Community Level Consequences of Adaptive Management Through Climate Matching: Oak Galls As a Model System

Total Page:16

File Type:pdf, Size:1020Kb

Community Level Consequences of Adaptive Management Through Climate Matching: Oak Galls As a Model System Community level consequences of adaptive management through Climate Matching: oak galls as a model system Frazer H. Sinclair Submitted for the degree of Doctor of Philosophy University of Edinburgh 2011 1 Declaration This thesis is submitted to the University of Edinburgh in accordance with the requirements for the degree of Doctor of Philosophy in the College of Science and Engineering. Aspects of the presented work were made possible by collaboration and data sharing with individuals and institutions, details of which are presented below. Chapter 2. The French National Institute for Agricultural Research (INRA) provided various phenotypic and genotypic data from oak provenance trials that are under their management. All presented analyses of these data are my own. Chapter 3. INRA allowed access to their established oak provenance trial at the forest of Petite Charnie in Sarthe, Northwest France. Insect surveys at the trial were conducted by me, and by volunteers under my supervision. All presented analyses of these data are my own. Chapter 4. Insect specimens were collected by me from the oak provenance trial at Petite Charnie with the permission of INRA. Approximately 1/3 of DNA extractions and PCR reactions were conducted by Konrad Lohse, Julja Ernst, and Juan Carlos Ruiz Guajardo. All presented analyses are my own. Chapter 5. Insect specimens were sourced from the Stone laboratory collections at the University of Edinburgh. Unpublished DNA sequence data from 6 parasitoid individuals were provided by Konrad Lohse. All presented analysis of this data is my own. Unless otherwise stated, the remaining work and content of this thesis are entirely my own. Signed: Frazer Sinclair 31/10/2011 2 Acknowledgments I am extremely grateful to my supervisors – Karsten Schonrögge, Graham Stone, and Stephen Cavers – for introducing me to the fascinating world of oaks and galls, and for their support throughout this project. I fear I may be hooked, and will still be dreaming of gallwasps long after the dust has settled on this thesis. This project benefited greatly from collaboration with the French National Institute for Agricultural Research (INRA), and so massive thanks must go to Alexis Ducousso, Rémy Petit, Antoine Kremer, Sophie Gerber, and Stefanie Wagner, for providing data from the Petite Charnie provenance trial and for their hospitality during various visits to Pierroton. At various stages of this project I have been aided by members of the international gall community, whose knowledge and enthusiasm for tiny wasps is inspiring. Many thanks therefore to George Melika, György Csoka, Dick Askew, Jose-Luis Nieves- Aldrey, Juli Pujade-Villar, Chang-Ti Tang, and Man-Maio Yang. Having started this PhD is blissful ignorance of phylogenetics, particular thanks must go to James Nicholls and Konrad Lohse for patiently teaching me from scratch. Thanks also to past and present Stone lab members for their advice and friendship along the way: Jack Hearn, Pablo Fuentes-Utrilla, Alex Hayward, Julja Ernst, Juan Carlos Ruiz Guajardo, Tracey Begg, Riikka Kaartinen, Laura Riggi, Marlous de Boer, Kasia Mikolajczak, and Sarah White. One million French galls require a lot of counting and I could not have done it without the help of the following fieldwork heroes: Kat Bradley, Julja Ernst, Matt Wainhouse, Phil Butterill, Stefan Curtis, Katherine Rushton, and even on occasion - Karsten Schonrögge. Thanks also to the fine folk of Bernay and Conlie – especially the Busson brothers, Philippe & Pierrette, and the Tabot family - who tolerated my shameful ignorance of the French language and made the time spent in France so enjoyable. Finally, my deepest gratitude to my parents, whose patience and support in the past year has been amazing, and to whom I dedicate this thesis. 3 Abstract In the present century, ecosystems across the globe will be subject to profound changes in climate. Forests are expected to be particularly sensitive to such change as the long life span of trees limits the potential for rapid adaptation. In order to preserve commercial viability and the essential ecosystem services provided by forests, there has been much interest in strategies for managing the adaptation of trees to their climatic environment. Climate Matching has emerged as one such strategy, whereby climate models are used to identify provenances – tree populations at a particular locality - with seed expected to be well adapted to the future conditions of a particular planting site. Debate continues about the feasibility and merit of this and other approaches, but it has yet to be demonstrated that the underlying assumptions of Climate Matching are valid for focal European tree species. Furthermore, a potentially major omission thus far has been consideration of how the Climate Matching strategy might influence associated organisms. Given the widely demonstrated bottom-up effects of foundation species genotype that have emerged from the field of community genetics, it is possible that planting seed of non-local provenance could effect forest organisms such as insect herbivores. In this thesis, I investigate the underlying assumptions of Climate Matching and its community level consequences using a model system of cynipid oak galls on Quercus petraea. Following a general introduction to Climate Matching and the study system, in Chapter 2 I use data from a provenance trial of Q. petraea in France to explore a central assumption of the Climate Matching strategy: that provenances of focal tree species show climate associated variation in adaptive phenotypic traits. In Chapter 3, I explore correlations between these phenotypic traits and the abundance, diversity, and community composition of an associated guild of specialist gall-inducing herbivores. Tree phenological traits in particular showed strong patterns of adaptation to climatic gradients, and influenced the abundance and community structure of galling species. However, as the response to non-local tree provenances was not strongly negative, it was considered unlikely that mixed planting of local and Climate Matched provenances would have sever impact on the gallwasp community. 4 Having assessed the bottom-up effects of provenance phenotypic variation on the galling community, my ultimate aim is to extend analysis to include associated hymenopteran inquilines and parasitoids. However, interpretation of effects at this level is hindered by taxonomic uncertainty, with a growing appreciation that morpho-taxa may not represent independently evolving lineages (i.e. ‘true’ species). In Chapters 4 & 5 I therefore develop approaches for addressing taxonomic uncertainty with this ultimate aim in mind. In Chapter 4, I apply a DNA barcoding approach to parasitoid and inquiline specimens reared from the provenance trial, and compare taxa based on barcodes with those based on morphology to identify points of taxonomic uncertainty. I also investigate the extent to which networks based on morphological and molecular taxa support contrasting conclusions of network properties. In Chapter 5 I explore the potential for molecular based resolution of species level taxonomic error in a challenging group of parasitoids: the genus Cecidostiba. Beginning with a framework of single locus DNA barcoding, I use data from multiple nuclear loci to reveal the existence of cryptic species. Finally, in Chapter 6 I explore the practicalities of Climate Matching in light of my empirical results, and suggest fruitful avenues for further research. 5 Contents Declaration…………………………………………………………………………...ii Acknowledgements………………………………………………………………….iii Abstract……………………………………………………………………………...iv Contents……………………………………………………………………………....1 Community level consequences of adaptive management through Climate Matching: oak galls as a model system ................................................................ 1 Declaration ............................................................................................................... 2 Acknowledgments ........................................................................................................ 3 Chapter 1 - Introduction ............................................................................................. 11 1.1. Forests and climate change in the UK............................................................. 11 1.1.1. Local adaptation to climate ...................................................................... 15 1.1.2. Community effects of tree provenance .................................................... 17 1.1.3. Provenance research ................................................................................. 18 1.2. Study system ................................................................................................... 20 1.2.1. Quercus petraea ....................................................................................... 20 1.2.2. Petite Charnie provenance trial ................................................................ 22 1.2.3. Oak gall communities .............................................................................. 23 1.3. Thesis outline .................................................................................................. 28 Chapter 2 - Are provenances of Quercus petraea locally adapted to climate? .......... 31 2.1. Introduction ..................................................................................................... 31 2.1.1. Local adaptation ......................................................................................
Recommended publications
  • Checklist of British and Irish Hymenoptera - Cynipoidea
    Biodiversity Data Journal 5: e8049 doi: 10.3897/BDJ.5.e8049 Taxonomic Paper Checklist of British and Irish Hymenoptera - Cynipoidea Mattias Forshage‡, Jeremy Bowdrey§, Gavin R. Broad |, Brian M. Spooner¶, Frank van Veen# ‡ Swedish Museum of Natural History, Stockholm, Sweden § Colchester and Ipswich Museums, Colchester, United Kingdom | The Natural History Museum, London, United Kingdom ¶ Royal Botanic Gardens, Kew, Richmond, United Kingdom # University of Exeter, Penryn, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 05 Feb 2016 | Accepted: 06 Mar 2017 | Published: 09 Mar 2017 Citation: Forshage M, Bowdrey J, Broad G, Spooner B, van Veen F (2017) Checklist of British and Irish Hymenoptera - Cynipoidea. Biodiversity Data Journal 5: e8049. https://doi.org/10.3897/BDJ.5.e8049 Abstract Background The British and Irish checklist of Cynipoidea is revised, considerably updating the last complete checklist published in 1978. Disregarding uncertain identifications, 220 species are now known from Britain and Ireland, comprising 91 Cynipidae (including two established non-natives), 127 Figitidae and two Ibaliidae. New information One replacement name is proposed, Kleidotoma thomsoni Forshage, for the secondary homonym Kleidotoma tetratoma Thomson, 1861 (nec K. tetratoma (Hartig, 1841)). © Forshage M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Forshage M et al Introduction This paper continues the series of updated British and Irish Hymenoptera checklists that started with Broad and Livermore (2014a), Broad and Livermore (2014b), Liston et al.
    [Show full text]
  • Asociados a Agallas De Aylacini Y Diplolepidini (Hym., Cynipidae) En España
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Boln. Asoc. esp. En!., 26 (1-2): 2002: 11-37 ISSN: 0210-8984 Calcidoideos (Hym., Chalcidoidea) asociados a agallas de Aylacini y Diplolepidini (Hym., Cynipidae) en España José Luis Nieves-Aldrey & R.R. Askew RESUMEN Se actualiza el conocimiento en España de las especies de calcídidos parasitoides (Hym., Chalcidoidea) asociadas a cinípidos de las tribus Aylacini y Diplolepidini (Hym., Cynipidae) que forman agallas en plantas herbáceas y arbustos de diferentes fa- milias botánicas, excepto Fagaceae. Se listan 56 especies de seis familias de calcídi- dos: 15 Eurytomidae, 13 Torymidae, 7 Ormyridae, 10 Pteromalidae, 6 Eupelmidae y 5 Eulophidae. De todas ellas se recogen las citas publicadas y, para muchas de ellas, se amplía su conocimiento aportando nuevos datos de distribución y biología. Cinco es- pecies se citan por primera vez de la península ibérica: Euryfoma aspila, E. infracta, E. rufipes, E. timaspidis y Toiymus cingulatus. Se discute la composición de la comu- nidad parasitoide asociada a agallas de especies de Aylacini y Diplolepidini en España comparándola con la de Cynipini sobre Quercus. Se aporta un apéndice final con la re- lación de agallas hospedadoras estudiadas incluyendo la lista de Chalcidoidea citados en cada una. Palabras clave: Chalcidoidea, Cynipidae, Aylacini, Diplolepidini, agallas, parasi- toides, comunidad, España, nuevas citas. ABSTRACT Chalcid wasps (Hym., Chalcidoidea) associated with galls of Aylacini and Diplolepidini (Hym., Cynipidae) in Spain Knowledge in Spain of the parasitoid chalcid wasp species (Hym., Chalcidoidea) associated with gall-inducing cynipids on herbaceous plants and bushes excluding Fa- gaceae (tribes "Aylacini" and Diplolepidini), in Spain is updated.
    [Show full text]
  • The Dorset Heath 2013 So Once Again You Have Me As Editor
    NewsletterThe ofD theo Dorsetrset Flora H eGroupath 201 4 Chairman and VC9 Recorder Robin Walls; Secretary Laurence Taylor Editorial: John Newbould It would appear that the group had no complaints about the layout and content of the Dorset Heath 2013 so once again you have me as editor. The year was somewhat difficult for me as somehow, whenever I had to leave the room in Yorkshire Naturalists’ Union committee meetings in 2011, they managed to appoint me President for 2013 resulting in extra commitments in that county. During April 2013, Dorset hosted the National Forum for Biological Recording’s annual conference at the R.N.L.I. College at Poole. What a fabulous conference venue and the overnight accommodation was excellent. NFBR then joined Dorset naturalists with a joint meeting based at Studland helping to survey for the Cyril Diver project. Once again, duties took me away as I seem to be the conference administrator. The Flora Group had an interesting year, with variable numbers at field meetings. Never-the-less some important recording has been achieved including members engaging with recording bryophytes for the first time, one meeting to record fungi near Hardy’s Cottage, which thanks to the expertise of Bryan Edwards was very successful. We also had a few members try their hand at lichen recording In June 2014, I have been tasked by the Linnean Society to organise their annual field trip, which will be in June starting with a day on Portland and Chesil on the Saturday with Ballard Down and Studland on the Sunday.
    [Show full text]
  • DNA Barcoding of the Leaf-Mining Moth Subgenus Ectoedemia S. Str
    Contributions to Zoology, 81 (1) 1-24 (2012) DNA barcoding of the leaf-mining moth subgenus Ectoedemia s. str. (Lepidoptera: Nepticulidae) with COI and EF1-α: two are better than one in recognising cryptic species Erik J. van Nieukerken1, 2, Camiel Doorenweerd1, Frank R. Stokvis1, Dick S.J. Groenenberg1 1 Netherlands Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 2 E-mail: [email protected] Key words: pairwise difference, Palearctic Abstract Species recognition ..................................................................... 7 The Ectoedemia angulifasciella group ................................... 7 We sequenced 665bp of the Cytochrome C Oxidase I (COI) The Ectoedemia suberis group .............................................. 10 barcoding marker for 257 specimens and 482bp of Elongation The Ectoedemia populella group .......................................... 10 Factor 1-α (EF1-α) for 237 specimens belonging to the leaf- The Ectoedemia subbimaculella group ................................ 11 mining subgenus Ectoedemia (Ectoedemia) in the basal Lepi- Discussion ........................................................................................ 13 dopteran family Nepticulidae. The dataset includes 45 out of 48 One or two genes ...................................................................... 13 West Palearctic Ectoedemia s. str. species and several species Barcoding gap ........................................................................... 15 from Africa, North America and Asia.
    [Show full text]
  • The Structure of Cynipid Oak Galls: Patterns in the Evolution of an Extended Phenotype
    The structure of cynipid oak galls: patterns in the evolution of an extended phenotype Graham N. Stone1* and James M. Cook2 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK ([email protected]) 2Department of Biology, Imperial College, Silwood Park, Ascot, Berkshire SL5 7PY, UK Galls are highly specialized plant tissues whose development is induced by another organism. The most complex and diverse galls are those induced on oak trees by gallwasps (Hymenoptera: Cynipidae: Cyni- pini), each species inducing a characteristic gall structure. Debate continues over the possible adaptive signi¢cance of gall structural traits; some protect the gall inducer from attack by natural enemies, although the adaptive signi¢cance of others remains undemonstrated. Several gall traits are shared by groups of oak gallwasp species. It remains unknown whether shared traits represent (i) limited divergence from a shared ancestral gall form, or (ii) multiple cases of independent evolution. Here we map gall character states onto a molecular phylogeny of the oak cynipid genus Andricus, and demonstrate three features of the evolution of gall structure: (i) closely related species generally induce galls of similar structure; (ii) despite this general pattern, closely related species can induce markedly di¡erent galls; and (iii) several gall traits (the presence of many larval chambers in a single gall structure, surface resins, surface spines and internal air spaces) of demonstrated or suggested adaptive value to the gallwasp have evolved repeatedly. We discuss these results in the light of existing hypotheses on the adaptive signi¢cance of gall structure. Keywords: galls; Cynipidae; enemy-free space; extended phenotype; Andricus layers of woody or spongy tissue, complex air spaces within 1.
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • National Oak Gall Wasp Survey
    ational Oak Gall Wasp Survey – mapping with parabiologists in Finland Bess Hardwick Table of Contents 1. Introduction ................................................................................................................. 2 1.1. Parabiologists in data collecting ............................................................................. 2 1.2. Oak cynipid gall wasps .......................................................................................... 3 1.3. Motivations and objectives .................................................................................... 4 2. Material and methods ................................................................................................ 5 2.1. The volunteers ........................................................................................................ 5 2.2. Sampling ................................................................................................................. 6 2.3. Processing of samples ............................................................................................ 7 2.4. Data selection ........................................................................................................ 7 2.5. Statistical analyses ................................................................................................. 9 3. Results ....................................................................................................................... 10 3.1. Sampling success .................................................................................................
    [Show full text]
  • The Population Biology of Oak Gall Wasps (Hymenoptera:Cynipidae)
    5 Nov 2001 10:11 AR AR147-21.tex AR147-21.SGM ARv2(2001/05/10) P1: GSR Annu. Rev. Entomol. 2002. 47:633–68 Copyright c 2002 by Annual Reviews. All rights reserved THE POPULATION BIOLOGY OF OAK GALL WASPS (HYMENOPTERA:CYNIPIDAE) Graham N. Stone,1 Karsten Schonrogge,¨ 2 Rachel J. Atkinson,3 David Bellido,4 and Juli Pujade-Villar4 1Institute of Cell, Animal, and Population Biology, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom; e-mail: [email protected] 2Center of Ecology and Hydrology, CEH Dorset, Winfrith Technology Center, Winfrith Newburgh, Dorchester, Dorset DT2 8ZD, United Kingdom; e-mail: [email protected] 3Center for Conservation Science, Department of Biology, University of Stirling, Stirling FK9 4LA, United Kingdom; e-mail: [email protected] 4Departamento de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain; e-mail: [email protected] Key Words cyclical parthenogenesis, host alternation, food web, parasitoid, population dynamics ■ Abstract Oak gall wasps (Hymenoptera: Cynipidae, Cynipini) are characterized by possession of complex cyclically parthenogenetic life cycles and the ability to induce a wide diversity of highly complex species- and generation-specific galls on oaks and other Fagaceae. The galls support species-rich, closed communities of inquilines and parasitoids that have become a model system in community ecology. We review recent advances in the ecology of oak cynipids, with particular emphasis on life cycle characteristics and the dynamics of the interactions between host plants, gall wasps, and natural enemies. We assess the importance of gall traits in structuring oak cynipid communities and summarize the evidence for bottom-up and top-down effects across trophic levels.
    [Show full text]
  • Preliminary Cladistics and Review of Hemiptarsenus Westwood and Sympiesis Förster (Hymenoptera, Eulophidae) in Hungary
    Zoological Studies 42(2): 307-335 (2003) Preliminary Cladistics and Review of Hemiptarsenus Westwood and Sympiesis Förster (Hymenoptera, Eulophidae) in Hungary Chao-Dong Zhu and Da-Wei Huang* Parasitoid Group, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China (Accepted January 7, 2003) Chao-Dong Zhu and Da-Wei Huang (2003) Preliminary cladistics and review of Hemiptarsenus Westwood and Sympiesis Förster (Hymenoptera, Eulophidae) in Hungary. Zoological Studies 42(2): 307-335. A cladistic analysis of known species of both Hemiptarsenus Westwood and Sympiesis Förster (Hymenoptera: Eulophidae) in Hungary was carried out based on 176 morphological characters from adults. Three most-parsi- monious trees (MPTs) were produced, strictly consensused, and rerooted. Monophyly of Sympiesis was sup- ported by all 3 MPTs. A review of the genera Hemiptarsenus Westwood and Sympiesis Förster was made based on the results of the cladistic analysis. Sympiesis petiolata was transferred into Hemiptarsenus. Several other species in both Hemiptarsenus and Sympiesis were removed from the synonymy lists of different species and reinstated. http://www.sinica.edu.tw/zool/zoolstud/42.2/307.pdf Key words: Taxonomy, Cladistics, Hemiptarsenus, Sympiesis, Hungary. W orking on Chinese fauna of the deposited at the Hungarian Natural History Chalcidoidea (Zhu et al. 1999 2000a, Zhu and Museum (HNHM); careful re-examination of their Huang 2000a b c 2001a b 2002a b c, Xiao and materials is needed to update knowledge of this Huang 2001a b c d e), we have found many taxa group. In May 2001, the senior author was sup- which occur in North China that have been also ported by the National Scientific Fund of China reported from Europe.
    [Show full text]
  • Pedunculate Oak Leaf Miners' Community
    Article Pedunculate Oak Leaf Miners’ Community: Urban vs. Rural Habitat Jovan Dobrosavljevi´c 1,* , Cedomirˇ Markovi´c 1, Marija Marjanovi´c 2 and Slobodan Milanovi´c 1,3 1 Department of Forest Protection, Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; [email protected] (C.M.);ˇ [email protected] (S.M.) 2 Department of Landscape Horticulture, Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; [email protected] 3 Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic * Correspondence: [email protected]; Tel.: +381-603-375707 Received: 6 November 2020; Accepted: 30 November 2020; Published: 3 December 2020 Abstract: With the process of urbanization, cities are expanding, while forests are declining. Many conditions in the urban habitats are modified compared to those in the rural ones, so the organisms present reactions to these changes. To determine to what extent the habitat type influences insects, we tested the differences in the pedunculate oak (Quercus robur L.) leaf-mining insect community between urban and rural habitats in Serbia. Lower species richness, abundance, and diversity were determined on trees in the urban environment. Due to the differences in the habitat types, many of the species disappeared, while most of the remaining species declined. The seasonal dynamics of species richness, abundance, and diversity differed between the habitat types. Both rural and urban populations started with low values in May. Subsequently, rural populations gained higher species richness, abundance, and diversity.
    [Show full text]
  • Wolbachia-Driven Selective Sweep in a Range Expanding Insect Species
    Wolbachia-driven selective sweep in a range expanding insect species Junchen Deng Lunds Universitet Giacomo Assandri Istituto Superiore per la Protezione e la Ricerca Ambientale Pallavi Chauhan Lunds Universitet Ryo Futahashi Trukuba Andrea Galimberti University of Milano–Bicocca: Universita degli Studi di Milano-Bicocca Bengt Hansson Lunds Universitet Lesley Lancaster University of Aberdeen Yuma Takahashi Chiba University graduate school of science Erik I Svensson Lund University: Lunds Universitet Anne Duplouy ( anne.duplouy@helsinki. ) University of Helsinki: Helsingin Yliopisto https://orcid.org/0000-0002-7147-5199 Research article Keywords: Endosymbiosis, phylogeography, damsely, mitochondria, genetic diversity Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-150504/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct tness benets, or by manipulating its host reproduction to favour infected over uninfected females. Under sucient selective advantage, the mitochondrial haplotype associated with the favoured symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. The common bluetail damsely (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism of the genetics and genomic signatures of range expansion during climate change.
    [Show full text]
  • Developmental Morphology of Bud Galls Induced on the Vegetative Meristems of Quercus Castanea by Amphibolips Michoacaensis (Hymenoptera: Cynipidae)
    Botanical Sciences 93 (4): 685-693, 2015 ECOLOGY DOI: 10.17129/botsci.607 DEVELOPMENTAL MORPHOLOGY OF BUD GALLS INDUCED ON THE VEGETATIVE MERISTEMS OF QUERCUS CASTANEA BY AMPHIBOLIPS MICHOACAENSIS (HYMENOPTERA: CYNIPIDAE) PAULINA HERNÁNDEZ-SOTO1, 4, 6, MIGUEL LARA-FLORES2, LOURDES AGREDANO-MORENO3, LUIS FELIPE JIMÉNEZ-GARCÍA3 , PABLO CUEVAS-REYES5 AND KEN OYAMA1, 4 1Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México. Morelia, Michoacán, México. 2Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. 3Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. México, D.F. 4Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México. Morelia, Michoacán, México. 5Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México. 6Corresponding author: [email protected] Abstract: A gall is the result of complex interactions between a gall inducing-insect and its host plant. Certain groups of insects have the ability to induce a new structure, a gall, on plant organs by altering the normal growth of the host involved plant organ. The gall usually provides shelter and nutrients, in addition to protection against adverse environmental conditions and natural en- emies to the inducing insect and its offspring. The ecological uniqueness of a gall is that it allows the inducing-insect to complete their life cycles. In this study, we have described the structures of different stages of growth of a gall induced by Amphibolips mi- choacaensis on the buds of leaves on Quercus castanea (Fagaceae) to know the subcellular changes during development. The gall consist of various layers such as a nutritive tissue, a lignifi ed sheath, a spongy layer and an outermost epidermis around a centrally located larval chamber.
    [Show full text]