THE NATURAL RADIOACTIVITY of the BIOSPHERE (Prirodnaya Radioaktivnost' Iosfery)

Total Page:16

File Type:pdf, Size:1020Kb

THE NATURAL RADIOACTIVITY of the BIOSPHERE (Prirodnaya Radioaktivnost' Iosfery) XA04N2887 INIS-XA-N--259 L.A. Pertsov TRANSLATED FROM RUSSIAN Published for the U.S. Atomic Energy Commission and the National Science Foundation, Washington, D.C. by the Israel Program for Scientific Translations L. A. PERTSOV THE NATURAL RADIOACTIVITY OF THE BIOSPHERE (Prirodnaya Radioaktivnost' iosfery) Atomizdat NMoskva 1964 Translated from Russian Israel Program for Scientific Translations Jerusalem 1967 18 02 AEC-tr- 6714 Published Pursuant to an Agreement with THE U. S. ATOMIC ENERGY COMMISSION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D. C. Copyright (D 1967 Israel Program for scientific Translations Ltd. IPST Cat. No. 1802 Translated and Edited by IPST Staff Printed in Jerusalem by S. Monison Available from the U.S. DEPARTMENT OF COMMERCE Clearinghouse for Federal Scientific and Technical Information Springfield, Va. 22151 VI/ Table of Contents Introduction .1..................... Bibliography ...................................... 5 Chapter 1. GENESIS OF THE NATURAL RADIOACTIVITY OF THE BIOSPHERE ......................... 6 § Some historical problems...................... 6 § 2. Formation of natural radioactive isotopes of the earth ..... 7 §3. Radioactive isotope creation by cosmic radiation. ....... 11 §4. Distribution of radioactive isotopes in the earth ........ 12 § 5. The spread of radioactive isotopes over the earth's surface. ................................. 16 § 6. The cycle of natural radioactive isotopes in the biosphere. ................................ 18 Bibliography ................ .................. 22 Chapter 2. PHYSICAL AND BIOCHEMICAL PROPERTIES OF NATURAL RADIOACTIVE ISOTOPES. ........... 24 § 1. The contribution of individual radioactive isotopes to the total radioactivity of the biosphere. ............... 24 § 2. Properties of radioactive isotopes not belonging to radio- active families . ............ I............ 27 § 3. Properties of radioactive isotopes of the radioactive families. ................................ 38 § 4. Properties of radioactive isotopes of rare-earth elements . 46 Bibliography ................ .................. 48 Chapter 3. RADIOACTIVITY OF ROCKS .......... I...... 52 § 1. Connection between the radioactivity of the biosphere and of rocks. ... I......................... 52 § 2. Distribution of radioactive isotopes in igneous rocks ...... 55 § 3. Beta-radiation of igneous rocks. .................. 58 § 4. Alpha-radiation of igneous rocks. ................. 61 § 5. Radioactivity of sedimentary rocks. ................ 65 1802/1 § 6l. Contribution of products of spontaneous fission of heavy nuclei to the total radioactivity of rocks. ........... 69 § 7. Content of transuranic elements in rocks. ............ 72 Bibliography ................ ................. 73 C hap t er 4. RADIOACTIVITY OF SOILS. ................. 76 § 1. Composition and structure of soils. ............... 76 § 2. Main features of the major soil types. ............. 78 § 3. Sources of soil radioactivity. ................... 79 § 4. Alpha-radiation of soils. ...................... 80 § 5. Radon emanation from radioactive soil. ............ 83 § 6. Beta-radiation of soils. ....................... 85 § 7. Natural radioactivity of soils due to Sr 0 and Cs 7 .. .. 88 § 8. Agriculture and soil radioactivity. ................ 90 Bibliography ................ ................. 92 C hap t er 5. RADIOACTIVITY OF THE SEA. ............... 95 § 1 . Sea water, its salt composition and amount. ......... 95 § 2. Radioactivity of ocean water. ................... 97 § 3 . Radioactivity of individual seas. ................. 100 § 4. Causes of fluctuations in sea water radioactivity ....... 104 § 5. Radioactivity of the water of estuarine areas. ......... 108 § 6. Radioactivity of sea bottoms. ................... 109 Bibliography ................ ................. 113 C hap t er 6. RADIOACTIVITY OF NLAND WATER. .......... 117 § 1. Radioactivity of chemically pure water. ............ 117 § 2. The formation of the radioactivity of fresh water ....... 118 § 3. Sources of the radioactivity of atmospheric water ....... 119 § 4. Natural radioactivity of river water. .............. 121 § 5. Radioactivity of some USSR rivers. ............... 126 § 6. Radioactivity of lake water. ................... 132 § 7. Radioactivity of underground water. .............. 134 § 8. Radioactivity of water of mineral sources. ........... 13 6 Bibliography ................ ................. 137 C hap t er 7. RADIOACTIVITY OF THE ATMOSPHERE. ......... 140 § 1 . The atmosphere and the sources of its radioactivity 140 § 2. Cosmogenic isotopes and radioactivity of the atmosphere .141 § 3 . Emanations and the radioactivity of the air. ......... 144 § 4. Variations in the radioactivity of atmospheric air ...... 147 § 5. Radioactivity of aerosols. ..................... 153 § 6. Radioactivity of precipitation. .................. 162 Bibliography ............... ................. 164 1802/I Chapter 8. RADIOACTIVITY OF PLANTS.......... 170 §1. Content of alpha-radiators. .................... 170 §2. Content of beta-radiators. ..................... 175 § 3. Variations in the radioactivity of plants. ........... 179 Bibliography ................ ................. 183 Chapter 9. RADIOACTIVITY OF ANIMALS. .............. 18 6 § 1. Content of alpha-radiators in tissues of hydrobionts ..... 187 § 2. Content of beta-radiators in tissues of hydrobionits 189 § 3. Radioactivity of land animals. .................. 192 Bibliography ............... ................. 199 Chapter 10. RADIOACTIVITY OF THE HUMAN BODY. ....... 201 § 1. source of the radioactivity of the human body ........ 202 § 2. Content of alpha-radiators in human tissues. ......... 207 § 31. Content of beta-radiators in human tissues. .......... 210 § 4. Gamma-radiation of the human body. ............. 214 Bibliography ............... ................. 215 Chapter 11. COSMIC RAYS. ......................... 218 § 1. Primary cosmic rays. ........................ 218 § 2. Secondary cosmic rays. ...................... 220 § 3. The origin of cosmic radiation. ................. 221 § 4. Corpuscular corona' of the earth. .............. 223 § 5. Variations in the cosmic background on the earth ...... 226 Bibliography ............... ................. 230 C ha p ter 12. IONIZING RADIATIONS IN THE BIOSPHERE. ..... 232 § . The radiation ficld of the biosphere. .............. 232 § 2. The cosmic radiation dose. .................... 236 § 3. Gamma-radiation of the earth's surface. ........... 239 § 4. Neutron radiation of the earth. .................. 242 § 5. Radiation of the surface air layer. ................ 246 § 6. Radiation field in buildings. .................... 247 § 7. Mean dose absorbed by tissues due to the isotope K . 252 § 8. Mean C14-radiation dose absorbed by tissues. ......... 253 § 9. Mlean absorbed tritium-radiation dose. ............. 253 §10. Mean absorbed dose due to radioactive rubidium ....... 253 § 11. Mean dose from air emanations absorbed by the lungs . 254 § 12. Mean Ra 226 radiation dose absorbed in soft tissues ...... 255 §13. M'ean Ra 226-dose absorbed by osteocytes. ............ 256 §14. External beta-irradiation. ..................... 256 §15. Total dose absorbed from natural sources. ........... 257 Bibliography ................ ................. 258 List of Abbreviations. ................................ 261 1802/III INTRODUCTION Of the approximately 1200 isotopes presently known more than 900 are radioactive. The nuclei of these isotopes are unstable and decay spon- taneously emitting ionizing gamma-, alpha- or beta-radiation. The over- whelming majority of known radioactive isotopes have been obtained artificially; only a few are natural. Numerous investigations have shown that many of the natural radio- active isotopes can be grouped into three radioactive families. Each such family is characterized by the existence of one long-lived isotope - the family parent, one gaseous isotope of radon, intermediate radioactive decay products and final stable isotopes of atomic weights 206, 207 and 208. No such generic relationship has been established among the remaining natural radioactive isotopes. It has been shown that radioactive isotopes are very widespread in nature and are found in all the strata of the earth: atmosphere, hydro- sphere, lithosphere and biosphere. However, natural radioactive substances in concentrated form are encountered quite rarely. They are generally dispersed very widely in the various strata of the earth. As a consequence weak radioactivity has become an inseparable prop'erty of atmospheric and soil air, of sea, lake and river water, of soil, of magmatic, sedimentary and metamorphic rocks, and of the tissues of plants and animals. In addition, natural radioactive isotopes have also been detected in the meteorites which periodically fall on our planet from cosmic space. The latter is of great importance, since along with other astrophysical data, it indicates that radioactivity is characteristic not only of our planet but also of other formations of the universe. The first information on radioactive transmutations of matter was obtained at the end of the past century. In 1896 the French scientist A. Becquerel observed that uranium salts spontaneously emit rays which penetrate through dense objects. In 1898 M. Sklodowska- Curie in France and H. Schmidt in Germany independently observed that, like uranium, thorium and its salts also possess radioactivity. In the same year the Curies discovered two new radioactive elements, which they called radium and
Recommended publications
  • Strontium-90
    EPA Facts about Strontium-90 What is strontium-90? The most common isotope of strontium is strontium-90. Radioactive strontium-90 is produced when uranium and plutonium undergo fission. Fission The time required for a radioactive substance to is the process in which the nucleus of a lose 50 percent of its radioactivity by decay is radionuclide breaks into smaller parts. Large known as the half-life. Strontium-90 has a half- amounts of radioactive strontium-90 were life of 29 years and emits beta particles of produced during atmospheric nuclear weapons relatively low energy as it decays. Yttrium-90, its tests conducted in the 1950s and 1960s. As a decay product, has a shorter half-life (64 hours) result of atmospheric testing and radioactive than strontium-90, but it emits beta particles of fallout, this strontium was dispersed and higher energy. deposited on the earth. How are people exposed to strontium- 90? What are the uses of strontium-90? Although external exposure to strontium-90 Strontium-90 is used in medical and agricultural from nuclear testing is of minor concern because studies. It is also used in thermoelectric devices environmental concentrations are low, that are built into small power supplies for use strontium in the environment can become part of the food chain. This pathway of exposure in remote locations, such as navigational beacons, remote weather stations, and space became a concern in the 1950s with the advent vehicles. Additionally, strontium-90 is used in of atmospheric testing of nuclear explosives. electron tubes, radioluminescent markers, as a With the suspension of atmospheric testing of radiation source in industrial thickness gauges, nuclear weapons, dietary intake has steadily and for treatment of eye diseases.
    [Show full text]
  • Thallium-201 for Medical Use. I
    THALLIUM-201 FOR MEDICAL USE. I E. Lebowitz, M. W. Greene, R. Fairchild, P. R. Bradley-Moore, H. 1. Atkins,A. N. Ansari, P. Richards,and E. Belgrave Brookhaven National Laboratory Thallium-201 merits evaluation for myocar tumors (7—9), the use of radiothallium should also dial visualization, kidney studies, and tumor be evaluated for this application. diagnosis because of its physical and biologic Thallium-201 decays by electron capture with a properties. A method is described for prepara 73-hr half-life. It emits mercury K-x-rays of 69—83 tion of this radiopharmaceutical for human use. keY in 98% abundance plus gamma rays of I 35 and A critical evaluation of 501T1 and other radio 167 keV in 10% total abundance. Because of its pharmaceuticals for myocardial visualization is good shelf-life, photon energies, and mode of decay, given. 201T1was the radioisotope of thallium chosen for development. Thallium-20 1 is a potentially useful radioisotope MATERIALS AND METHODS for various medical applications including myocardial Thallium-201 is produced by irradiating a natural visualization and possible assessment of physiology, thallium target in the external beam of the 60-in. as a renal medullary imaging agent, and for tumor Brookhaven cyclotron with 3 1-MeV protons. The detection. nuclear reaction is 203Tl(p,3n)201Pb. Lead-201 has The use of radiothallium in nuclear medicine was a half-life of 9.4 hr and is the parent of 201T1.The first suggested by Kawana, et al (1 ) . In terms of thallium target, fabricated from an ingot of 99.999% organ distribution (2) and neurophysiologic function pure natural thallium metal (29.5% isotopic abun (3), thallium is biologically similar to potassium.
    [Show full text]
  • Spectroscopy of Neutron-Rich 34,35,36,37,38 P Populated In
    PHYSICAL REVIEW C 92, 044308 (2015) , , , , Spectroscopy of neutron-rich 34 35 36 37 38P populated in binary grazing reactions R. Chapman,1,* A. Hodsdon,1 M. Bouhelal,2 F. Haas,3 X. Liang,1 F. Azaiez,4 Z. M. Wang,1 B. R. Behera,5 M. Burns,1 E. Caurier,3 L. Corradi,5 D. Curien,3 A. N. Deacon,6 Zs. Dombradi,´ 7 E. Farnea,8 E. Fioretto,5 A. Gadea,5 F. Ibrahim,4 A. Jungclaus,9 K. Keyes,1 V. Kumar, 1 S. Lunardi,8 N. Marginean,˘ 5,10 G. Montagnoli,8 D. R. Napoli,5 F. Nowacki,3 J. Ollier,1,11 D. O’Donnell,1,12 A. Papenberg,1 G. Pollarolo,13 M.-D. Salsac,14 F. Scarlassara,8 J. F. Smith,1 K. M. Spohr,1 M. Stanoiu,10 A. M. Stefanini,5 S. Szilner,5,15 M. Trotta,5 and D. Verney4 1School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, United Kingdom, and The Scottish Universities Physics Alliance (SUPA) 2Laboratoire de Physique Appliquee´ et Theorique,´ Universite´ Larbi Tebessa,´ Tebessa,´ Algerie´ 3IPHC, UMR7178, CNRS-IN2P3, and Universite´ de Strasbourg, F-67037 Strasbourg Cedex 2, France 4IPN, IN2P3-CNRS and Universite´ Paris-Sud, F-91406 Orsay Cedex, France 5INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova, Italy 6Schuster Laboratory, University of Manchester, Manchester M13 9PL, United Kingdom 7MTA ATOMKI, P.O. Box 51, H-4001 Debrecen, Hungary 8Dipartimento di Fisica and INFN-Sezione di Padova, Universita` di Padova, I35131 Padova, Italy 9Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain 10Horia Hulubei National Institute of Physics and Nuclear Engineering-IFIN-HH, Strasse Atomistilor No.
    [Show full text]
  • Lead Isotopes As Indicators of Environ Contamination from U Mining
    ._ .- - Preprint LA-UR-78-2147 , Title: LEAD ISOTOPES AS INDICATORS OF ENVIRONt1 ENTAL CONTAMINATION FRCM THE URANIUM MINING AND MILLING INDUSTRY IN THE GRANTS MINERAL BELT, NEW MEXICO Author (s): David B. Curtis and A. J. Gancarz 'k |- . 9 M/ - ' # - L .. %|.RkN: %| * & ,AQ' ,,7 ,e- d*157 ff' k g*/h T .s .. ; f*M & f g W , w -e ~ - " f:} + - pYW pm K .A ,W.% :M & Lw< *b* ? --~ k Y Q Q A -ell' 2_W h _ -- $| - f.s c t Q & Ye # C4HEhreSE33rzgmF %gh gM n [,315 ? M e % @N Y $ $ j3 h e fe l 2 D S $s - - #5 ~N [ ' & 9; - - - f _ '- ~ w e- * g r e w w 2 P As Nc- ' ** * -- - - - - $%y~ - . 9 . j'*( -, ' & . i .- f 1 * - -- ** -- e=* -h .Mr g g* ~ A _. y . gh(An ,, - ?fw h. y C: *, 1% * ~ ?, ?hSlh$i $ ': ffg w s - gp$lQ?$4$5;.>qgg - , .. INS is a Wegint of a paper intended for publication in 4 * '" M jour'ai or procet%1 ergs. Because changes rnay be made before f h , ' , publicction, this preprint is seiade available with the under. f ,- ' , starviing that it will not be died or reproduced without the * +' % '""'***'*C**' " permiss;or of the author, ') O 9 7 - _. _ _ . _ _ _ . _ - _ 0808.0 [ L * ' * . Q - 42 - 72 2)<f y . 1 LEAD ISOTOPES AS INDICATORS OF ENVIRONMENTAL CONTAMINATION FROM THE URANIUM MINING AND MILI.ING INDUSTitY .IN THE GRANIS MINERAL BELT, NEW NEXICO David B. Curtis and A. J. Gancar2 Los Alamos Scientine Laboratory Los Alamos, New Mexico, USA The unique isotopie composition oflead from uranium ores can be useful in studying ihe impact of ore processing efHuents on the env:ronment.
    [Show full text]
  • Calcined Bone Provides a Reliable Substrate for Strontium Isotope Ratios As Shown by an Enrichment Experiment
    Research Article Received: 8 August 2014 Revised: 15 October 2014 Accepted: 16 October 2014 Published online in Wiley Online Library Rapid Commun. Mass Spectrom. 2015, 29, 107–114 (wileyonlinelibrary.com) DOI: 10.1002/rcm.7078 Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment Christophe Snoeck1*, Julia Lee-Thorp1,RickSchulting1,JeroendeJong2, Wendy Debouge2 and Nadine Mattielli2 1Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Rd, Oxford OX1 3QY, UK 2G-Time Laboratory, Université Libre de Bruxelles, CP 160/02, 50, Avenue F.D. Roosevelt, B-1050 Brussels, Belgium RATIONALE: Strontium isotopes (87Sr/86Sr) are used in archaeological and forensic science as markers of residence or mobility because they reflect the local geological substrate. Currently, tooth enamel is considered to be the most reliable tissue, but it rarely survives heating so that in cremations only calcined bone fragments survive. We set out to test the proposition that calcined bone might prove resistant to diagenesis, given its relatively high crystallinity, as the ability to measure in vivo 87Sr/86Sr from calcined bone would greatly extend application to places and periods in which cremation was the dominant mortuary practice, or where unburned bone and enamel do not survive. METHODS: Tooth enamel and calcined bone samples were exposed to a 87Sr-spiked solution for up to 1 year. Samples were removed after various intervals, and attempts were made to remove the contamination using acetic acid washes and ultrasonication. 87Sr/86Sr was measured before and after pre-treatment on a Nu Plasma multi-collector induced coupled plasma mass spectrometer using NBS987 as a standard.
    [Show full text]
  • Potassium-40 What Is It? Potassium Is a Soft, Silver-White Metal
    Human Health Fact Sheet ANL, October 2001 Potassium-40 What Is It? Potassium is a soft, silver-white metal. An important constituent of soil, it is widely distributed in nature and is present in all Symbol: K(-40) plant and animal tissues. Potassium-40 is a naturally occurring Atomic Number: 19 radioactive isotope of potassium. (An isotope is a different form of an (protons in nucleus) element that has the same number of protons in the nucleus but a different number of neutrons.) Two stable (nonradioactive) isotopes of Atomic Weight: 39 potassium exist, potassium-39 and potassium-41. Potassium-39 (naturally occurring) comprises most (about 93%) of naturally occurring potassium, and potassium-41 accounts for essentially all the rest. Radioactive postassium-40 comprises a very small fraction (about 0.012%) of naturally occurring potassium. Several radioactive isotopes of potassium exist in addition to potassium-40. These isotopes all have half- lives of less than one day Radioactive Properties of Potassium-40 so they are not Natural Specific Radiation Energy (MeV) Half-Life Decay of concern for Isotope Abundance Activity (yr) Mode Alpha Beta Gamma Department of (%) (Ci/g) (α) (β) (γ) Energy (DOE) K-40 1.3 billion 0.012 0.0000071 β, EC - 0.52 0.16 environmental management EC = electron capture, Ci = curie, g = gram, and MeV = million electron volts; a dash means sites such as that the entry is not applicable. (See the companion fact sheet on Radioactive Properties, Hanford. The Internal Distribution, and Risk Coefficients for explanation of terms and interpretation of radiation energies.) Potassium-40 decays by both emitting a beta particle (89%) and electron half-life of capture (11%).
    [Show full text]
  • Measurements of Fission Cross Sections for the Isotopes Relevant to the Thorium Fuel Cycle
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN/INTC 2001-025 INTC/P-145 08 Aug 2001 Measurements of Fission Cross Sections for the Isotopes relevant to the Thorium Fuel Cycle The n_TOF Collaboration ABBONDANNO U.20, ANDRIAMONJE S.10, ANDRZEJEWSKI J.24, ANGELOPOULOS A.12, ASSIMAKOPOULOS P.15, BACRI C-O.8, BADUREK G.1, BAUMANN P.9, BEER H.11, BENLLIURE J.32, BERTHIER B.8, BONDARENKO I.26, BOS A.J.J.36, BUSTREO N.19, CALVINO F.33, CANO-OTT D.28, CAPOTE R.31, CARLSON P.34, CHARPAK G.5, CHAUVIN N.8, CENNINI P.5, CHEPEL V.25, COLONNA N.20, CORTES G.33, CORTINA D.32, CORVI F.23, DAMIANOGLOU D.16, DAVID S.8, DIMOVASILI E.12, DOMINGO C.29, DOROSHENKO A.27, DURAN ESCRIBANO I.32, ELEFTHERIADIS C.16, EMBID M.28, FERRANT L.8, FERRARI A.5, FERREIRA–MARQUES R.25, FRAIS–KOELBL H.3, FURMAN W.26, FURSOV B.27, GARZON J.A.32, GIOMATARIS I.10, GLEDENOV Y.26, GONZALEZ–ROMERO E.28, GOVERDOVSKI A.27, GRAMEGNA F.19, GRIESMAYER E.3, GUNSING F.10, HAIGHT R.37, HEIL M.11, HOLLANDER P.36, IOANNIDES K.G.15, IOANNOU P.12, ISAEV S.27, JERICHA E.1, KADI Y.5, KAEPPELER F.11, KARADIMOS D.17, KARAMANIS D.15, KAYUKOV A.26, KAZAKOV L.27, KELIC A.9, KETLEROV V.27, KITIS G.16, KOEHLER P.E.38., KOPACH Y.26, KOSSIONIDES E.14, KROSHKINA I.27, LACOSTE V.5, LAMBOUDIS C.16, LEEB H.1, LEPRETRE A.10, LOPES M.25, LOZANO M.31, MARRONE S.20, MARTINEZ-VAL J.
    [Show full text]
  • Cyclotron Produced Lead-203 P
    Postgrad Med J: first published as 10.1136/pgmj.51.601.751 on 1 November 1975. Downloaded from Postgraduate Medical Journal (November 1975) 51, 751-754. Cyclotron produced lead-203 P. L. HORLOCK M. L. THAKUR L.R.I.C. M.Sc., Ph.D. I. A. WATSON M.Sc. MRC Cyclotron Unit, Hammersmith Hospital, Du Cane Road, London W12 OHS Introduction TABLE 1. Isotopes of lead Radioactive isotopes of lead occur in the natural Isotope Half-life Principal y energy radioactive series and have been used as decay 194Pb m * tracers since the early days of radiochemistry. These 195Pb 17m * are 210Pb (ti--204 y, radium D), 212Pb (t--10. 6 h, 96Pb 37 m * thorium B) and 214Pb (t--26.8 m, radium B) all of 197Pb 42 m * which are from occurring decay 197pbm 42 m * separated naturally 198pb 24 h * products ofradium or thorium. There are in addition 19spbm 25 m * Protected by copyright. to these a number of other radioactive isotopes of 199Pb 90 m * lead which can be produced artificially with the aid 19spbm 122 m * of a nuclear reactor or a accelerator 20OPb 21-5 h ** 0-109 to 0-605 (complex) charge particle (daughter radiations) (Table 1). 2Pb 9-4 h * There are at least three criteria in choosing the 0oipbm 61 s * radioactive isotope for in vitro tracer studies. First, 20pb 3 x 105y *** TI X-rays, (daughter it should emit radiation which is easily detected. radiations) have a half-life to 202pbm 3-62 h * Secondly, it should long enough aPb 52-1 h ** 0-279 (81%) 0-401 (5%) 0-680 permit studies without excessive radioactive decay 203pbm 6-1 s * (0-9%) (no daughter occurring but not so long that waste disposal radiations) creates a problem.
    [Show full text]
  • Proton-Induced Cross-Sections of Nuclear Reactions on Lead up to 37 Mev
    Proton-induced cross-sections of nuclear reactions on lead up to 37 MeV F. Ditroi´ a,∗, F. Tark´ anyi´ a, S. Takacs´ a, A. Hermanneb aInstitute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary bCyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium Abstract Excitation function of proton induced nuclear reactions on lead for production of 206;205;204;203;202;201gBi, 203cum;202m;201cumPb and 202cum;201cum;200cum;199cumTl radionuclides were measured up to 36 MeV by using activation method, stacked foil irradiation technique and ?-ray spectrometry. The new experimental data were compared with the few earlier experimental results and with the predictions of the EMPIRE 3.1, ALICE-IPPE (MENDL2p) and TALYS (TENDL-2012) theoretical reaction codes. Keywords: lead target, cross-section by proton activation, theoretical model codes, thin layer activation (TLA) 1. Introduction this, only a few experimental data sets exist, collected mostly by the experimental groups. In the low energy Production cross-sections of proton induced nuclear region practically only one experimental cross-section reactions on lead are important for many applications is available from the Hannover-Cologne group. In our and for the development of nuclear reaction theory. research and application work in connection with the Lead is an important technological material as pure el- activation cross-sections on lead we were involved in ement as well as alloying agent and it is also widely different projects and applications: used in different nuclear technologies, as well as tar- get material for production of 201Tl medical diagnostic • preparation of nuclear database for production of gamma-emitter for SPECT technology (Lagunas-Solar medical radioisotopes in the frame of an IAEA Co- et al., 1981).
    [Show full text]
  • Annual Report of the Tatneft Company
    LOOKING INTO THE FUTURE ANNUAL REPORT OF THE TATNEFT COMPANY ABOUT OPERATIONS CORPORATE FINANCIAL SOCIAL INDUSTRIAL SAFETY & PJSC TATNEFT, ANNUAL REPORT 2015 THE COMPANY MANAGEMENT RESULTS RESPONSIBILITY ENVIRONMENTAL POLICY CONTENTS ABOUT THE COMPANY 01 Joint Address to Shareholders, Investors and Partners .......................................................................................................... 02 The Company’s Mission ....................................................................................................................................................... 04 Equity Holding Structure of PJSC TATNEFT ........................................................................................................................... 06 Development and Continuity of the Company’s Strategic Initiatives.......................................................................................... 09 Business Model ................................................................................................................................................................... 10 Finanical Position and Strengthening the Assets Structure ...................................................................................................... 12 Major Industrial Factors Affecting the Company’s Activity in 2015 ............................................................................................ 18 Model of Sustainable Development of the Company ..............................................................................................................
    [Show full text]
  • Complex of Stone Tools of the Chalcolithic Igim Settlement 1 2 *3 Ekaterina N
    DOI 10.29042/2018-2284-2288 Helix Vol. 8(1): 2284 – 2288 Complex of Stone Tools of the Chalcolithic Igim Settlement 1 2 *3 Ekaterina N. Golubeva , Madina S. Galimova , Leonard F. Nedashkovsky *1, 3 Kazan Federal University 2Institute of Archaeology named after A.Kh. Khalikov of the Academy of Sciences of the Republic of Tatarstan *3E-mail: [email protected], Contact: 89050229782 Received: 21st October 2017 Accepted: 16th November 2017, Published: 31st December 2017 expand the understanding of the everyday life and the Abstract activities of prehistoric people, but also, perhaps, to The article presents the results of a typological and a functional study of stone objects collection part (408 differentiate the complexes of stone inventory for items) originating from trench 2 on a multi-layered different periods of time. Igim site situated in the Lower Kama reservoir zone at A striking example of such a mixed monument is the the confluence of the Ik and Kama rivers (Russian multi-layered settlement Igim, which is located on the Federation, Republic of Tatarstan). The site was high remnant of the terrace, at the confluence of the inhabited for three periods - during the Neolithic, the rivers Ik and Kama (now the Lower Kama reservoir). Eneolithic and the Late Bronze Age. In the course of This large remnant restricts from the west a large lake- research conducted by P.N. Starostin and R.S. marshy massif, called Kulegash, located between the Gabyashev, stone artifacts were discovered, probably mouths of the largest influents of the Kama River - Ik related to the Eneolithic era.
    [Show full text]
  • Chemical and Isotropic Tracers of Natural Gas and Formation Waters in Fractured Shales
    Chemical and isotopic tracers of natural gas and formation waters in Note: this document may contain some elements that are not fully fractured shales accessible to users with disabilities. If you need assistance accessing any information in this document, please contact [email protected]. Jennifer McIntosh, Melissa Schlegel, Brittney Bates Department of Hydrology & Water Resources University of Arizona, Tucson AZ EPA Technical Workshop Feb 24-25, 2011 Outline of Presentation 1)) What is the chemical and isotoppgic signature of formation waters and natural gas in fractured shales? 2) How does it compare with shallow drift aquifers, coalbeds, and other deep geologic formations? Illinois Basin-Case Study - 3 organic-rich formations: glacial drift, Penn. coal, & Dev. fractured shale - organicorganic-rich Ordov. ShaleShale, not part ooff this study m 500 20 km Schlegel et al. (in press, 2011, Geochimica et Cosmochimica Acta) Illinois Basin-Case Study - microbial methane in all 3 units - thermogenic methane in shale and coal m 500 20 km Schlegel et al. (in press, 2011, Geochimica et Cosmochimica Acta) Illinois Basin - water & gas samples Shallow aquifers Penn. Coals Dev. Shale Limestone aquifers 9New data (white symbols): Schlegel et al. (in press) 9Previous data (black symbols): McIntosh et al., 2002; Strąpoć et al., 2007, 2008a,b; Coleman et al, 1988 Fingerprint of natural gases 1000000 Shallow Aquifers 100000 High C1/C2, no C3 Coals 10000 1000 Shale 100 10 Shallow aquifers Penn. Coals Dev. Shale Thermogenic gas 1 -80 -75 -70 -65 -60 -55 -50 -45 -40 13 δ CCH4 (ä PDB) 13 9In general, 3 organic-rich units have different gas compositions (C1/C2+C3) and δ C-CH4 values.
    [Show full text]