Thallium-201 for Medical Use. I

Total Page:16

File Type:pdf, Size:1020Kb

Thallium-201 for Medical Use. I THALLIUM-201 FOR MEDICAL USE. I E. Lebowitz, M. W. Greene, R. Fairchild, P. R. Bradley-Moore, H. 1. Atkins,A. N. Ansari, P. Richards,and E. Belgrave Brookhaven National Laboratory Thallium-201 merits evaluation for myocar tumors (7—9), the use of radiothallium should also dial visualization, kidney studies, and tumor be evaluated for this application. diagnosis because of its physical and biologic Thallium-201 decays by electron capture with a properties. A method is described for prepara 73-hr half-life. It emits mercury K-x-rays of 69—83 tion of this radiopharmaceutical for human use. keY in 98% abundance plus gamma rays of I 35 and A critical evaluation of 501T1 and other radio 167 keV in 10% total abundance. Because of its pharmaceuticals for myocardial visualization is good shelf-life, photon energies, and mode of decay, given. 201T1was the radioisotope of thallium chosen for development. Thallium-20 1 is a potentially useful radioisotope MATERIALS AND METHODS for various medical applications including myocardial Thallium-201 is produced by irradiating a natural visualization and possible assessment of physiology, thallium target in the external beam of the 60-in. as a renal medullary imaging agent, and for tumor Brookhaven cyclotron with 3 1-MeV protons. The detection. nuclear reaction is 203Tl(p,3n)201Pb. Lead-201 has The use of radiothallium in nuclear medicine was a half-life of 9.4 hr and is the parent of 201T1.The first suggested by Kawana, et al (1 ) . In terms of thallium target, fabricated from an ingot of 99.999% organ distribution (2) and neurophysiologic function pure natural thallium metal (29.5% isotopic abun (3), thallium is biologically similar to potassium. dance of 203Tl), is I .3 cm in diameter and weighs The physical—chemicalexplanation for the biologic 0.7 gm. The target thickness and incident proton similarity of @+and K@ is that the hydrated ionic beam energy are chosen to minimize the production radius of 11+ is between K+ and Rb+ in size and of other radioisotopes of lead, which could lead to this radius has been suggested as the property that impurities in the 2011'lproduct. After irradiation, the determines passive penetration through a mem thallium target is dissolved in concentrated nitric brane (4). acid, then evaporated to dryness. This salt is then These facts suggest that radiothallium should be dissolved in 50 ml of 0.025 M EDTA at pH 4 and a good potassium analog and therefore has potential passed through a Bio-Rad Dowex 50 X 8 resin col for myocardial visualization and the early detection umn (Nat form, 50—[email protected] X 6 cm) . Most of areas of diminished perfusion and radionuclide of the thallium target material adheres to the column uptake as “coldspots―(regions of decreased ac and the eluate contains radioactive 203Pband 201Pb. tivity). The eluate is acidified by adding an equal volume of Presently used renal agents concentrate in the conc. HNO@and the thallium is oxidized by the addi cortex; unlike these, thallium preferentially concen tion of “Clorox.―Forty micrograms of Pb(N03)2 trates in the renal medulla (5) . This property may carrier are added to the eluate and the solution is be clinically useful. passed through a Bio-Rad Dowex 1 X 8 resin col The Tl@ is taken up more by tissues in pigmented umn (H@ f@yrm,50—100mesh, 2.5 X 6 cm). Thal than in albino rabbits, suggesting the use of radio thallium for the diagnosis of melanoma (6) . Because Received June 10, 1974; revision accepted Sept. 23, 1974. of the similarity of thallium to alkali metals such as For reprints contact: Elliot Lebowitz, Bldg. 801, Brook cesium, which has been shown to concentrate in haven National Laboratory, Upton, N.Y. 11973. Volume 16, Number 2 151 LEBOWITZ, GREENE, FAIRCHILD, BRADLEY-MOORE, ATKINS, ANSARI, RICHARDS, AND BELGRAVE hum adheres to this column and the lead activities are eluted. TABLE1. CHEMICALANALYSIS This eluate containing 203Pband 201Pbis allowed PRODUCTOFQuantityQuantityElement(/Lg)Element(‘ug)TI<2Ni<2Ca60Al1B<2Mo0.2Mg1Cu6Mn<0.2Ag<0.2Si0.2Ti1Fe1V1THE 201Tl to stand overnight to permit the 201Pbto decay into 201Tl It is then passed through another Bio-Rad Dowex 1 X 8 column to which the 2olTl+3 adheres and through which the lead activities are eluted. The 201'fl activity is then eluted with 20 ml of hot hy drazine-sulfate solution (20% w/v) , reducing Tl@ to Tl+l This TI +1 eluate is evaporated to dryness twice with conc. HNO:4 and once with conc. HC1. The product is then dissolved in 5 ml of 10_i M NaOH and the pH is adjusted to 7 by further addi tion of NaOH. The product is sterilized by ifitration by paper chromatography to differentiate Tl@1 and into a sterile multiinjection bottle through a 0.22- [email protected] No. 3 MM paper and a solvent 1/10 micron sterilized Millipore filter. (Na2HPO., -5H20) and 9/ 10 (acetone) are used. A Rhodamine B spot test is used to detect carrier The 11+1 stays at the origin. To demonstrate that thallium in the product before injection. The test the 20111is not in particulate form, the product is can detect 0.02 @gof thallium. The sample tested passed through a 250 A filter. is typically 1% of the total product; thus a negative Radionuclidic purity is analyzed by multichannel spot test insures that less than 2 @gof thallium is pulse-height analysis, utilizing a Ge(Li) detector. present in the product. A few weeks after the 20111 The gamma spectrum of the product is also followed is produced, a complete chemical analysis of the for approximately 1 week to confirm the half-lives of product is performed by emission spectroscopy. the product and impurity gamma rays. The radiochemical purity of the product is checked Product batches are tested for pyrogenicity by an 8 MED RUN P12 SE000S § 8 8 8 U, z LIR a a so' 8 @ 135 isV 1______ 8 2 / @ 54.00 1ie4X@ [email protected] 25S.@ @O.OO @4.OO [email protected] 532.00 640.00 7OS.@ ‘N.m eà .m [email protected], %O.OO CHANNEL NUFIOER FIG. 1. Ge(ti)spectrumof‘@TIproduct. 152 JOURNAL OF NUCLEAR MEDICINE 201T1FORMEDICALUSE. independent laboratory. All glassware is rendered 1000 r I I I apyrogenic by autoclaving at 180°Cfor 3 hr. Measurements of the excitation function (the pro duction cross section as a function of energy) are performed by irradiating a stack of thin (approxi 500 mately 0.2 gm/cm2) foils of thallium and analyzing the activities produced with a Ge(Li) detector. Lead -a 201 is determined by analysis of its 331-keV photon, E which is present in 82% abundance. b RESULTS Emission spectroscopic chemical analysis of an entire product batch is shown in Table 1. Figure 1 shows the Ge(Li) spectrum of the product, the main 00 peaks being the x-rays and photons of 20111.The 10 20 30 40 radioisotopic purity is @99%, as is shown in Table E ( MeV) 2. The product is at neutral pH, isotonic, sterile, and pyrogen-free. FIG.2.‘°‘TI(p,3n)'°@Pbexcitationfunction. The excitation function for the production of 201Pb,the parent of 20111,is seen in Fig. 2. By choos ing an energy range near the peak of the excitation the heart. Although the radioisotopes of potassium function, the production of 200Pb and 202Pb (the and cesium can both be used for myocardial visual parents of 200'fl and 202Tl) radiocontaminants is ization, their differences in biologic behavior are re minimized. With a natural thallium target, the pro flected in their clinical usefulness. duction rate of 20111is 0.7 mCi/@AH or correspond Advantages of potassium over cesium. First, be ingly higher with an enriched 20311target. The mi cause of its more efficient myocardial uptake and tial development work is being done on the Brook lack of recirculation, K+ is superior for quantitative haven 60-in. cyclotron but it should be possible to studies following intracoronary arterial injection evaluate the production capability of 20111 in the (10) . Second, because of its rapid blood clearance BLIP (Brookhaven Linac Isotope Producer) using and myocardial extraction, K+ can be used in the the 205Tl(p,5n)201Pb reaction. assessment of patients with transient myocardial is chemia (e.g., angina pectoris) by visualizing the myo DISCUSSION cardium before and after stress (11,12). Using the myocardial uptake of the analogs of Disadvantage of potassium. The rapid leakage of potassium, there are several alternatives for myo potassium from the myocardium constitutes a dis cardial visualization including the radioisotopes of advantage due to the inability to visualize the myo potassium, cesium, thallium, rubidium, and I3NH,+. cardium with potassium after the first hour post We start by comparing the biologic behavior of K@ injection (1 1 ), compared with the ability to use and Cs@ (10) . Potassium is more rapidly cleared cesium for this purpose for several hours (10,13). from the blood and extracted by the myocardium Since Tl+ is a good biologic analog of potassium, than is cesium. Potassium is extracted by the myo it should have the biologic advantages of K@ listed cardium with 71% efficiency on a single circulation earlier. Furthermore, Harper has observed that the compared with 22% efficiency for cesium. Following thallium activity remained in the myocardium even its extraction, potassium is cleared more rapidly from 18 hr postinjection in the one patient they scanned TABLE 2. RADIOISOTOPIC ANALYSIS OF 201Tl PRODUCT At time of preparation 18 hr later Isotope tim (%) (S/s) 73 hr later 146 hr later ‘°@Pb 52 hr 1.6 X 10' 1.5 X 102 1.2 X i0' 9.0 X 10' “TI 26 hr 1.3 X 10' 9.0 X 102 3j X 10@ 1.1 X 10' ‘@Tl 12.2 days 1.2 X 10' 1.4 X 101 2.0 X 10T' 3.4 X 101 Volume 16,Number 2 153 LEBOWITZ, GREENE, FAIRCHILD, BRADLEY-MOORE, A1KINS, ANSARI, RICHARDS, AND BELGRAVE Rubidium is a good analog of potassium (15) TABLE 3.
Recommended publications
  • Effect of Natural Organic Matter on Thallium and Silver Speciation Loïc Martin, Caroline Simonucci, Sétareh Rad, Marc F
    Effect of natural organic matter on thallium and silver speciation Loïc Martin, Caroline Simonucci, Sétareh Rad, Marc F. Benedetti To cite this version: Loïc Martin, Caroline Simonucci, Sétareh Rad, Marc F. Benedetti. Effect of natural organic matter on thallium and silver speciation. Journal of Environmental Sciences, Elsevier, 2020, 93, pp.185-192. 10.1016/j.jes.2020.04.001. hal-02565435 HAL Id: hal-02565435 https://hal.archives-ouvertes.fr/hal-02565435 Submitted on 6 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Title Page (with Author Details) Effect of natural organic matter on thallium and silver speciation Loïc A. Martin1,2, Caroline Simonucci2, Sétareh Rad3, and Marc F. Benedetti1* 1Université de Paris, Institut de physique du Globe de Paris, CNRS, F-75005 Paris, France. 2IRSN, PSE-ENV/SIRSE/LER-Nord, BP 17, 92262 Fontenay-aux-Roses Cedex, France 3BRGM, Unité de Géomicrobiologie et Monitoring environnemental 45060 Orléans Cedex 2, France. *Corresponding authors. Email address: [email protected] Manuscript File Click here to access/download;Graphical Abstract;graphical abstract.001.jpeg Manuscript File Click here to view linked References 23 Effect of natural organic matter on thallium and silver speciation 24 25 Loïc A.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Potassium-40 What Is It? Potassium Is a Soft, Silver-White Metal
    Human Health Fact Sheet ANL, October 2001 Potassium-40 What Is It? Potassium is a soft, silver-white metal. An important constituent of soil, it is widely distributed in nature and is present in all Symbol: K(-40) plant and animal tissues. Potassium-40 is a naturally occurring Atomic Number: 19 radioactive isotope of potassium. (An isotope is a different form of an (protons in nucleus) element that has the same number of protons in the nucleus but a different number of neutrons.) Two stable (nonradioactive) isotopes of Atomic Weight: 39 potassium exist, potassium-39 and potassium-41. Potassium-39 (naturally occurring) comprises most (about 93%) of naturally occurring potassium, and potassium-41 accounts for essentially all the rest. Radioactive postassium-40 comprises a very small fraction (about 0.012%) of naturally occurring potassium. Several radioactive isotopes of potassium exist in addition to potassium-40. These isotopes all have half- lives of less than one day Radioactive Properties of Potassium-40 so they are not Natural Specific Radiation Energy (MeV) Half-Life Decay of concern for Isotope Abundance Activity (yr) Mode Alpha Beta Gamma Department of (%) (Ci/g) (α) (β) (γ) Energy (DOE) K-40 1.3 billion 0.012 0.0000071 β, EC - 0.52 0.16 environmental management EC = electron capture, Ci = curie, g = gram, and MeV = million electron volts; a dash means sites such as that the entry is not applicable. (See the companion fact sheet on Radioactive Properties, Hanford. The Internal Distribution, and Risk Coefficients for explanation of terms and interpretation of radiation energies.) Potassium-40 decays by both emitting a beta particle (89%) and electron half-life of capture (11%).
    [Show full text]
  • THE NATURAL RADIOACTIVITY of the BIOSPHERE (Prirodnaya Radioaktivnost' Iosfery)
    XA04N2887 INIS-XA-N--259 L.A. Pertsov TRANSLATED FROM RUSSIAN Published for the U.S. Atomic Energy Commission and the National Science Foundation, Washington, D.C. by the Israel Program for Scientific Translations L. A. PERTSOV THE NATURAL RADIOACTIVITY OF THE BIOSPHERE (Prirodnaya Radioaktivnost' iosfery) Atomizdat NMoskva 1964 Translated from Russian Israel Program for Scientific Translations Jerusalem 1967 18 02 AEC-tr- 6714 Published Pursuant to an Agreement with THE U. S. ATOMIC ENERGY COMMISSION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D. C. Copyright (D 1967 Israel Program for scientific Translations Ltd. IPST Cat. No. 1802 Translated and Edited by IPST Staff Printed in Jerusalem by S. Monison Available from the U.S. DEPARTMENT OF COMMERCE Clearinghouse for Federal Scientific and Technical Information Springfield, Va. 22151 VI/ Table of Contents Introduction .1..................... Bibliography ...................................... 5 Chapter 1. GENESIS OF THE NATURAL RADIOACTIVITY OF THE BIOSPHERE ......................... 6 § Some historical problems...................... 6 § 2. Formation of natural radioactive isotopes of the earth ..... 7 §3. Radioactive isotope creation by cosmic radiation. ....... 11 §4. Distribution of radioactive isotopes in the earth ........ 12 § 5. The spread of radioactive isotopes over the earth's surface. ................................. 16 § 6. The cycle of natural radioactive isotopes in the biosphere. ................................ 18 Bibliography ................ .................. 22 Chapter 2. PHYSICAL AND BIOCHEMICAL PROPERTIES OF NATURAL RADIOACTIVE ISOTOPES. ........... 24 § 1. The contribution of individual radioactive isotopes to the total radioactivity of the biosphere. ............... 24 § 2. Properties of radioactive isotopes not belonging to radio- active families . ............ I............ 27 § 3. Properties of radioactive isotopes of the radioactive families. ................................ 38 § 4. Properties of radioactive isotopes of rare-earth elements .
    [Show full text]
  • Stella Swanson' ; 'Gunter Muecke'; James Archibald Cc: Subject: Great Lakes Radionuclide Level Reports
    From: Panel Registry From: Virtue,Robyn-Lynne [CEAA] On Behalf Of DGR Review / Examen DFGP [CEAA] Sent: June 26, 2014 11:42 AM To: DGR Review / Examen DFGP [CEAA] Subject: Requested Reports To: 'Stella Swanson' ; 'Gunter Muecke'; James Archibald Cc: Subject: Great Lakes Radionuclide Level Reports Panel Members, As per your request to CNSC for updated information on radionuclide levels in Lake Huron during the public hearing in the Fall of 2013, enclosed are three reports - Bruce Power. Environmental Monitoring Program Report. April 2012; IJC Nuclear Task Force. Inventory of Radionuclides for the Great Lakes. December 1997; and Ahier, Brian A. and Bliss L. Tracy. “Radionuclides in the Great Lakes Basin.” Environmental Health Perspectives Volume 103, Supplement 9 (December 1995) - for your information. Thank you, Robyn Robyn-Lynne Virtue DGR Joint Review Panel Secretariat C/O Canadian Environmental Assessment Agency 160 Elgin Street, 22nd floor Ottawa, ON K1A 0H3 <contact information removed> file:///M|/My%20Documents/Registry/DGR/Untitled.htm[04/07/2014 3:58:50 PM] 2012 ENVIRONMENTAL MONITORING PROGRAM REPORT B-REP-07000-00005 R000 April 2013 Master Created: 26Apr2013 12:14 B-REP-07000-00005 Rev 000 April 2013 Page 2 of 176 2012 ENVIRONMENTAL MONITORING PROGRAM REPORT Master Created: 26Apr2013 12:14 B-REP-07000-00005 Rev 000 April 2013 Page 4 of 176 2012 ENVIRONMENTAL MONITORING PROGRAM REPORT ABSTRACT OF PRESENT REVISION: Executive Summary: The purpose of this report is to fulfill regulatory requirements under Licence Condition 1.7 of Bruce Power’s Nuclear Power Reactor Operating Licence’s (PROL) 15:00/2014 and PROL 16:00/2014.
    [Show full text]
  • PDF Download
    Earth and Planetary Science Letters 539 (2020) 116192 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Potassium isotope fractionation during chemical weathering of basalts ∗ Heng Chen a,b, , Xiao-Ming Liu c, Kun Wang ( ) a a Department of Earth and Planetary Sciences, Washington University in St Louis, St. Louis, MO 63130, USA b Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA c Department of Geological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA a r t i c l e i n f o a b s t r a c t Article history: Non-traditional stable isotopes (e.g., Li, Mg, and Si) are increasingly used as tracers for studying Earth’s Received 26 February 2019 surface processes. The isotopes of potassium (K), a highly soluble and mobile element during weathering, Received in revised form 24 February 2020 could be a promising new tracer for continental weathering; however, the K isotopic variations in Accepted 28 February 2020 weathering profile has not been directly studied due to previous analytical difficulties. Recent high- Available online 30 March 2020 precision measurements revealed that K isotopes in global river waters are fractionated from the Bulk Editor: L. Derry Silicate Earth (BSE) value, indicating they are influenced by chemical weathering of the crust. Isotopic Keywords: fractionation during chemical weathering is one of several processes that could ultimately lead to 41 potassium isotopes ∼0.6 difference of δ K between the BSE and modern seawater. In order to determine the direction chemical weathering and controlling factors of K isotopic fractionation during basalt weathering, especially under intense basalt weathering conditions, we measured K isotopic compositions in two sets of bauxite developed on the clay minerals Columbia River Basalts, together with fresh parental basalt and aeolian deposit samples using a recently global potassium cycle developed high-precision method.
    [Show full text]
  • Doubt of the Radioactivity of Potassium and Rubidium Gations of Thomson
    628 CHEMISTR Y: HARKINS AND GUY PRtOC. N. A. S., The later separation of the light fraction reported here was undertaken by Francis Jenkins and the writer in order to obtain a sufficient separation to make it possible to investigate the shift in the spectrum of isotopes with a change of atomic weight, as discovered by Harkins and Aronberg' for lead. They showed a difference of 0.0048 Angstrom unit difference in the wave-length of the line 4057A as produced by a difference of t/25o in the atomic weight between ordinary lead and lead produced by the disintegra- tion of uranium. The relative difference in the case of chlorine is one. part in 373, and it is probable that the magnitude of the similar effect may be discovered for this element. This is important since the cause of the effect and its variation with the atomic weight are unknown. Furthermore this is the only difference in the chemical nature of isotopes which has been discovered, so it is important to determine its origin. I J. J. Thomson, Address to the Royal Institution, Jan. 17, 1913. 2 Harkins, W. D., Physic. Rev., 15, 74 (1920); Harkins, W. D. and Broeker, C. E., Nature, 105, 230-1 (1920); Science, N. S., 51, 289-91 (1920); Harkins and Hall, R. E., J. Amer. Chem. Soc., 1390, 1391, 1387 (1916). (Notice of Beginning of Separation.) J Harkins, W. D. and Wilson, E. D., these PROCuZDINGS, 1, 276-82 (1915); J. Amer. Chem. Soc., 37, 1367-1421 (1915); Phil. Mag., 30, 723-34 (1915).
    [Show full text]
  • Thallium Science & Technology Development
    toxics release inventory Chemical Profile Environment Thallium Science & Technology Development What is thallium? The amount of thallium that U.S. How might people be exposed to Thallium (Tl) is a bluish-white metal power plants release into the air each thallium? that is very soft. In nature, thallium year is presently unknown. People are commonly exposed to small combines with other elements to form amounts of thallium naturally present in thallium compounds. Small amounts of Is thallium also released by other the air they breathe, the water they thallium are naturally present in rocks, sources? drink, and the foods they eat. soils, and water. Thallium is released into the air by soils However, some people may be exposed Thallium combines with other metals as they erode in wind and rain. It is to larger amounts of thallium when to form mixtures called alloys. For released into water and soils by eroding they smoke tobacco or eat fish that example, thallium mixed with mercury rocks and ores. have accumulated it in their flesh. forms a fluid alloy that is used in low- Thallium released into the environ- Industrial workers may breathe thallium temperature thermometers and switches. ment by human activities comes mainly dust or fumes. Thallium is also used in electronic com- from metal production facilities, indus- ponents and special grades of glass. trial boilers that burn coal, glass facto- What are the potential effects of Physicians introduce thallium into the ries, and cement plants. Industries thallium on human health? body to show blood flow to the heart. reporting to the U.S Environmental Thallium affects people’s health in the Rockets and flares emit a bright green Protection Agency (EPA) released about same way, whether they eat, drink, or flame when they burn thallium salts.
    [Show full text]
  • Optical Properties of Halides of Silver and Thallium Under Hydrostatic Pressure Alfred Douglas Brothers Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 Optical properties of halides of silver and thallium under hydrostatic pressure Alfred Douglas Brothers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Condensed Matter Physics Commons Recommended Citation Brothers, Alfred Douglas, "Optical properties of halides of silver and thallium under hydrostatic pressure " (1968). Retrospective Theses and Dissertations. 3649. https://lib.dr.iastate.edu/rtd/3649 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 68-14,774 BROTHERS, Alfred Douglas, 1939- OPTICAL PROPERTIES OF HALEDES OF SILVER AND THALLIUM UNDER HYDROSTATIC PRESSURE. Iowa State University, Ph.D., 1968 Physics, solid state University Microfilms, Inc., Ann Arbor, Michigan OPTICAL PROPERTIES OP HALIDES OP SILVER AND THALLIUM Umza HYDROSTATIC PRESSURE by Alfred Douglas Brothers A Dissertation Subraitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR 0? PHILOSOPHY Major Subjects: Physics Education Approved: Signature was redacted for privacy. In Charge of i- ^or Work Signature was redacted for privacy. Heads oM iajor Dep rtments Signature was redacted for privacy. att of Grad te College Iowa State University Ames, lo^a 1968 11 TABLE 0? CONTENTS Pa,3e INTiiODUCTIOM 1 APPARATUS 12 EXPERIMENTAL 20 RESULTS 31 DISCUSSION 52 SUMi'IAHY AND CONCLUSIONS ?1 LITERATURE CITED 74 ACKNOWLEDGEMENTS ?? INTHOIWCTIO:'; The use of hydrostatic pressure, combined v.'lth lovf tem­ peratures, is a valuable technique In the study of crystal properties.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Water Quality Criteria for Thallium
    Office of Water Envir"onmental Protection R$gulations Stam:iards Agency Criteria and Stan(jards UIVISlon Washington DC 20460 A.mblent Water Quality Criteria for Thallium m & & rt' AMBIENT WATER QUALITY CRITERIA FOR THALLIUM Prepared By U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Water Regulations and Standards Criteria and Standards Division Washington, D.C: Office of Research and Development Environmental Criteria and Assessment Office Cincinnati, Ohio Carcinogen Assessment Group Washington, D.C. Environmental Research Laboratories Corvalis, Oregon Duluth, Minnesota Gulf Breeze, Florida Narragansett, Rhode Island i DISCLAIMER This report has been reviewed by the Environmental Criteria and Assessment Offi ce, U. S. Envi ronmenta1 Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. AVAILABILITY NOTICE This document is available to the public through the National Techn al Information Service, (NTIS), Springfield, Virginia 22161. ii FOREWORD Section 304 (a) (1) of the Clean Water Act of 1977 (P.L. 95-217), requires the Administrator of the Environmental Protection Agency to publish criteria for water quality accurately reflecting the latest scientific knowledge on the kind and extent of all identifiable effects on hea 1th and we 1fare wh ich may be expected from the presence of pollutants in any body of water, including..ground water. Proposed water quality criteria for the 65 toxic pollutants listed under section 307 (a)(1) of the C1 ean Water Act were developed and a notice of thei r availability was published for public comment on March 15, 1979 (44 FR 15926), July 25, 1979 (44 FR 43660), and October 1, 1979 (44 FR 56628).
    [Show full text]
  • Discovery of the Thallium, Lead, Bismuth, and Polonium Isotopes
    Discovery of the thallium, lead, bismuth, and polonium isotopes C. Fry, M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract Currently, forty-two thallium, forty-two lead, forty-one bismuth, and forty-two polonium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented. ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables October 6, 2011 Contents 1. Introduction . 2 2. 176−217Tl ............................................................................................. 3 3. 179−220Pb............................................................................................. 14 4. 184−224Bi ............................................................................................. 22 5. 186−227Po ............................................................................................. 31 6. Summary ............................................................................................. 39 References . 39 Explanation of Tables . 47 7. Table 1. Discovery of thallium, lead, bismuth, and polonium isotopes . 47 Table 1. Discovery of thallium, lead, bismuth, and polonium. See page 47 for Explanation of Tables . 48 1. Introduction The discovery of thallium, lead, bismuth, and polonium
    [Show full text]