Lcromwell Bottom Lepidoptera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementmaterial S2.Pdf
Mitt. Münch. Ent. Ges. 106 Suppl. S2 1-10 München, 15.02.2016 Systematische, revidierte und kommentierte Checkliste der Schmetterlinge Bayerns (Insecta: Lepidoptera) Alfred HASLBERGER & Andreas H. SEGERER Supplementmaterial S2 Zusammenstellung der in vorliegender Arbeit publizierten regionalen Neu- und Wiederfunde. S2.1 Neufunde für die Bayerischen Alpen und/oder das Alpenvorland (AVA) Nr. FauEu Überfamilie Familie Art 0016 431725 Eriocranioidea Eriocraniidae Dyseriocrania subpurpurella (HAWORTH, 1828) 0026 431739 Eriocranioidea Eriocraniidae Eriocrania semipurpurella (STEPHENS, 1835) 0058 431808 Nepticuloidea Nepticulidae Stigmella aceris (FREY, 1857) 0080 431900 Nepticuloidea Nepticulidae Stigmella myrtillella (STAINTON, 1857) 0089 431932 Nepticuloidea Nepticulidae Stigmella splendidissimella (HERRICH-SCHÄFFER, 1855) 0125 432021 Nepticuloidea Nepticulidae Ectoedemia decentella (HERRICH-SCHÄFFER, 1855) 0133 432060 Nepticuloidea Nepticulidae Ectoedemia hannoverella (GLITZ, 1872) 0158 432282 Adeloidea Heliozelidae Heliozela resplendella (STAINTON, 1851) 0182 432335 Adeloidea Adelidae Adela cuprella (DENIS & SCHIFFERMÜLLER, 1775) 0202 432387 Adeloidea Incurvariidae Incurvaria pectinea HAWORTH, 1828 0230 432437 Tischerioidea Tischeriidae Coptotriche marginea (HAWORTH, 1828) 0331 433122 Tineoidea Tineidae Nemapogon granella (LINNAEUS, 1758) 0355 432916 Tineoidea Tineidae Monopis weaverella (SCOTT, 1858) 0371 433010 Tineoidea Tineidae Tinea columbariella WOCKE, 1877 0373 433015 Tineoidea Tineidae Tinea trinotella THUNBERG, 1794 0394 433489 -
Motyle (Lepidoptera) Parku Krajobrazowego Cysterskie Kompozycje Krajobrazowe Rud Wielkich
ROCZNIK MUZEUM GÓRNOŚLĄSKIEGO W BYTOMIU PRZYRODA Vol. 26 (online 001): 1–40 ISSN 0068-466X, eISSN 2451-0467 (online) Bytom, 10.04.2020 Jacek Maroń1, Adam Larysz2 Motyle (Lepidoptera) Parku Krajobrazowego Cysterskie Kompozycje Krajobrazowe Rud Wielkich http://doi.org/10.5281/zenodo.3747209 1 ul. Kuglera 9, 44-207 Rybnik, Polska, e-mail: [email protected] 2 Dział Przyrody, Muzeum Górnośląskie w Bytomu, pl. Jana III Sobieskiego 2, 41-902 Bytom, Polska, e-mail: [email protected] Abstract: The Butterflies and Moths (Lepidoptera) of the Cysterskie Kompozycje Krajobrazowe Rud Wielkich Landscape Park. The paper presents the research on Lepidoptera in Cysterskie Kompozycje Krajobrazowe Rud Wielkich Landscape Park between 1982 and 2019. The material was collected at nine selected sites, mainly in various forest environments. Overall, 1162 species in 66 families were recorded and listed, including 26 species new to the Province of Silesia. Key words: Lepidoptera, list of species, Cysterskie Kompozycje Krajobrazowe Rud Wielkich Landscape Park, biodiversity. WSTĘP Park Krajobrazowy Cysterskie Kompozycje Krajobrazowe Rud Wielkich (PK CKKRW) położony jest w południowo-zachodniej części województwa śląskiego i zajmuje wschodnią część Kotliny Raciborskiej oraz północne fragmenty Płaskowyżu Rybnickiego. Powstał na mocy Rozporządzenia Wojewody Katowickiego Nr 181/93 z dnia 23 listopada 1993 roku. Powierzchnia Parku wynosi 493,87 km², a strefa ochronna to obszar 140,10 km². Dominują tu drzewostany sosnowe, rosnące na siedliskach borowych, wykształconych na glebach bielicowych, a także wprowadzone sztucznie na siedliska żyznych lasów liściastych. Najbogatszym przyrodniczo terenem w obrębie Parku jest kompleks leśno-stawowy Łężczok w okolicach Raciborza, będący jedynym rezerwatem w granicach Parku. MATERIAŁ I METODY PROWADZENIA BADAŃ Stopień poznania entomofauny PK CKKRW jest niezadawalający, a dane dotyczące występowania poszczególnych gatunków są fragmentaryczne i rozproszone. -
DNA Barcoding of the Leaf-Mining Moth Subgenus Ectoedemia S. Str
Contributions to Zoology, 81 (1) 1-24 (2012) DNA barcoding of the leaf-mining moth subgenus Ectoedemia s. str. (Lepidoptera: Nepticulidae) with COI and EF1-α: two are better than one in recognising cryptic species Erik J. van Nieukerken1, 2, Camiel Doorenweerd1, Frank R. Stokvis1, Dick S.J. Groenenberg1 1 Netherlands Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 2 E-mail: [email protected] Key words: pairwise difference, Palearctic Abstract Species recognition ..................................................................... 7 The Ectoedemia angulifasciella group ................................... 7 We sequenced 665bp of the Cytochrome C Oxidase I (COI) The Ectoedemia suberis group .............................................. 10 barcoding marker for 257 specimens and 482bp of Elongation The Ectoedemia populella group .......................................... 10 Factor 1-α (EF1-α) for 237 specimens belonging to the leaf- The Ectoedemia subbimaculella group ................................ 11 mining subgenus Ectoedemia (Ectoedemia) in the basal Lepi- Discussion ........................................................................................ 13 dopteran family Nepticulidae. The dataset includes 45 out of 48 One or two genes ...................................................................... 13 West Palearctic Ectoedemia s. str. species and several species Barcoding gap ........................................................................... 15 from Africa, North America and Asia. -
Biological Surveys at Hunsbury Hill Country Park 2018
FRIENDS OF WEST HUNSBURY PARKS BIOLOGICAL SURVEYS AT HUNSBURY HILL COUNTRY PARK 2018 Ryan Clark Northamptonshire Biodiversity Records Centre April 2019 Northamptonshire Biodiversity Records Centre Introduction Biological records tell us which species are present on sites and are essential in informing the conservation and management of wildlife. In 2018, the Northamptonshire Biodiversity Records Centre ran a number of events to encourage biological recording at Hunsbury Hill Fort as part of the Friends of West Hunsbury Park’s project, which is supported by the National Lottery Heritage Fund. Hunsbury Hill Country Park is designated as a Local Wildlife Site (LWS). There are approximately 700 Local Wildlife Sites in Northamptonshire. Local Wildlife Sites create a network of areas, which are important as refuges for wildlife or wildlife corridors. Hunsbury Hill Country Park was designated as a LWS in 1992 for its woodland flora and the variety of habitats that the site possesses. The site also has a Local Geological Site (LGS) which highlights the importance of this site for its geology as well as biodiversity. This will be surveyed by the local geological group in due course. Hunsbury Hill Country Park Local Wildlife Site Boundary 1 Northamptonshire Biodiversity Records Centre (NBRC) supports the recording, curation and sharing of quality verified environmental information for sound decision-making. We hold nearly a million biological records covering a variety of different species groups. Before the start of this project, we looked to see which species had been recorded at the site. We were surprised to find that the only records we have for the site have come from Local Wildlife Site Surveys, which assess the quality of the site and focus on vascular plants, with some casual observations of other species noted too. -
A-Razowski X.Vp:Corelventura
Acta zoologica cracoviensia, 46(3): 269-275, Kraków, 30 Sep., 2003 Reassessment of forewing pattern elements in Tortricidae (Lepidoptera) Józef RAZOWSKI Received: 15 March, 2003 Accepted for publication: 20 May, 2003 RAZOWSKI J. 2003. Reassessment of forewing pattern elements in Tortricidae (Lepidop- tera). Acta zoologica cracoviensia, 46(3): 269-275. Abstract. Forewing pattern elements of moths in the family Tortricidae are discussed and characterized. An historical review of the terminology is provided. A new system of nam- ing pattern elements is proposed. Key words. Lepidoptera, Tortricidae, forewing pattern, analysis, terminology. Józef RAZOWSKI, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, S³awkowska 17, 31-016 Kraków, Poland. E-mail: razowski.isez.pan.krakow.pl I. INTRODUCTION Early tortricid workers such as HAWORTH (1811), HERRICH-SCHHÄFFER (1856), and others pre- sented the first terminology for forewing pattern elements in their descriptions of new species. Nearly a century later, SÜFFERT (1929) provided a more eclectic discussion of pattern elements for Lepidoptera in general. In recent decades, the common and repeated use of specific terms in de- scriptions and illustrations by FALKOVITSH (1966), DANILEVSKY and KUZNETZOV (1968), and oth- ers reinforced these terms in Tortricidae. BRADLEY et al. (1973) summarized and commented on all the English terms used to describe forewing pattern elements. DANILEVSKY and KUZNETZOV (1968) and KUZNETZOV (1978) analyzed tortricid pattern elements, primarily Olethreutinae, dem- onstrating the taxonomic significance of the costal strigulae in that subfamily. For practical pur- poses they numbered the strigulae from the forewing apex to the base, where the strigulae often become indistinct. KUZNETZOV (1978) named the following forewing elements in Tortricinae: ba- sal fascia, subterminal fascia, outer fascia (comprised of subapical blotch and outer blotch), apical spot, and marginal line situated in the marginal fascia (a component of the ground colour). -
Japanese Honeysuckle Wildland (Lonicera Japonica Thunb.) Gary N
Japanese Honeysuckle Wildland (Lonicera japonica Thunb.) Gary N. Ervin, Ph.D., Associate Professor, Mississippi State University John D. Madsen, Ph.D., Extension/Research Professor, Mississippi State University Ryan M. Wersal, Research Associate, Mississippi State University Fig. 1. Japanese honeysuckle vine climbing up a tree. Fig. 2. Flowers of Japanese honeysuckle. Introduction Problems Created Japanese honeysuckle was introduced from Japan in the early 1800s and now is one of the most commonly encoun- tered exotic weeds in the Mid-South. This species frequently overtops and displaces native plants and forestry species in any habitat, but particularly where natural or human activities creates edges. Japanese honeysuckle also is somewhat shade tolerant and can be found in relatively densely canopied forest. This species perenniates with the aid of well de- veloped root and rhizome systems, by which it also is capable of spreading vegetatively, in addition to rooting at nodes along aboveground stems. Both features contribute substantially to its rapid dominance over native vegetation. Regulations Japanese honeysuckle is listed as a noxious weed in CT, MA, NH, and VT. In the southeast, Japanese honeysuckle is considered a severe invasion threat in KY, SC, and TN. It is considered one of the top ten invasive plants in GA, and is listed as a category one invasive in Florida. It is not presently listed in any noxious weed legislation in southern states. Description Vegetative Growth Japanese honeysuckle exhibits a semi-evergreen to evergreen life cycle and is readily identified during winter by its per- sistent green foliage. Its vines may climb and/or spread along the ground to lengths of 80’. -
DNA Barcoding and Morphology Reveal Three Cryptic Species of Anania
Systematic Entomology (2012), 37, 686–705 DNA barcoding and morphology reveal three cryptic species of Anania (Lepidoptera: Crambidae: Pyraustinae) in North America, all distinct from their European counterpart ZHAOFU YANG1,9, JEAN-FRANC¸ OIS LANDRY2,LOUIS HANDFIELD3, YALIN ZHANG1,M.ALMASOLIS4, DANIEL HANDFIELD5, BRIAN G. SCHOLTENS6, MARKO MUTANEN7, MATTHIAS NUSS8 and PAUL D. N. HEBERT9 1Key laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Entomological Museum, Northwest A&F University, Yangling, China, 2Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, C.E.F., Ottawa, Ontario K1A 0C6, Canada, 3133 rue Messier, #301, Mont-Saint-Hilaire, Quebec´ J3H 2W8, Canada, 4Systematic Entomology Laboratory, USDA, c/o Smithsonian Institution, National Museum Natural History, Washington, DC 20013-7012, U.S.A., 5Chemin des Grands Coteaux, Saint-Mathieu-de-Beloeil, Quebec,´ Canada, 6Department of Biology, College of Charleston, SC, U.S.A., 7Department of Biology, University of Oulu, Zoological Museum, Oulu, Finland, 8Museum of Zoology, Senckenberg Natural History Collections Dresden, Konigsbr¨ ucker¨ Landstrasse 159, 01109 Dresden, Germany and 9Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario N1G 2W1, Canada Abstract. Anania coronata (Hufnagel), a Holarctic species of pyraustine crambid moth, has long been treated as having two geographically separated subspecies – the nominotypical Anania coronata in the Palaearctic Region and Anania coronata tertialis (Guenee)´ in the Nearctic Region. Maximum likelihood and Bayesian inference analysis of mitochondrial DNA barcodes both recover four well-supported, reciprocally monophyletic groups within Anania coronata. Qualitative and quantitative analyses of genital structures reveal diagnostic differences that correspond to the four barcode lineages. On the basis of both molecular and morphological evidence, we conclude that Anania coronata is actually a complex of four species. -
A Global Phylogeny of Leafmining Ectoedemia Moths (Lepidoptera: Nepticulidae): Host Plant Family Shifts and Allopatry As Drivers of Speciation
UvA-DARE (Digital Academic Repository) A global phylogeny of leafmining Ectoedemia moths (Lepidoptera: Nepticulidae): host plant family shifts and allopatry as drivers of speciation Doorenweerd, C.; van Nieukerken, E.J.; Menken, S.B.J. DOI 10.1371/journal.pone.0119586 Publication date 2015 Document Version Final published version Published in PLoS ONE License CC BY Link to publication Citation for published version (APA): Doorenweerd, C., van Nieukerken, E. J., & Menken, S. B. J. (2015). A global phylogeny of leafmining Ectoedemia moths (Lepidoptera: Nepticulidae): host plant family shifts and allopatry as drivers of speciation. PLoS ONE, 10(3), [e0119586]. https://doi.org/10.1371/journal.pone.0119586 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:28 Sep 2021 RESEARCH ARTICLE A Global Phylogeny of Leafmining Ectoedemia Moths (Lepidoptera: Nepticulidae): Exploring Host Plant Family Shifts and Allopatry as Drivers of Speciation Camiel Doorenweerd1,2*, Erik J. -
Redalyc.New Records of Mining Moths from the Iberian Peninsula From
SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Lastuvka, A.; Lastuvka, Z. New records of mining moths from the Iberian Peninsula from 2014 (Insecta: Lepidoptera) SHILAP Revista de Lepidopterología, vol. 42, núm. 168, diciembre, 2014, pp. 633-647 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45540983010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 633-647 New records of mining m 26/11/14 11:15 Página 633 SHILAP Revta. lepid., 42 (168), diciembre 2014: 633-647 eISSN: 2340-4078 ISSN: 0300-5267 New records of mining moths from the Iberian Peninsula from 2014 (Insecta: Lepidoptera) A. Lasˇtu˚vka & Z. Lasˇtu˚vka Abstract New records of Nepticulidae, Opostegidae, Heliozelidae, Bucculatricidae and Gracillariidae for Portugal and Spain are presented. Stigmella sakhalinella Puplesis, 1984, Ectoedemia louisella (Sircom, 1849), Bucculatrix albedinella (Zeller, 1839), B. demaryella (Duponchel, 1840), B. ulmella Zeller, 1848, B. albella Stainton, 1867, Caloptilia semifascia (Haworth, 1828), Parornix devoniella (Stainton, 1850), P. torquillella (Zeller, 1850), Phyllonorycter distentella (Zeller, 1846), P. cavella (Zeller, 1846), P. deschkai Triberti, 2007, P. acerifoliella (Zeller, 1839) and P. dubitella (Herrich-Schäffer, 1855) are new for Spain, and Stigmella sakhalinella, Bucculatrix albedinella , Caloptilia betulicola (Hering, 1928), Parornix tenella (Rebel, 1919) and Phyllonorycter ochreojunctella (Klimesch, 1942) are new for Portugal. Stigmella sakhalinella, Ectoedemia louisella, Bucculatrix albedinella , B. -
Pedunculate Oak Leaf Miners' Community
Article Pedunculate Oak Leaf Miners’ Community: Urban vs. Rural Habitat Jovan Dobrosavljevi´c 1,* , Cedomirˇ Markovi´c 1, Marija Marjanovi´c 2 and Slobodan Milanovi´c 1,3 1 Department of Forest Protection, Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; [email protected] (C.M.);ˇ [email protected] (S.M.) 2 Department of Landscape Horticulture, Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; [email protected] 3 Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic * Correspondence: [email protected]; Tel.: +381-603-375707 Received: 6 November 2020; Accepted: 30 November 2020; Published: 3 December 2020 Abstract: With the process of urbanization, cities are expanding, while forests are declining. Many conditions in the urban habitats are modified compared to those in the rural ones, so the organisms present reactions to these changes. To determine to what extent the habitat type influences insects, we tested the differences in the pedunculate oak (Quercus robur L.) leaf-mining insect community between urban and rural habitats in Serbia. Lower species richness, abundance, and diversity were determined on trees in the urban environment. Due to the differences in the habitat types, many of the species disappeared, while most of the remaining species declined. The seasonal dynamics of species richness, abundance, and diversity differed between the habitat types. Both rural and urban populations started with low values in May. Subsequently, rural populations gained higher species richness, abundance, and diversity. -
Wide-Ranging Barcoding Aids Discovery of One-Third Increase Of
OPEN Wide-ranging barcoding aids discovery SUBJECT AREAS: of one-third increase of species richness TAXONOMY SYSTEMATICS in presumably well-investigated moths MOLECULAR EVOLUTION Marko Mutanen1, Lauri Kaila2 & Jukka Tabell3 PHYLOGENETICS 1Biodiversity Unit, Department of Biology, PO Box 3000, University of Oulu, Finland, 2Finnish Museum of Natural History, Zoology 3 Received Unit, PO Box 17, University of Helsinki, Finland, Laaksotie 28, FI-19600 Hartola, Finland. 3 July 2013 Accepted Rapid development of broad regional and international DNA barcode libraries have brought new insights 19 September 2013 into the species diversity of many areas and groups. Many new species, even within well-investigated species groups, have been discovered based initially on differences in DNA barcodes. We barcoded 437 collection Published specimens belonging to 40 pre-identified Palearctic species of the Elachista bifasciella group of moths 9 October 2013 (Lepidoptera, Elachistidae). Although the study group has been a subject of several careful morphological taxonomic examinations, an unexpectedly high number of previously undetected putative species is revealed, resulting in a 34% rise in species number in the study area. The validity of putative new species was subsequently supported with diagnostic morphological traits. We show that DNA barcodes provide a Correspondence and powerful method of detecting potential new species even in taxonomic groups and geographic areas that requests for materials have previously been under considerable morphological taxonomic scrutiny. should be addressed to M.M. (marko. [email protected]) stimates of the number of species on Earth vary from 3 to 100 million, the most recent survey concluding that there are about 8.7 million (61.3 million SE) species based on a quantitative extrapolation of current taxonomic knowledge1. -
FOURTH UPDATE to a CHECKLIST of the LEPIDOPTERA of the BRITISH ISLES , 2013 1 David J
Ent Rec 133(1).qxp_Layout 1 13/01/2021 16:46 Page 1 Entomologist’s Rec. J. Var. 133 (2021) 1 FOURTH UPDATE TO A CHECKLIST OF THE LEPIDOPTERA OF THE BRITISH ISLES , 2013 1 DAvID J. L. A GASSIz , 2 S. D. B EAvAN & 1 R. J. H ECkFoRD 1 Department of Life Sciences, Division of Insects, Natural History Museum, Cromwell Road, London SW7 5BD 2 The Hayes, Zeal Monachorum, Devon EX17 6DF Abstract This update incorporates information published since 30 November 2019 and before 1 January 2021 into A Checklist of the Lepidoptera of the British Isles, 2013. Introduction The Checklist of the Lepidoptera of the British Isles has previously been amended (Agassiz, Beavan & Heckford 2016a, 2016b, 2019 and 2020). This update details 4 species new to the main list and 3 to Appendix A. Numerous taxonomic changes are incorporated and country distributions are updated. CENSUS The number of species now recorded from the British Isles stands at 2,558 of which 58 are thought to be extinct and in addition there are 191 adventive species. ADDITIONAL SPECIES in main list Also make appropriate changes in the index 15.0715 Phyllonorycter medicaginella (Gerasimov, 1930) E S W I C 62.0382 Acrobasis fallouella (Ragonot, 1871) E S W I C 70.1698 Eupithecia breviculata (Donzel, 1837) Rusty-shouldered Pug E S W I C 72.089 Grammodes bifasciata (Petagna, 1786) Parallel Lines E S W I C The authorship and date of publication of Grammodes bifasciata were given by Brownsell & Sale (2020) as Petagan, 1787 but corrected to Petagna, 1786 by Plant (2020).