtite forevery4mgof p). PROCEDURE1 (Conthxd)

3. Allow to settlefor 15 minutes. Centrifugeandwaah with l~HlV03. 4. Mssolve with NHhOH citratesolutionand add HC1 untilthe ppt that

fO17USdissolveswith difficulty.

5. BubbleS02 throughthe eolutionto reduceVOS-tovo+? Add2ml Of coldMsC~ mixture- allowto settle~ ml.nuteaand add cone.l!HhOHuntil

solutionis 1/4 of ori@lal v@mle. Allowto settlefor 15 *. Centrifuge

aud wash precipitatewith 1:4 NH40H:H20.

6. Add 5 w vanadiumholdbackcarrier and repeatstep (5).

7. Mssolve ppt in lx RN03. 8. Repeat (2J and (3).

9. Weigh as anumniumphmphcmmlybdate. Remd&s :

Vansdlum co p@s with phosphoms if It is In V‘5 state. It shouldbe

rqducedto VO* s~te and the cyclere~ated two tlmm in orderta remove

vanadiumcompletely.

PROCEOORE 2

ProcedureUsed In: Separationfram fissionproducts

Method: Preclpltatlon

ZjTS Material Analyzed: Sep&atlOn Of phOBphOrUBfTOUJfiBSIOnprOflUCtS

T!ypeof NuclearE-mnbardment:Pa(n,7)P9 from P3 IJfual

FrocedureBy: Bonner,N. A., and Potratz,H. A., b reprt ccxqpiledby lUeinber&83)

separationTim: 7 hours

Chemical Yield of Carrier: To-&)$

Decent..mdnation:Com@ete from fitseionprcductm

EgplpmentRequired: FAmdard

Procedure: 1. To the sampleIn a b-ml Lustei’oidcentrifugetube (Note1), add

20 ml of 6 ~ HN03 and 1.0 ml of (NHk)2~k carrier6olution. Heat the solu-

15 PROCEDURE 2 ( Continued) tlon on a steambath and add 2 ml of Zr carrierto precipitatezirconium phosphate. Continueheatingfor 3 to ~ min. Centrifugeand discardthe supernate.Wash the precipltitewith ~0 and discardthe washings.

2. Dissolvethe precipitatein 0.1 ml of cone.HFanddd5mlof H@

10 d Of 6 ~ ~3, 5 tiPS Of 0.1% aerosol ❑olution,and 5 ml of snmmnlum nmlybdatereagent. Heat the udxtureon a steambath for 2 to 5 min. Centri- fuge and discardthe supernate.Wash the .snmmnlumphospbmolybdateprecipi- tate with 10 ml of H20 contdnlng a few dropsof aerosol(Note2).

3. Dissolvethe precipitateIn 0.5 ml of cone. NH40H,aid 10 ml of ~0 and 4 drops of @ H202 (Superoxol)and stir thoroughly.Add 10 ml of cone.HC1 and 2 ml of Zr carrier(Note3), and heat on a steambath for 5 min. CentrHuge and discardthe supernate.Wash the preCipltiteWith H20 and discardthe washin~.

4. Dissolvethe precipitatein 0.2 ml of cone.SF and add 10 ml of 3 ~ HCIJ 0.5 ml of As c~er and a few drops of aerosol6olution. Heat on a steembath for 15 min. whilebubb13ngH2S throughthe solutiod. Centri- fuge and transferthe supernateto a clean40-mlLusteroldcentrifugetube.

T&ah the precipitatewith 1 to 2 ml of H20 containinga few dropsof aerosol

solution. While the precipitateis beingwaahed,pass H2S throughthe orlgl.nals~ernate which is being heatedon a steambath. Cm&dne the super- nate frcm the washingwith the originalsupernate. Dlecardthe AS2S5precipi- tate.

,5. Add 2 ml of La carrierto the solutionfrom Step 4. Centrl~e, t~fer the supernateto a clean40-ml centrifugetube, and discardthe Id? 3 precipitate.

6. To the supernate,add h ml of cone.lItm3and 5 ml of ~Mum molybdate

reagent. Heat on a steambath for 2 to 5 ndn., centrifuge,and discardthe

supernate.Wash the preclpikatewith 10 ml of ~0 containinga few dropsof

aerosoland dlscam3the washlnge.

7- 14. ~peat Steps 3 - 6 twicemore. 15. Dissolvethe auuwd.wnphosphomlybdateprecipitateIn 1 ml of cone.

M140H a SM 2 ml of citficacid solutlon(O.5 SIR/ml).Add lCJrd of magnesia

16 PRmml 2 (Ccmime!d)

Idxalre and Cone.EHQCE (dropeiee) “Utilthe aoiutlonIs @t alkaune, then ddlodroymre. Swirlthe solutionfor about1 min. end if a precipitate doeE not begin to fore, add en additional5 dmw of conc. HHhOE. After preci- pitationbe@s, euirlthe ~ure for at leeet1 min. and then edd ~ additional m co?Cone.HKLOE. Allow the mixtme to mand ~lth 0ccs8ionalstirringfor at leest10 dn. Filterthrou@ a l>ml fine, sintered-e fuuneiend waeh the

PrecipitateWith a emdl emolmtof 1:20KE40E. mseohm the precipitatein a fev dropsof cauc.HC1 end a fev millilitersM H20. Colleczthe fllmate in G MO-ml beaker.

16. AddlOml ofmagneeia mixtureand duet enoughCone.HEhCmto

~za the Ecl in the mixtuns. (Cmedlmp of HEkm h eXceesE-hould caueethe precipi-te of M@Hk~L- 6H# to a= forming.) 8ulrlfor abmzt ldn. andthen edd3mlofconc. qa. Auovthedxture to am for at lewm lb dn. ~lter cmto a veighd HO. 42 ‘wzsmmnfilter circle, 7/8” dlem?ter, ueiw a growl-off ~ch ?umel end ~ter cMmuey. Weah tbe pncipi&me Vith W portionsof 1:20 HH40H,5CFlerheuml,d 95$ ethenol.

Pull air throughthe fil*r for ~ rein,ellw * precipi*te to dad in

* balenceca8e for about 30 dn., vei@l,muuz, end Coumc (IT* 4). motes:

i. 1~ ~ge ~a of =k ion aIW presentin tbn emqple,the precipita- tion of Zticoniumphoephateis not ccl@ete.

2. H * ~um phospkdybdate Precipi-te * a =udmg to

P@iZe, diluteKKL~3 solutionstidd be -ueedfor the ueah.

3. 7he reagenta E-hould be added in the indicetedorder. = ECl iB added beforedilutionuIW ~0, ~um phOEIp-~te repreCipitdteS.

L. lL.M # I. the Imwp detezminod. M ‘w a 1.71-_.bete d no -..

17 B!EQEE3 Procedureused h: Radl~ctivationanalysis(Note 1)

Methodof Separation:Precipitation

ElementSepamted: P= (14.3d)

Type of MaterialF!ambarded:Niobiumju) lead,‘w) al~,(~) al~~ phoephate,(&)and biolo@cal mat,efials.(u)

Type of NuclearBombardment:Pfl(n,7)P* (107) ProcedureBy: Leddicotte

Chemical Yield of Carder: At leagt65$

Tim of ~~tlon: 3 houre

EquipmentRequired: Staudard

Proceduns:

A. Irndiatlog of.SampleMatefial

1. Irradiateknown amountsof test (Note2) and comparator(Note3) eamplesin a neutronflu of at leaat6.5 x 10U n/cm2/secfor one (1)week longer(Note4). Prepre the test and comparatorsqple for the irmdlation eitherby wrappingeach ~pec~ In aluminumfoil or placingit In quartz q~e. Liquidsamplesshouldbe irradiatedin polyethylenebottleE (Note5).

B. Wepamtlon of kradlated Material.afor Analysia

I. The Cmq=3nator Sample

1. After the Itiatlon, quantitativelytmnafer the comparatorE&uple

(Note3) to a25-mlvolumettic flack. Dissolvethe aauplein water,and dilute to volume. MIx the solutionwellby carefullyshakingit. 2. By~a of avohmetrlc pipet,plpet a l.m-d aliquotof this solu- tion into a 50-mlvolumetricflask;”then dd.lutethe aliquotta ~ ml uithuater.

3. Shake the solutionthoroughly;then pipet a l.00-mJ.a~quot of it into a m-ml glaascentrifugetube. Bymeane of a volumetricpl~t, addto the same tube,2.CK3ml of a standardcarriersolutionof knownphoaphcnue concentration(Note6). Also, add 1 ml each of holdbackcarriersof cobalt} copper,iron,and Ecdlum(Note7). Dilutethe solutionad adJuetit to

1.0 M in~ Ccmtlnuewith Part C below. 3- II. SolidTeet @nple

1. Ii’the sampla18 a metal or alloy,quantitativelytranaferthe

18 PRCCEDURE3 ( Conttiued) irmdiated test portionfrom the quartztube or aluminumwrap to a 50-ml glaeacentrifugetube,and then add, by means of a volumetricpipet,to the same centrifugetube 2.00 ti of a standardcarriersolutionof lumwnphosphorus concentration(hte 6). Also add 1 ml each of holdbackcarriersof cobalt~ copper,iron,and (Note7). To thie titure, add dropwiseenough concentratedndneml acid to cqpletely diesolvethe sample(Note8). Dilute the solutionand sdjuetit ta 1.0 ~ h EGIU Continuewith Part C belov. 3“ III. LiquidTest Sal@ es

1. Pipetan aliquotof the irradiatedportioniqtaa 50-plglasscentrl- fuge tube. By means of a volumetricpipet,add to the same centrifugetube

2.(Mml of a m%ndard tier solutionof knownphosphcmm concentration(Note6).

Alsoaddlml eachof holdhackcarriersof cobalt,copper,iron,and saiium

(Note7). Eilutethe solutionand adjustit to 1.0 ~ h HN03. Canttiuewith

Part C below.

Iv. wc Test Samples

1. If the eampleis a tissue,vegetation,or a dmilar material,quantita- tivelytransferthe irmdiated test portionfrom the irradiationcontainerto a

W-d b=ker. W ~ of a nlumetric pipet,add to the samebeaker2.00 ml of a stahderdcarriersolutionof hmwn phosphorusconcentntion (NOte6).

Also add 1 ml.each of lddback ctiers of cobalt,copper,iron,and sodium

(Note“7). men w 3 ti of cone.H#04 and 4 d of cone.~3. Coverthe beakerwith a watch glass;thenboll the solutionfor 15 minutes. Cool the solution,add to it 3 ml more of cmc. HNO , and boil‘thesolutionfor 15 ,3 minutes(or ta fumesof S43). Repeatthe additionof HN03 and the boiling until the smqpleis dissolved. mlute solutionta tie it T.o g in ~3.

Tmnafer to a X&ml centrifugetube;then continuewith Part C below.

32 c. , Re&ochemicalSe~rEbtiOnOf P

1. Add15- 20 ml of molybdlcacid reagentand heat with sti~ wer a flaawuntilthe yell+mwmaonimnphospho?d.ybdateprecipitate . (m4)3 P(W301P)4 ‘occurs(Note9 and 10). Centrifuge,discardthe ~qper- nate,and wash the precipitatevith 20 ml of 1 ~ HN03.

19 PHOCEDUFW3 ( Conttiued)

2. DIEsolve the preciplttatetith 1 ml of cone.NHkOH,mi@et to a . volumeoflOmltol M~ ~, and repeatstep 1 twicefor purity.

3. DIEsolve the precipitateIn 1 ml of cone.NEkOH. Dilutethe solu- tion to 10 ml with water and make it slightlyacid with HC1. Add 1 ~ of

citricacid,(Note11), stirwell, and cool in .anIce bath.

k. A&lo- 20 ml of magnesiamixture.(Note12) W * ~sic with

NHkOH to precipitateM@H4~k06~0. M 10 ~ of 1:1,NHkOHin excess. AIJOW

to digest~ Ice bath for 30 minutes.~ Centrifugeand discardthe’supmmate.

Wash the precipitateulth Wute NHkOH.

5. Filterthe precipitateon a tsxed filterdisc of #42 Whatmansfilter

paper usinga hlrachfunnel. Weah with 95$ alcohol,ether,and dry in a drying

oven for 10 minutesat a t-empemtureof 110° C.

6. Weigh the precipitateand mount for beta radiosctititymeasurement.

D. Mesaurementof P9 Rsdloactlvltyand Calculationof Stable PhosphorusContentof Test S@apIe

1. The PP radioactivityin both the”test and comparatorsamplesare assayedby beta messurementonly,usinga Geiger-Mue~ercounter. A ~ m&jcm2

Al absorberis used to shieldsulfurand weakerbeta ener&I.es.

2. FolJmwln$tti zadioactivi~messwements, correctthe P32 redlcactltity

for decay (Note13), dllutlonV’OIW(S), and the sampleweights (orvolums)

of both the test and ccmprator samples. A simple~’tioof theseradloactiti-

tiesbecomesa meesurement of the amountof stablephosphorusin the test

sample:

correctedPY ~ P In Test‘l%mple= radioactivityin test sample x lCQ CorrectedPP radioactive’~in c~tor sample

Notes:

1. This prmsedurecan @ be used ~. determinephoaphoms in mtirlals that are solubleIIIoxfdizx reagentsor in ssmplesIn wblch the phosphcnms

Is in the form on PO ‘-- for if the phoephome is in 4 a PhosP~de form, it ie llkelyb go as a gas, PH3, beforeion exchangeulth the phosphoruscarrier.

20 PmCEixm 3 ( Cmmnued)

0.20 ~; Mquid ❑unple19

3. Use 0.025to O.0~ gmme of apectro~aphicallyP (DH~)~~.

L. ~ Ildta of m~ for Stablephoe@mm -bythis procedure Iskxlo -8 ~.

5. ~ationa of liquid,m~tlm, or EimilarQpe aaqle nute~ mat be mde in an ~-cti or uatar-cooledreactor~tiau facility.

6. 8tmdardi& ti contBin at tit IO nd~ of phoaphoma par dmuiter.

7. Soiutlona of the lone of other elem?nta my be added a holdback

-em; cmcentration equal h 5 tiUlgrame of elem5t per mUllllter.

8. Solla, C-, and eddlar m%ted.ala ~ require additlca d mR33 or fuaian.

9. MO-C acid ~% la prepumi bydleaolving25gmm30f ~um mly’bdate(HHJ~ h 1 ldterof wuter.

10. H the solutionIm * add, the precipitateulU not from. Use

HHLOHto Imke edJuetmsnt.

11. ‘Be citricacid 10 used to ~ the - ad preventite pmclpits- tionUlth HHLOH.

~. l’@SnaEiatitura Is pmlmred by M13801ting50@nmaof MgC~ and

~~OfEEk~inlliterof water.

13. Ikcaynmaa~ntfl my be fOllowed,if required.

mwEDuRE4 procedureiJBedh: IMioactiTatim analyaie

MatbQdof Sepm3tlcnl: Precipiktion

El-r mtad : P= (lL.3d) - (87) ‘i!ypeOfwtelmalhelyzed: AIJldnum= ahmhlum tide e of Huclear~t : p%n,7) P=

21 PRCKEDURE4 (Continued)

“PcocedumBy: Fosterand ~itanis(87)

_tlon ~: Severalhoure (87) ChemicalYield of Carder: No statementmadeby authors (87) &contaminatlona No dab presentedby authors

Eq@~nt Heeded:

Procedure:

A. Irradiationof &@e Material

1. The muples and phosphorusstaniardwere Irradiatedfor 1 wed. in the graphitereactorat Oak Ridge,Tennessee. They were placedin the

14-Zpositionwhere the feat neutronpopulation16 very low. ,Ws dllimlzeB the n,p productionfrom SY(n,p)P=.

B. ChemicalSepecmtion

“1. l~ofalumhlum oxideactivatedsample,0.013 glare of nonradio- activenrmoammnium dl@drogen phoephatecarder and 6 _ of bomxcarbonate flux mixtureW= addedto a platinumcrucibleand heatedfor 30 mlnuteeat the highesttemperatureof a Makerblaet burner. After ccolingthe tilt was dlmolved in dilutenltrlcacid.

2.. For the ~~ alloye, 2 gram of the metal,0.25 gramsof mercurmm titrati,and 0.013 gam of the carrierweti dis~olvedin lCO ml of 1 t.a1 nitric acid (Note1).

3. For the aluminumotidesamples,the acidityw e.@sted and the phosphorusw oxidizedto phosphatewith KMn04. The phosphoruswas then precipitatedas phoaphomlybateusingammoniumnmlybdate-citratesolution.

!l%isprecipitatewas dried,and velghed;then 0.1 ~ was t~femd to a planchetand the beta -oa$tltit y measured. After cmntlng, the precipltitewas dlsBolvedaud the phcmphonm precipitatedafl!mgaeslum ammnlum phosphatewhichwas i@litedin that form.

l+. For the aluminumalloya,afterdissolution,rmst of the acid wae rennvd by bolllng,the solutionswere gassedwith H#, filtered,and boiled. The aciditywas adjustedand precipitatedas phosphmmlybdate.

22 PROCEDURE4 ( Conttiued)

Notes :

1. No mentionuaa tie on the part of the authorof any pOBSlbleloss of PH in the aluminumalloys. The HIf03probablyoxidizedit to P04--- 3 ulthout106e.

PFKKXDURE5

ProcedureUsed In: Radioactivationanalysis

Methodof Sepamtion: precipitation

ElementSepamted: P* (lk.3d)

T’YIXSof MatefialBorbafied:

Type of NuclearBombardment:PQ(n,y)PY

ProcedureBy: Jemes tiRiCti(%)

Sepxmtion Time: Sevez=Qhoum

ChemicalYield of Carrier: Not givenby authors(99)

~contmdnatlon: No Info-t’ion given

Equlpent Needed: Standard

R-ocedure:

A. Irradiationof %@e Matetial

1. Approxhately0.5 grsmesamplesof iodinewere sealedin elllca

ampulesand irradiatedfor 1 week in the pile at Harwell,tigetherwith

O.Ow gramsof diammoniumhydrogenphosphateto act ea a standard.

B. ChemicalSepration

1. After one day of decay,the ampmlea were crushedwith a percussion

mortarand the mixturetranefe-d to 20 ml of ~0 containing55 mgmof

redphosphmue (Note1) h suspension.The Iodineie dissolved..The solution

was warmedon a waterbath uutilthe icdlnecolorationdisappeared.The

residualred phosphoruswas dissolvedby addingan excessof inactiveiodine

and digestingon a wter-bath overnight.

2. The fragmentsof silicawas filteredoff and the filtratetreated

23 ~~ 5 (Continue.i)

Uith qo2 . ma iOMne ery13tals fomea Veins fllte~ off and the -cans iti

Waa extracted In-& c~om.

3. me phoaphaw *W then de’t~ ae * UUgnesilm ~epbata .

DEIr limitsof detectionla about0.003-S per milllon on a gmm M

-. ma:

1. ‘Y!bamountof Iadphoephonls ueea- ealculated bafomhad in

.* to ‘havuan axeesafor*reqgimd mw2tionandtoacteaa -cr.

m0fxumE6

used h: RadlmactivaGimanalyein

Ma-ladof ~tion: Precipi12?kion

Equimlrk Imedeil:-Sl=n&rd

Pmed.lre :

A. hrediatti of - Material

1. On irmdlation of a sample, the fol@wing mactiau -0

Ihleto the fact tb!btP=infonued fmuth!e raaetionon-13mmll, theeu- derived an ~taion by irradlazionata~ poeitionfor a ~ tim (1 Veek) th mmmt of pboeplmnm Wt would be ~. The eqpatiom

24 B. MCal ~ tiom

1. Mter tbe Sildcon Fbctivltyhoe decq’ed, the aempln 10 aisaolti h

~c-nitdc acia dxtum uitb disdium I@mgen plmspk* pmaezrt wa tier. Mtercmplete~ ofulemilicon aathegBaeouE Eillcom tutmfltida, theaolutiml inlledllceatoalmmb@s, HClJ3biaaddedeml titofumingto~ the m. mute Hcl 10 Ukd&d to the Oolution ad the pku?qlhti 10 precipitated ae lfgmbmk”~ with ~eeia Efxhln3. me

P=5Fitate 10 alluwd to di~et 24 ~ ad iS tisool~ ad ~Cipit&ed

M WOm h * ~ence of citricacid. It ~ ~, flte=% IePIM in a mffle furmce at 1,lWO C to ~207m The ~207 in uei@@ ~W,

-Counted for + reclltiivity.

(lrote 1) PROCEDURE~ (Conttiud) was evaporatedto drynessat room temperatureand the remlduetien up h 0.1 ml ethanoland 0..1ml toluene. An equalvolumeof 0.2 N KOH h w methsnolwas addedand the solutionwwmed to 37° C for 15 minutes.

Alcoholyaism completein this time for the plantphoaphol.ipida. The animalphospholipidewere treatadwith aqueousaceticacid and alcoholfor

24 houm beforealcohglysisin orderta sp~t plaamalogena(acetallipids) which resistdk.a~ne cleavage. The alkalinesolutionWBS acidifiedahd decationizedby addingacidiccationexchangeresin (Ibwex-m H+) after addinga dmp of water. The suspensionwa se-ted by centri.fugation.

The result- glycerophosphorylesterswere chrmatopphed tm-

@nsionaUy by acendingor decendlngcbromstogrqhyon 50 cm x w cm

Sand S 589 White RibbonanalyticalfIlterpaper.

One microgramquantitiesof PY Se smmoniulnphosphatewere placed at edgesof the paperswhichwere sealedin 1~ cm polyethylenetubes.

After ~hoursinthe 5x10= n/sec/cm2flux and SIX days decay,redio- auto~pha were prepared, The reversedsjnglecoatedx.rayfilm w e3Q0sedone to ten days to gLve *. &JSiI’edreCOrdOf the 10CZtiOIland relativeIntensityof the phosphateesters.

Notes:

1. This determinationof phosphorusis uniquedue to the fact that the authornot @ determinesphosphoms quantitatively,but also the phoaphatidesthat are preseti.

26 PRocEmm8 R?ocedureUsed In: Rsdloactivationandymla

Methcdof Sepratlon: Ion exchangechromatography

ElementSepansted: P= (14.3d)

TypeMatetialB~ed: Biolo@cal tissueash

~ ~olear Bmhrdment: P31(n,y)Px

PzmcedureBy: Hehlg, et al.’89)

ChemicalYield of C~er: Mot mentionedby the author

E@u@ent Needed: Skmdard

Procedm :

A. - eparationof the ILm-Exe_ Colwna

~ E=MS of com=cialw a~ble anion-exchangerestiwas placed in a 9 cm Ua column and -bed with several~tere of 0.5 ~ HC1,‘followed by aeve- Iite= of 5.0 ~ HC1. The resinwas staredin 5.0 ~ HCl until readyfor use. The columnsof about 1.4 cm cross-sectionalareawere packed downby air pressurewith IZ to 24 ma of resinand equi~bmted with

12,0~ HC1.

B. Applicationof Ssmple on Chlumns

The carriersaltswere preparedby dissol~ 0.625 g of Fe, 0.625 g of Zu, and 0.125g of Co in moderatelystrongHC1. Radloacti= tracersof Fe, P, Zn, and Co were then addedb these saltiand the solutionheatedb near dryness.

A drop or two of HH03 was addedto insure”completioxidationof the m-.

The otideswere converkedto chlorideswith a few dropsof cone.HCl and heatedto -ss. !l?hasaltswere then takeriup in a 25-mlvolumetricflask and muted, to volumewith 12 g HC.1.

A 2-ml aliquotof this solutionwas pipat~ on to the resfibed and the P, Co, Fe, and Zn elutedfrcuuthe columnwith 12 ~, 4 ~ 0.5 ~ and 0.005~ HC1. The acid was fed to the folumuat s.flow =ta of 10-ml per cm per hour. Elutioncurvesfor P, Ce, Fe, and Zn were obtainedby co~ecthg 1.67 ~ tiquots of elude continuouslywithan autmatic s-le couectirJ *i* at @o C ~ = ~en~ ~ co~ed.

Messurementswere mde by grossbeta and gamma,using acdlumiodide

cmtd for ~ measuna=nts of the Fe, Ca, and & and Geiger-lheller

27 (Continued)

‘ counter for beta maeureuents of the P. The rzdiozctltitymas~ ntO

of the tracerawere betterthan ~ recovery. me” phoaphoruewaz elutedin the first ~ ml of U? ~ HC1; nothingwas

elutedin the 6 ~ HCl; cobaltwaa elutedin the k ~ HQ between150-175ml;

Ironw elutedin the 0.5 ~ .HC1between210-240ml; @ zticwaz eluted

in the 0.005 y HCl between260-275 ml with no crosscon-nation between

the Co, Fe, or ZU. However,there seemedb be a slightcontaudnationh

the phosphorusfrmztionof scme long-lifecozpnente.

28 REFERENCES

1. Strwninger,D., HolJander,J. M., and Seaborg,G. T., ‘Tableof ,” m-v. Med. P@. > (2),613-161k(1993).

2. Hughes,D. J., and Harvq, J. A., “NeutronCross-sections,” Brmkhaven NationalIAm=tory, Uplmn,New York, ReportNo. BNL-325(1958).

“3. VanWazer,J. R., Phcm@rua and Its Ccuupouuds,VelureI: ChemLstry, Intersclence,&w York, 19fl.

k. Huttion, E., Chemistry - The Elementsand TheirReactions,Saunders, Philadelphia,1959.

5. ILUlebrand,W. F., Iundell,G. E. F., Bfi@t, H. A., and Hoffmn, J. I., Appliedborganlc Analysis, pp. 698-709,John Wiley,New York, 1953.

6. Mobr,F., Z. Anal. Chem.~, 25CI(1863).

7. F&WS@, v., Cm@. rend. 2J, &h (1847).

8. m=, R,., and Mettelock,P., Cum@. rend* 122 (1947).

9. Hun&m-, F., Z. Anal. Chem.~, 141-172(1889).

10. Wackenroder,H., and Mwig, H., Arch. pharm.~, 265 (1~).

11. 9pacu, G., and -, L., Z. Anal. Chem.~ 317 (1940). 12. Hecht,F., and Donau,J., *rg. .Mllmo.Anal.,Vienual@, 256.

13. Vonhome, G., Z. ~. them. ~ 639 (1892).

14. Trwers, A., and Chu, Y. K., Helv. Chim.Acts ~ 913 (1933).

15. Bell,”R. N., Anal. Chem. Q 97 (1947).

Ifi. Baudisch,O., Chem.Ztg.~, u!% (199).

17. LuwMl, G. E. F., and lhmwles,H: B., Ind. Wg. Chem.—12, 344 (lg20). ti. Auger,V., Coqpt.rend.Q 995 (1920).

19. Cain, J. R., J. Ind. Rug. Chem.~, 476 (1911).

20. J. 1., and Brl@t, H. A., J. Ind.~. Chem.

21. Chem.16, 963 ( 1924).

29 22. Maxwell, J. A., and Gnahem,R. P., Chem.Revs.~, 471 (1950).

23. Chlrneide,R. C., end humcey,.L. H., Am?@@ &, 175 (19L3).

24. Gheberg, H., LelchtmetallAnalyae,p. 34, de Gruytesad CO., Berlin,1945.

Grand,L., Revue de 1’alumlnwn,~, 171 (1958).

26. Bock, R., and Hernmn, M., Z. anorg.u. g. Chemie,—284, 286 (1956).

27- Bock, R., uui Bock,E., Z. anorg.ChmIL..263,— 146 (1950). 28. till, K., Z. anal.Chem.~, 81 .(1938).

29. I-lure,J., and Ortis,T., Bull..Sot. Chhll.Fm%nce,834 (194.9).

“30. Katn, T., Techn.Repts,k’okyoImp. Univ.15, To (1950).

31. Wedelin,C., Sndhlellon,M. G., Anal. Chem.~, 343 (1953).

32. Ging,N. S., Anal. Chem.28, 1330 (1956).

33. Lueck,C. H., and Boltz,D. F., Anal. Chem.28, 1168 (1956).

34. Crlpps, F. H., AERERswrt @f@-49 (1955).

35. Wadelti,C., and Mellon,M. G., Anal. Chem.~ 1- (1953).

36. Korshunov,A. I., and Shafiev;A. 1., Zihur.Neorg.KMn~, 100-3 (1958).

37. Ssmeahl,K., Atoqpza& ~, 14-17 (1958).

*. Poczyna#lo,A., and Campbell,I. G., NP-7641,1-U (1958).

39. Schuob, G. M., and Wttler, G., An&u. Chem.~, 691 (19!77).

40. Kubli,H., Helv. Cldm.Acta~ k53 (1947). ‘ ‘

41. Javanuvlc-Kmetic, O. Z., Bull. Inst.NuclearSCi. YSorlsKidrich” (Belglaae)lQ,51-9 (W@).

42. Vel#covlc,S. R., =d Milenkovic,S. M., Bull. bst. NuclearSCi. %ris KIdrLch”(Belgrade)10, 61-9 (1960).

43. Samueleon,O., Ion Hxchangersin Analytical chemistry>pp. 146-148, John Wiley,New York, 1953.

44. Hetiich,H., and Rieman,W., w. them.~, 651 (1947). , 45. Usat-enko,V. I., and Wtsenko, o. v., ChendcalAbstracts~, 533& (1949).

46. Klemnt, R., z. .mal..Chem.—lz7, 2 (1944). 47. Klement,R., and Ruytruk,R., Z. mud.. C%em.~ 106.(1948).

48. HeJm,R. B., Backer,C., and Backer,R., Anal. Chim.Acti~ 223 (1953).

49. Yoshino,Y., EMU. Chem.HOC.Japsn~ 401 (1953).

50. Lure,Y. Y., and Fillppova,N. A., ChemicalAbstracts&, 476c (1950).

51. Beukenkeap,J., Riemn, W., and I.indenbaum,S., hal. Chem.—26, 505 @95k). 52. Lindenbaum,S., Peters,T. V., and FUemeQ,W., Anal. Chim.Act-a> 5W (1954).

3’0 53. Yoshlno,Y., Jqanh.dyst & 121 (1954).

54. DeCarvalho,R. G., Paper,Inter.Cong.of hal.yticalChemietzy,Lisbon,1956.

55. Lederer,M., Anal. CMn. Acta 12, 1~ (1955 ),”

56. Kertes,S.,”and Lederer,M., &ml. -Chim.Acta Q, 543 (1956).

57. IkIoach,W. S., and Drinkard,C., J. ChelU.EdUC.~, k61 (1951).

%. Ebel, J. P., and Vo-, Y., Compt.rend.~, 415 (1951).

59. EamIn, A., and Sue, P., Compt.rend.@, g60 (1952).

60. Ebel,J. P., Bull. SQC. ChiIU.biol.~, =1, (1952).

61. Ebel,J. P., Bull. Sot. ~h. -cc, ~, $w, 993, 1089, and log6.

62. Ebel,J. P., Mikroclxhn.Acts ~, 679.

63. Y~chi, K., ChemicalAbstYacts&J’ 3200-h(1954).

64. Gauthier,P., Bull. aoc. cbim.FYa.nce,1955,ml.

65. Meissner,J., Z. anorg.u. all gem. Chem.~, 293 (1955).

%. Crowther,J. P., Anal. Chem.~, 1383 (1954).

67. Lederer,M., Australian. Scl.~,,17k (1949).

65. Long,A. G., @ayle, J. R., and Stedman,R. J., J. Chem. Sot.IQ& 2197.

69. Weil, T., Helv. Chim.Ac*3, 1.274(1955).

70. Marinetti,G. V., Erbland,J., ALlmecht,M., and St&z, E., Biochlmet BioPhya.Acta~, 585 (1957).

71. Marinetti,G. V., Erbland,J., and Kochen,J., Fed. ~oc. l&, 837 (1957).

72. Benson,A. A., Maruo,B., Fllpse,R. J. Yurow~H. W., and Miller,W. W., Proceedings,2ud UN GenevaConference—2c, 289, Perganlon,London (1959).

73. Benson,A. A., Methodsin Enzymlo~W,— January,1$%3. 74. Hillebmnd, W. F., et al., op. cit.,pp. 695-696.

75. Yauagati,N., .andYamagata,T., Bull. Chem.Sot. Japan= (9),1063 (1953).

76. Yamagab, N., Ysmgata, T., Matsuda,S., Taj-,E., Watmake, S., Anal. Abs. ~ (5),1849 (1959).

77. Pieters,H. A. J., and Cry@tan, .J.W., Safetyin the ChemicalLaboratory, AcademicPress,New York, 1957.

78. Leddlcotte,G. W., Reynolde,S. A., and Corbin,L. T., Safet 50150,ORNL MaeterAnalyticalManual,TID-7015,Section*b?””5 ‘O.

79. hternationalAtomicEnerw Agency,SafetySeriesNo. 1, Safe HandMng of Redloisotopea, Vienua,1958.

13Q. Reynolds,S. A., ReCOrdOf ch@cal .-ogress~, 99 (1955).

81. Rice, W. J., NuclearRsdlationDetection,McG=w-HillJ New York, 195-8.

82. Mehke, W, W., ChemicalProceduresUsed In BombardmentWork at Berkeley, u. S. AtomicEnerW CommissionRepofiJAECD-2738.

31 83. Kleinberg, J., “CollectedRediochemicalProcedures,” Ios AlezmsScientific LaboratoryReportLA-1721,2ua m., March,1$X3.

W, Boy’d,G. E.; .knal..Chem.~, 335 (1*).

85. Leddicotte,G. W., Pure &d APPUed ckeds~ry ~ 61-80 (1960).

86. Laddlcotte, G. W., Millins, W. .T., Bate, L. C., Emery,J. F., Druschel,R. E., and Brookebsnk,W. A., Paper g27, Proc.Intern.ConferencepeacefulUses Atomic Energy,Geneva,1959.

87. Foster,E. M., and Geitanls,C. D., Anel. c-hem.g, 1342 (1955).

88. Benson,. A. A., Msmuo, B., F13pse, R. J., Yumw, H. W., and Miller,W. W., Proc. hteu’h.Conf.PeecefulUsee AtomicEnergy,Geneva.~, 289, Pergamon, 1959.

89. Helwig, H. L., Aehlkawe,J. K., and t%nith,E. R., IJCRL-2655 (1954).

w. CHebled,E., ard Toblas,C. A., Arch. Biochem. BioPhys. ~ k52 (lg5k).

91. ~ebld, E., Westin,B., and Malmford,K. G., Acts Hdio1. ~, 137 (1958).

92. Reiffel,L., aud Stone,C. A., J. Lab. ClIn.Med. ~, 2j36(1957).

93. Schmeiser, K., end Jerchel,D., Angew.Chem.65, % (1953).

5A. Spencer, R. P., Mitchell,T. G., and King, E. R..,Am. J. Roentgenol. RedlumTherqby NuclearMed. ~, 1053 (1958).

95. Tobias,C. A., and lhmn,R. W., 9cience~, 109 (1949).

96. ‘lobias,C. S., WolJ?e,R., Dunn,R., and Rosenfeld,1., Unlo. hternatitis Cont~ CsmCnnuActa ~, 874 (1952).

97. WinterbghmiF. P. w., Bridges,P. M., and Hellyer,G. C., Biochem.J. ~ 13 (1955\.

9. Lm, A. A., amtrNaumva, I. I., AtomnayaEnerg.~, h68 (1958).

99. James,J. A., and Richards,D. H., Nature~ 1026 (1955). 100. Jemes,J. A., ti”RiC_, D. H., Nature~ li?~ (1956). l-m. Khnt,A., Cali,J. P., ma Thompson,H. D., w. chmn.26, 1867 (1956).

102. Herr,W., Arch.Elsenhuttenw.2&, 523 (1955).

103. Overmm, R. T., smd Swartout,J. A., “!CheUse of the UraniumReactorh , Radiochemical9tudles,n U&WC Report2245 (1948). l.ok. flklbd, J..,Albert,P., Ceron,M., and Chau&on, G., Rev. Met. ~, 817 (1953).

105. Thoqpson, B. A., Anal. Chem.~, 1492 (1959).

106. Dow Chemical Reportcoo-85 (1951) .

107. kaiicotte, a. w., ‘%sphome, Neutron Activation Analysis (Ieotupic Carrier)Method,” MethodNo. 511600;to be issuedIn the Oak Ridge NationalLaboratoryMasterAnalytlcelMmual.

32

—.