A New Species of Andricus Hartig Oak Gall Wasp from Turkey (Hymenoptera: Cynipidae, Cynipini)

Total Page:16

File Type:pdf, Size:1020Kb

A New Species of Andricus Hartig Oak Gall Wasp from Turkey (Hymenoptera: Cynipidae, Cynipini) NORTH-WESTERN JOURNAL OF ZOOLOGY 10 (1): 122-127 ©NwjZ, Oradea, Romania, 2014 Article No.: 131209 http://biozoojournals.ro/nwjz/index.html A new species of Andricus Hartig oak gall wasp from Turkey (Hymenoptera: Cynipidae, Cynipini) Serdar DINC1, Serap MUTUN1 and George MELIKA2,* 1. Abant Izzet Baysal University, Faculty of Science & Arts, Department of Biology, 14280, Bolu, Turkey. E-mail’s: [email protected] (for Serap Mutun), [email protected] (for Serdar Dinc) 2. Laboratory of Plant Pest Diagnosis, National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-environment, Budaörsi str. 141-145, Budapest 1118, Hungary *Corresponding author, G. Melika; E-mail: [email protected] Received: 29. September 2012 / Accepted: 15. February 2013 / Available online: 26. December 2013 / Printed: June 2014 Abstract. A new species of oak gall wasp, Andricus shuhuti (Hymenoptera: Cynipidae: Cynipini) is described from Turkey. This species is known only from asexual females and induces galls on the twigs and young shoots of Quercus vulcanica and Q. infectoria. Data on the diagnosis, distribution and biology of the new species are given. Key words: Cynipini, Andricus, taxonomy, Turkey, distribution, new species. Introduction Materials and Methods Only a few records on Cynipidae from Turkey Galls were collected in Turkey in July–September 2011– 2012 from shoots of Q. vulcanica and Q. infectoria. Galls were listed in the reference work by Dalla-Torre were reared under laboratory conditions and emerging and Kieffer (1910). Later studies subsequently wasps were preserved in 95% ethanol. added new species to the cynipid fauna of Turkey: The terminology used to describe gall wasp mor- Karaca (1956) listed 21, Baş (1973) - 34, Kıyak et al. phology follows other recent cynipid studies (Melika (2008) - 30 species. For now, the species richness of 2006, Melika et al. 2010). Abbreviations for the forewing oak gall wasps (Hymenoptera: Cynipidae: Cynip- venation follow Ronquist & Nordlander (1989), and cu- ini) of Turkey is quite high. Recently 81 species of ticular surface terminology follows Harris (1979). Meas- urements and abbreviations used here include: F1–F12 for cynipids belonging to 16 genera were listed from the 1st and subsequent flagellomeres; POL (post-ocellar Turkey, of which 77 species are associated with distance) for the distance between the inner margins of oaks (tribe Cynipini) and particularly 50 species the posterior ocelli; OOL (ocellar-ocular distance) for the belong to the species-rich genus Andricus Hartig distance from the outer edge of a posterior ocellus to the (Katılmıs & Kıyak 2008). inner margin of the compound eye; and LOL (lateral- In southwest Turkey (Antalya, Burdur, Is- frontal ocelli distance) for the distance between lateral parta, Denizli, Aydın, Muğla) 30 species of oak and frontal ocelli. The width of the forewing radial cell is measured from the margin of the wing to the Rs vein. gall wasps (Cynipini) were found (Kıyak et al. Images of wasp anatomy were taken with a digital 2008). A recent study added a new gall wasp spe- Leica DC500 camera attached to a Leica DMLB com- cies to the Turkish fauna (Mutun & Dinç 2011). pound microscope, followed by processing in CombineZP In the last decades two new oak gall wasp (Alan Hadley) and Adobe Photoshop 6.0. species were described from Turkey: Andricus as- Type materials are deposited in the following institu- kewi Melika & Stone (Melika & Stone 2001) and tions: Budapest Pest Diagnostic Laboratory (BPDL), Bu- Andricus megalucidus Melika, Stone, Sadeghi & Pu- dapest, Hungary (curator G. Melika); Department of Biol- ogy, Abant Izzet Baysal University (AIBU), Bolu, Turkey. jade-Villar (Melika et al. 2004). Here we describe a new species from Turkey, Andricus shuhuti n. sp., known to induce galls on Results twigs and shoots of Quercus vulcanica Boiss. & Heldr. and Q. infectoria Olivier (Fagaceae). Quercus Andricus shuhuti Melika, Mutun & Dinç n. sp. vulcanica is known to be an endemic oak with a Figs 1–4 narrow geographic distribution, found in south- Type material: HOLOTYPE female: TURKEY, west and central Turkey and Syria (Govaerts & Afyon Şuhut near Başören Village, N 38 466 21', E Frodin 1998), while Q. infectoria has a much wider 30 41 384', 1577 m a.s.l. on Q. vulcanica, coll. distribution (Yaltırık 1984). 2011.08.18., S. Mutun & S. Dinç. PARATYPES: 8 females with the same label as the holotype. The New oak gall wasp from Turkey 123 Figures 1. Andricus shuhuti n. sp., asexual female: a, head (anterior view); b, head (dorsal view); c, head (posterior view); d, head (lateral view); e, antenna. Figures 2. Andricus shuhuti, n. sp., asexual female: a, mesoscutum (dorsal view); b, mesoscutellum (dorsal view); c, pronotum (part) and propleura (anterior view); d, mesosoma (lateral view); e, fore leg (part); f, hind tarsal claw. 124 S. Dinc et al. Figures 3. Andricus shuhuti, n. sp., asexual female: a, forewing (part); b, metascutellum and propodeum (posterodorsal view); c, metasoma (part) and ventral spine of hypopygium (lateral view). Figures 4. Andricus shuhuti, n. sp., galls: a, young growing gall; b–c, mature gall; d, dissected gall, with adult gall wasp in the middle; e, freshly emerged gall wasp (gall photos by S. Dinç). New oak gall wasp from Turkey 125 holotype and 5 paratypes were deposited at the emarginate and incised medially, with distinct BPDL, and 3 paratypes were deposited at the deep anterior tentorial pits, distinct epistomal sul- AIBU collection. cus and clypeo-pleurostomal line. Frons cori- Material examined. Galls of this species were aceous, with impression above antennal socket. collected also in Turkey, Afyon Tekke N 38 475 83' Vertex and occiput coriaceous; interocellar area E 30 43 793', 1350 m a.s.l., on Q. vulcanica, coll. slightly elevated, with rugose sculpture. Postoc- 2012.07.02., S. Mutun & S. Dinç, Konya, near Ku- ciput around occipital foramen impressed, with rucuova N 37 652 84' E 31 445 01', 1268 m a.s.l., on numerous delicate striae extending to postgenal Q. infectoria, coll. 2012.09.19., S. Mutun & S. Dinç, bridge. Antenna with 12 flagellomeres, as long as Denizli Çivril near İğdir Village N 38 354 87' E 29 head+mesosoma; pedicel nearly 2.5 times shorter 740 05', 1010 m a.s.l., on Q. infectoria, coll. than scape, longer than broad; F1 2.6 times as long 2012.09.20., S. Mutun & S. Dinç, Denizli Çivril near as pedicel, 1.4 times as long as F2, from F3 all sub- Cabar Village N 38 398 14' E 29 726 98' 965 m a.s.l., sequent flagellomeres slightly shorter; F12 slightly on Q. infectoria, Coll. 2012.09.20., S. Mutun & S. longer than F11; placoid sensillae on F3–F12, in Dinç, Çanakkale Ayvacık near Nusratlı N 39 583 numerous rows, absent on F1–F2. 86' E 26 526 60' 472 m a.s.l., on Q. infectoria, coll. Mesosoma slightly longer than high in lateral 2012. 09.21., S. Mutun & S. Dinç, but no adults view; with uniform, dense white setae. Pronotum were reared from those galls. uniformly delicately coriaceous, with uniform Description. ASEXUAL female (holotype) dense white setae. Anterior rim of pronotum nar- (Figs 1–3, 4e). Head brown, posteriorly black, with row, emarginate; propleuron coriaceous, with mandibles and stripe along attachment line of white setae, strongly concave in mediocentral part. mandibles black or dark brown. Antenna brown. Mesoscutum longer than broad (width measured Pronotum, mesopleuron, mesoscutum, mesos- across base of tegulae); with distinct punctures, cutellum and lateral propodeal area brown; especially in the internotauli area; area between parapsidal lines, median stripes between notauli, punctures shiny, smooth. Notauli distinct, com- scutellar foveae, metascutellum, metanotal trough, plete, reaching pronotum, well-impressed; median central propodeal area, mesosoma ventrally and mesoscutal line absent; anterior parallel lines dis- 2nd metasomal tergite dorsally black. Legs brown tinct, extending to half length of mesoscutum; with dense white setae. Head, mesosoma and me- parapsidal line indicated by black stripe. Mesos- tasoma with uniformly very dense, long white se- cutellum uniformly delicately coriaceous, as broad tae. as long, flat, overhanging metanotum. Scutellar Head coriaceous, 1.8 times as broad as long foveae transversely ovate, with shiny, smooth bot- from above, 1.3 times as broad as high anteriorly tom and very dense white setae, separated by ele- and distinctly narrower than width of mesosoma. vated median carina. Mesopleuron, including Gena coriaceous, broader than cross diameter of speculum, uniformly delicately coriaceous, with eye, strongly broadened behind eye, well visible in dense white setae; mesopleural triangle rugose, anterior view behind eye. Malar space coriaceous, with dense white setae. Metapleural sulcus dis- without striae and malar sulcus, 0.4 times as long tinct, delimiting area with very dense white setae, as height of eye. POL 1.7 times as long as OOL; reaching mesopleuron in upper 1/3rd; preaxilla co- OOL 1.2 times as long as LOL and 3.7 times as riaceous; lateral axillar area with parallel wrinkles, long as diameter of lateral ocellus., Ocelli slightly without setae; axillar carina broad, smooth, shiny ovate, equal in size and shape. Transfacial distance with longitudinal striae; axillula slightly ovate, 1.1 times as long as height of eye and 1.5 times as with very dense white setae hidden sculpture; long as height of lower face (distance between an- subaxillular bar smooth, shiny, black, in most pos- tennal rim and ventral margin of clypeus); diame- terior end as high as height of metanotal trough, ter of antennal torulus nearly equal to distance be- covered with very dense long white setae, its tween them, distance between torulus and eye sculpture hidden. Metascutellum black, delicately margin 1.5 times as long as diameter of torulus. coriaceous, nearly as high as height of smooth, Lower face coriaceous, with elevated median area shiny ventral impressed area.
Recommended publications
  • Checklist of British and Irish Hymenoptera - Cynipoidea
    Biodiversity Data Journal 5: e8049 doi: 10.3897/BDJ.5.e8049 Taxonomic Paper Checklist of British and Irish Hymenoptera - Cynipoidea Mattias Forshage‡, Jeremy Bowdrey§, Gavin R. Broad |, Brian M. Spooner¶, Frank van Veen# ‡ Swedish Museum of Natural History, Stockholm, Sweden § Colchester and Ipswich Museums, Colchester, United Kingdom | The Natural History Museum, London, United Kingdom ¶ Royal Botanic Gardens, Kew, Richmond, United Kingdom # University of Exeter, Penryn, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 05 Feb 2016 | Accepted: 06 Mar 2017 | Published: 09 Mar 2017 Citation: Forshage M, Bowdrey J, Broad G, Spooner B, van Veen F (2017) Checklist of British and Irish Hymenoptera - Cynipoidea. Biodiversity Data Journal 5: e8049. https://doi.org/10.3897/BDJ.5.e8049 Abstract Background The British and Irish checklist of Cynipoidea is revised, considerably updating the last complete checklist published in 1978. Disregarding uncertain identifications, 220 species are now known from Britain and Ireland, comprising 91 Cynipidae (including two established non-natives), 127 Figitidae and two Ibaliidae. New information One replacement name is proposed, Kleidotoma thomsoni Forshage, for the secondary homonym Kleidotoma tetratoma Thomson, 1861 (nec K. tetratoma (Hartig, 1841)). © Forshage M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Forshage M et al Introduction This paper continues the series of updated British and Irish Hymenoptera checklists that started with Broad and Livermore (2014a), Broad and Livermore (2014b), Liston et al.
    [Show full text]
  • The Mesosomal Anatomy of Myrmecia Nigrocincta Workers and Evolutionary Transformations in Formicidae (Hymeno- Ptera)
    7719 (1): – 1 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The mesosomal anatomy of Myrmecia nigrocincta workers and evolutionary transformations in Formicidae (Hymeno- ptera) Si-Pei Liu, Adrian Richter, Alexander Stoessel & Rolf Georg Beutel* Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; Si-Pei Liu [[email protected]]; Adrian Richter [[email protected]]; Alexander Stößel [[email protected]]; Rolf Georg Beutel [[email protected]] — * Corresponding author Accepted on December 07, 2018. Published online at www.senckenberg.de/arthropod-systematics on May 17, 2019. Published in print on June 03, 2019. Editors in charge: Andy Sombke & Klaus-Dieter Klass. Abstract. The mesosomal skeletomuscular system of workers of Myrmecia nigrocincta was examined. A broad spectrum of methods was used, including micro-computed tomography combined with computer-based 3D reconstruction. An optimized combination of advanced techniques not only accelerates the acquisition of high quality anatomical data, but also facilitates a very detailed documentation and vi- sualization. This includes fne surface details, complex confgurations of sclerites, and also internal soft parts, for instance muscles with their precise insertion sites. Myrmeciinae have arguably retained a number of plesiomorphic mesosomal features, even though recent mo- lecular phylogenies do not place them close to the root of ants. Our mapping analyses based on previous morphological studies and recent phylogenies revealed few mesosomal apomorphies linking formicid subgroups. Only fve apomorphies were retrieved for the family, and interestingly three of them are missing in Myrmeciinae. Nevertheless, it is apparent that profound mesosomal transformations took place in the early evolution of ants, especially in the fightless workers.
    [Show full text]
  • The Structure of Cynipid Oak Galls: Patterns in the Evolution of an Extended Phenotype
    The structure of cynipid oak galls: patterns in the evolution of an extended phenotype Graham N. Stone1* and James M. Cook2 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK ([email protected]) 2Department of Biology, Imperial College, Silwood Park, Ascot, Berkshire SL5 7PY, UK Galls are highly specialized plant tissues whose development is induced by another organism. The most complex and diverse galls are those induced on oak trees by gallwasps (Hymenoptera: Cynipidae: Cyni- pini), each species inducing a characteristic gall structure. Debate continues over the possible adaptive signi¢cance of gall structural traits; some protect the gall inducer from attack by natural enemies, although the adaptive signi¢cance of others remains undemonstrated. Several gall traits are shared by groups of oak gallwasp species. It remains unknown whether shared traits represent (i) limited divergence from a shared ancestral gall form, or (ii) multiple cases of independent evolution. Here we map gall character states onto a molecular phylogeny of the oak cynipid genus Andricus, and demonstrate three features of the evolution of gall structure: (i) closely related species generally induce galls of similar structure; (ii) despite this general pattern, closely related species can induce markedly di¡erent galls; and (iii) several gall traits (the presence of many larval chambers in a single gall structure, surface resins, surface spines and internal air spaces) of demonstrated or suggested adaptive value to the gallwasp have evolved repeatedly. We discuss these results in the light of existing hypotheses on the adaptive signi¢cance of gall structure. Keywords: galls; Cynipidae; enemy-free space; extended phenotype; Andricus layers of woody or spongy tissue, complex air spaces within 1.
    [Show full text]
  • National Oak Gall Wasp Survey
    ational Oak Gall Wasp Survey – mapping with parabiologists in Finland Bess Hardwick Table of Contents 1. Introduction ................................................................................................................. 2 1.1. Parabiologists in data collecting ............................................................................. 2 1.2. Oak cynipid gall wasps .......................................................................................... 3 1.3. Motivations and objectives .................................................................................... 4 2. Material and methods ................................................................................................ 5 2.1. The volunteers ........................................................................................................ 5 2.2. Sampling ................................................................................................................. 6 2.3. Processing of samples ............................................................................................ 7 2.4. Data selection ........................................................................................................ 7 2.5. Statistical analyses ................................................................................................. 9 3. Results ....................................................................................................................... 10 3.1. Sampling success .................................................................................................
    [Show full text]
  • A New Species of Woody Tuberous Oak Galls from Mexico
    Dugesiana 19(2): 79-85 Fecha de publicación: 21 de diciembre 2012 © Universidad de Guadalajara A new species of woody tuberous oak galls from Mexico (Hymenoptera: Cynipidae) and notes with related species Una nueva especie de agalla leñosa tuberosa en encinos de México (Hymenoptera: Cynipidae) y anotaciones sobre las especies relacionadas Juli Pujade-Villar & Jordi Paretas-Martínez Universitat de Barcelona, Facultat de Biologia, Departament de Biologia Animal, Avda. Diagonal 645, 08028-Barcelona (Spain). E-mail: [email protected] (corresponding author). ABSTRACT A new species of cynipid gallwasp, Andricus tumefaciens n. sp. (Hymenoptera: Cynipidae: Cynipini), is described from Mexico. This species induces galls on twigs of Quercus chihuahuensis Trelease, white oaks (Quercus, section Quercus s.s.). Diagnosis, full description, biology and distribution data of Andricus tumefaciens n. sp. are given. Some morphological characters are discussed and illustrated, and compared to related species (A. durangensis Beutenmüller from Mexico and A. wheeleri Beutenmüller from USA). Andricus cameroni Ashmead is considered as ‘nomen nudum’. Key words: Cynipidae, tuberous gall, Andricus, taxonomy, morphology, distribution, biology. RESUMEN Se describe de México una nueva especie de cinípido gallícola de encinos: Andricus tumefaciens n. sp. (Hymenoptera: Cynipidae: Cynipini). Esta especie induce agallas en ramas de una especie de roble blanco: Quercus chihuahuensis Trelease (Quercus, sección Quercus s.s.). Se aporta una diagnosis, la descripción completa, biología y distribución de dicha nueva especie. Se ilustran y discuten los caracteres morfológicos, y se comparan con las especies relacionadas (A. durangensis Beutenmüller de México y A. wheeleri Beutenmüller de EE.UU.). Andricus cameroni Ashmead es considerada como “nomen nudum”. Palabras clave: Cynipidae, agalla tuberosa, Andricus, taxonomía, morfología, distribución, biología.
    [Show full text]
  • Use of Genomic Resources to Assess Adaptive Divergence and Introgression in Oaks
    Review Use of Genomic Resources to Assess Adaptive Divergence and Introgression in Oaks Desanka Lazic 1 , Andrew L. Hipp 2 , John E. Carlson 3 and Oliver Gailing 1,4,* 1 Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37007 Göttingen, Germany; [email protected] 2 Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA; [email protected] 3 The Schatz Center for Tree Molecular Genetics, Pennsylvania State University, University Park, State College, PA 16802, USA; [email protected] 4 Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Göttingen, Germany * Correspondence: [email protected] Abstract: Adaptive divergence is widely accepted as a contributor to speciation and the maintenance of species integrity. However, the mechanisms leading to reproductive isolation, the genes involved in adaptive divergence, and the traits that shape the adaptation of wild species to changes in climate are still largely unknown. In studying the role of ecological interactions and environment-driven selection, trees have emerged as potential model organisms because of their longevity and large genetic diversity, especially in natural habitats. Due to recurrent gene flow among species with different ecological preferences, oaks arose as early as the 1970s as a model for understanding how speciation can occur in the face of interspecific gene flow, and what we mean by “species” when geographically and genomically heterogeneous introgression seems to undermine species’ genetic Citation: Lazic, D.; Hipp, A.L.; coherence. In this review, we provide an overview of recent research into the genomic underpinnings Carlson, J.E.; Gailing, O.
    [Show full text]
  • Adec Preview Generated PDF File
    A new spider wasp from Western Australia, with a description of the first known male of the genus Eremocllrglls (Hymenoptera: Pompilidae) 1 2 1 L. Krogmann • , M.C. Day' and A.D. Austin I f\ustralian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, South Australia 5005, Australi,l. 'State Museum of Natural History Stuttgart, Rosenstein I, Stuttgart. D-70191 Germany (present address). Email: [email protected] 'National Museum Cardiff, Cathays Park, Cardiff, C1'I0 3NI', Wales, United Kingdom. Abstract - En'lllocllrglls lil/l/ilCi sI'. novo is described from Western Australia. The female of this new species is brachypterous, a unique feature within Ercl/lOClIrglls Haupt and rare within the Australian pompilid fauna. The fullv­ winged male is the first recorded for the genus. The diversity of ErCI/IOCllrgll" its distribution and brachyptery among the Pompilidae are discussed. INTRODUCTION female and the first male of the genus. At the same The Australian pompilid fauna is particularly time, we present an overview of the diversity and diverse (Austin et al. 2004) and displays a distribution of the genus, and discuss the occurrence high level of endemism. However, although of brachyptery within the Australian Pompilidae. the first Pompilidae for the continent were described by Fabricius in 1775, the group is TERMINOLOGY AND METHODS generally poorly known for Australia, and Terms for morphological structures follow Day it is likely that significantly less than half (1988) and Coulet and Huber (1993). Specimens the fauna has been described. Further, the were borrowed from and/or are deposited in the group is taxonomically difficult because of the following collections (acronyms used throughout morphological conservatism among numerous the text): Australian Museum, Sydney, Australia genera, in addition to the often extreme sexual (AM); Australian National Insect Collection, dimorphism and complex mimicry associations CSIRO, Canberra, Australia (ANIC); California seen in many species (e.g.
    [Show full text]
  • THE TRUE ARMY ANTS of the INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae)
    Pacific Insects 6 (3) : 427483 November 10, 1964 THE TRUE ARMY ANTS OF THE INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae) By Edward O. Wilson BIOLOGICAL LABORATORIES, HARVARD UNIVERSITY, CAMBRIDGE, MASS., U. S. A. Abstract: All of the known Indo-Australian species of Dorylinae, 4 in Dorylus and 34 in Aenictus, are included in this revision. Eight of the Aenictus species are described as new: artipus, chapmani, doryloides, exilis, huonicus, nganduensis, philiporum and schneirlai. Phylo­ genetic and numerical analyses resulted in the discarding of two extant subgenera of Aenictus (Typhlatta and Paraenictus) and the loose clustering of the species into 5 informal " groups" within the unified genus Aenictus. A consistency test for phylogenetic characters is discussed. The African and Indo-Australian doryline species are compared, and available information in the biology of the Indo-Australian species is summarized. The " true " army ants are defined here as equivalent to the subfamily Dorylinae. Not included are species of Ponerinae which have developed legionary behavior independently (see Wilson, E. O., 1958, Evolution 12: 24-31) or the subfamily Leptanillinae, which is very distinct and may be independent in origin. The Dorylinae are not as well developed in the Indo-Australian area as in Africa and the New World tropics. Dorylus itself, which includes the famous driver ants, is centered in Africa and sends only four species into tropical Asia. Of these, the most widespread reaches only to Java and the Celebes. Aenictus, on the other hand, is at least as strongly developed in tropical Asia and New Guinea as it is in Africa, with 34 species being known from the former regions and only about 15 from Africa.
    [Show full text]
  • The Parasitoid Community of Andricus Quercuscalifornicus and Its Association with Gall Size, Phenology, and Location
    Biodivers Conserv (2011) 20:203–216 DOI 10.1007/s10531-010-9956-0 ORIGINAL PAPER The parasitoid community of Andricus quercuscalifornicus and its association with gall size, phenology, and location Maxwell B. Joseph • Melanie Gentles • Ian S. Pearse Received: 1 June 2010 / Accepted: 18 November 2010 / Published online: 1 December 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Plant galls are preyed upon by a diverse group of parasitoids and inquilines, which utilize the gall, often at the cost of the gall inducer. This community of insects has been poorly described for most cynipid-induced galls on oaks in North America, despite the diversity of these galls. This study describes the natural history of a common oak apple gall (Andricus quercuscalifornicus [Cynipidae]) and its parasitoid and inquiline commu- nity. We surveyed the abundance and phenology of members of the insect community emerging from 1234 oak apple galls collected in California’s Central Valley and found that composition of the insect community varied with galls of different size, phenology, and location. The gall maker, A. quercuscalifornicus, most often reached maturity in larger galls that developed later in the season. The parasitoid Torymus californicus [Torymidae] was associated with smaller galls, and galls that developed late in the summer. The most common parasitoid, Baryscapus gigas [Eulophidae], was more abundant in galls that developed late in the summer, though the percentage of galls attacked remained constant throughout the season. A lepidopteran inquiline of the gall (Cydia latiferreana [Tortrici- dae] and its hymenopteran parasitoid (Bassus nucicola [Braconidae]) were associated with galls that developed early in the summer.
    [Show full text]
  • Community Level Consequences of Adaptive Management Through Climate Matching: Oak Galls As a Model System
    Community level consequences of adaptive management through Climate Matching: oak galls as a model system Frazer H. Sinclair Submitted for the degree of Doctor of Philosophy University of Edinburgh 2011 1 Declaration This thesis is submitted to the University of Edinburgh in accordance with the requirements for the degree of Doctor of Philosophy in the College of Science and Engineering. Aspects of the presented work were made possible by collaboration and data sharing with individuals and institutions, details of which are presented below. Chapter 2. The French National Institute for Agricultural Research (INRA) provided various phenotypic and genotypic data from oak provenance trials that are under their management. All presented analyses of these data are my own. Chapter 3. INRA allowed access to their established oak provenance trial at the forest of Petite Charnie in Sarthe, Northwest France. Insect surveys at the trial were conducted by me, and by volunteers under my supervision. All presented analyses of these data are my own. Chapter 4. Insect specimens were collected by me from the oak provenance trial at Petite Charnie with the permission of INRA. Approximately 1/3 of DNA extractions and PCR reactions were conducted by Konrad Lohse, Julja Ernst, and Juan Carlos Ruiz Guajardo. All presented analyses are my own. Chapter 5. Insect specimens were sourced from the Stone laboratory collections at the University of Edinburgh. Unpublished DNA sequence data from 6 parasitoid individuals were provided by Konrad Lohse. All presented analysis of this data is my own. Unless otherwise stated, the remaining work and content of this thesis are entirely my own.
    [Show full text]
  • Torymus Sinensis Against the Chestnut Gall Wasp Dryocosmus Kuriphilus in the Canton Ticino, Switzerland
    | January 2011 Evaluating the use of Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus in the Canton Ticino, Switzerland Authors Aebi Alexandre, Agroscope ART Schoenenberger Nicola, Tulum SA and Bigler Franz, Agroscope ART Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus | January 2011 1 Zürich/Caslano, January 2011 Authors’ affiliation: Alexandre Aebi and Franz Bigler Nicola Schoenenberger Agroscope Reckenholz-Tänikon TULUM SA Research Station ART Via Rompada 40 Biosafety 6987 Caslano Reckenholzstrasse 191 Switzerland 8046 Zürich Tel: +41 91 606 6373 Switzerland Fax: +41 44 606 6376 Tel: +41 44 377 7669 [email protected] Fax: +41 44 377 7201 [email protected] This work was financed by the Swiss Federal Office for the Environment (FOEN) This work was done in collaboration with B. Bellosi and E. Schaltegger (TULUM SA) Cover figure: Empty chestnut gall in Stabio, February 2010 (Picture:TULUM SA) All maps used in figures and appendices (except Fig. 6): ©swisstopo, license number: DV053809.1 Map in figure 6: © Istituto Geografico, De Agostini 1982–1988 ISBN 978-3-905733-20-4 © 2010 ART 2 Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus | January 2011 Table of contents Table of contents Abstract 5 1. Introduction 6 2. Mission and methods 7 3. Presence and degree of infestation of Dryocosmus kuriphilus in Switzerland 9 4. Invasion corridors of Dryocosmus kuriphilus towards Switzerland 11 5. Potential economic and ecological damage caused by Dryocosmus kuriphilus in Switzerland 14 6. Release of the parasitoid Torymus sinensis in the Piedmont Region, Italy 17 7. Potential benefits and damage due to the release of Torymus sinensis 18 8.
    [Show full text]
  • Invasion by the Chestnut Gall Wasp in Italy Causes Significant Yield Loss In
    Agricultural and Forest Entomology (2014), 16,75–79 DOI: 10.1111/afe.12036 Invasion by the chestnut gall wasp in Italy causes significant yield loss in Castanea sativa nut production ∗ ∗ ∗ Andrea Battisti , Isadora Benvegnu` †, Fernanda Colombari and Robert A. Haack‡ ∗Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020, Legnaro, Italy, †Veneto Agricoltura, Agripolis, 35020, Legnaro, Italy, and ‡USDA Forest Service, Northern Research Station, 1407 South Harrison Road, East Lansing, MI, 48823, U.S.A. Abstract 1 The Asian chestnut gall wasp Dryocosmus kuriphilus Yasumatsu (Hymenoptera Cynipidae) is an invasive species in chestnut forests and orchards in many parts of the world. 2 Nuts produced by the European chestnut (Castanea sativa Miller) are important in human food and culture, and as a component in food webs in forest ecosystems. 3 Severe infestations are reported to reduce nut yield, although precise data are lacking because of large natural year-to-year variability in yield. 4 The recent colonization of chestnut orchards in north-eastern Italy, where nut yield has been continuously and precisely recorded for several years, offered an opportunity to calculate the impact of gall wasp infestation level on yield. 5 The nut yield of C. sativa chestnut trees was negatively related to the gall wasp infestation level, with losses as high as 80% being reported when the number of current-year galls was above six galls per 50-cm twig. 6 Yield losses can be explained by direct and indirect factors related to gall formation, and a fuller understanding of the mechanisms involved could identify possible mitigation measures.
    [Show full text]