Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations Landscape development of the Transantarctic Mountains, Shackleton Glacier area, Antarctica: An integration of structural geology, geomorphology, and apatite fission-track thermochronology Item Type text; Thesis-Reproduction (electronic) Authors Miller, Scott Ruthardt, 1973- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 13:50:58 Link to Item http://hdl.handle.net/10150/278646 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fix>m the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be £*001 any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing fi'om left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Compaiqr 300 Noith Zed> Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 LANDSCAPE DEVELOPMENT OF THE TRANSANTARCTIC MOUNTAINS, SHACKLETON GLACIER AREA, ANTARCTICA; AN INTEGRATION OF STRUCTURAL GEOLOGY, GEOMORPHOLOGY, AND APATITE HSSION-TRACK THERMOCHRONOLOGY by Scott Ruthardt Miller A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1997 UMX Number: 1387971 UMI Microform 1387971 Copyright 1998, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: Suzanne L. Baldwin Date Associate Professor of Geosciences 3 ACKNOWLEDGEMENTS Landscapes and all their physical and human elements amaze me. It has been a joy to study the physical development of a very unique one. And it's no wonder why. I've teen among good people. Each and any "paysage est un etat de I'ante" [Fr., landscape is a state of the mind] (Aimel, 1922, p. 86>—its meaning not only a physical reality but dso a social construct, sometimes paradigmatic. It is pardy a fimction of teachers and environment that one senses the landscape in a certain way and not another. It is this legacy that predisposes one to focus onto certain aspects of the landscape rather than others. It is this accumulation of certain iimocent preconceptions that seeds the entire imaginative process. It is by the accretion of enough influences that one can finally hope to have a mind that is tempered yet inventive and open. In effect, Earth both writes a story and is a story written. Both must be read. I thank those who have taught me to read the geologic text and to understand its context. I could not have accomplished this work without a number of important people at The University of Arizona. Paul Fitzgerald and Suzanne Baldwin were instrumental for, firstly, inviting me aboard their Antarctic project and expedition and, secondly, by exciting me in the application of low-temperature thermochronology to landscape development Their reviews of this thesis have improved it a great de<d. I also ±ank Paul for teaching me the ropes of fission-track analysis. Finally, it was their grant from the National Science Foundation that covered field and laboratory expenses and provided me with a salary for the last year and a half. George Davis patiently sat on my Thesis Committee, waited for drafts of my thesis, and gave thoughtful reviews even on short notice. This man is a pleasure to deal with. Bill BuU and Vic Baker made matchless impressions upon me through lectures and conversations. A number of the latter were about this project and they have made a lasting mark. Even though he has retired and is free to do other things. Dr. Bull gave a critic^ review that immensely improved the final draft's clarity. I also thank Clem Chase, Peter Coney, George Zandt, Michael Summerfield (University of Edinburgh), and Larry Mayer (Miami University) for conversations through the coxirse of this project about tectonics, geodynamics, geomorphology, and related concerns. Their input was invaluable in making me simply stop and think about things. Any faulty observations, poor data, illegitimate interpretations, or overstatements are my own. The aforementioned professors carmot enjoy all of the credit, however. My colleagues and friends here at the U of A have been an immeasurable resource and source of companionship. Be it talking shop or mountain biking or hiking or going to crazy NASCAR races or reminiscing about snow and such things that we don't get much of here in Tucson, they've made it fim. Notable among these are Bob Casavant, Alex Bump, Steve Ahlgren, Sarah Tindall, Mike Kumey, Lisa Verts, Andrew Rieth, and Pilar Garcia. Stories about the old days of exploration in Antarctica are much about danger and hardship. Neither showed in our expedition, thanks to the superb logistical help of Antarctic Support Associates, the Berg Field Center, and the staff of the Shackleton deep- field camp. U.S. Navy Squadron VXE-6 and the Air National Guard provided transportation into and out of the field. In the field. Ken Borek Air and Helicopters New 2^aland put us just about anywhere on the map we wanted. Finally, Graeme Dingle, intrepid guide and Member of the British Empire, provided incomparable field support, taught me the finer points of bowling a cricket ball, and became a good friend. My greatest thanks are reserved for my family, who has been supportive and inspirational thoughout my lifelong education. Their influence is surely reflected in my curiosity for rocks, landscapes, and those things that I just don't comprehend. 4 TABLE OF CONTENTS STATEMENT BY AUTHOR 2 ACKNOWLEDGEMENTS 3 TABLE OF CONTENTS 4 LIST OF FIGURES 7 LIST OF TABLES 11 ABSTRACT 12 1 INTRODUCTION 13 1.1 The landscape of interest: the Transantarctic Mountains 13 1.2 Purpose and objectives 19 1.3 Study area 20 1.4 Methods 22 1.5 Thesis 25 2 GEOLOGIC SETTING 26 2.1 Antarctica 26 2.2 Transantarctic Mountains 26 2.3 Study area 33 2.4 Structural geologic architecture of the Transantarctic Mountains 40 2.5 History and style of uplift of the Transantarctic Mountains 45 3 STRUCTURAL GEOLOGY 51 3.1 Introduction 51 3.2 Faults 53 Mapping 53 Fault slip 63 3.3 Joints 65 3.4 Alteration zones 67 3.5 Hypotheses 67 Nature of the major, range-fronting escarpment 67 Fault geometry of the Cape Surprise area 70 Constraints on the age of the modem fracture system 74 Kinematics of the Cape Surprise area 77 4 GEOMORPHOLOGY 82 4.1 Introduction 82 4.2 Highland versus lowland physiography 84 4.3 Lineaments 85 5 TABLE OF CONTENTS — Continued 4.4 Asymmetric drainage 89 4.5 Planation surfaces 93 Lowland planation surfaces 93 Highland planation surfaces 107 4.6 Escarpments Ill 4.7 Hypotheses 114 Origin of planation surfaces 114 Introduction 114 Age 115 Glacial origin 118 Coastal marine origin 121 Periglacial origin 121 Fluvial origin 122 Origin of lowland drainage pattern 126 Constraints on the age of faulting 133 5 APATITE FISSION-TRACK THERMOCHRONOLOGY 137 5.1 Introduction 137 5.2 Background of method 138 5.3 Sampling strategy and technique 148 5.4 Analytical results 153 General results 153 Vertical profiles 153 Spot-height 950 153 Spot-height 700 162 "Pyramid Peak" 162 Olds Peak 166 Mount Munson 166 5.5 Hypotheses 171 Identification of exhumed partial annealing zones 171 Timing of the onset of "rapid" denudation 173 Gross pattern and amount of of denudation 175 Rate of "rapid" denudation 175 Non-areally synchronous or imiform
Recommended publications
  • Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama
    Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama By JOHN T. HACK SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Theories of landscape origin are compared using as an example an area of gently dipping rocks that differ in their resistance to erosion UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract___________________________________________ C1 Cumberland Plateau and Highland Rim as a system in Introduction_______________________________________ 1 equilibrium______________________________________ C7 General description of area___________________________ 1 Valleys and coves of the Cumberland Escarpment___ 7 Cumberland Plateau and Highland Rim as dissected and Surficial deposits of the Highland Rim____________ 10 deformed peneplains _____________________ ,... _ _ _ _ _ _ _ _ 4 Elk River profile_______________________________ 12 Objections to the peneplain theory____________________ 5 Paint Rock Creek profile________________________ 14 Eastern Highland Rim Plateau as a modern peneplain__ 6 Conclusions________________________________________ 14 Equilibrium concept
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
    This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript.
    [Show full text]
  • CANADA's MOUNTAIN Rocky Mountain Goats
    CANADA'S MOUNTAIN Rocky Mountain Goats CANADA'S MOUNTAIN PLAYGROUNDS BANFF • JASPER • WATERTON LAKES • YOHO KOOTENAY ° GLACIER • MOUNT REVELSTOKE The National Parks of Canada ANADA'S NATIONAL PARKS are areas The National Parks of Canada may, for C of outstanding beauty and interest that purposes of description, be grouped in three have been set apart by the Federal Govern­ main divisions—the scenic and recreational ment for public use. They were established parks in the mountains of Western Canada; the to maintain the primitive beauty of the land­ scenic, recreational, wild animals, and historic scape, to conserve the native wildlife of the parks of the Prairie Provinces; and the scenic, country, and to preserve sites of national his­ recreational, and historic parks of Eastern Can­ toric interest. As recreational areas they pro­ ada. In these pages will be found descriptions vide ideal surroundings for the enjoyment of of the national parks in the first group—areas outdoor life, and now rank among Canada's which lie within the great mountain regions outstanding tourist attractions. of Alberta and British Columbia. Canada's National Park system teas estab­ * * * lished in 1SS5, when a small area surrounding mineral hot springs at Banff in the Rocky This publication is compiled in co-operation Mountains was reserved as a public posses­ with the National Parks Branch, Department sion. From this beginning has been developed of Northern Affairs and National Resources. the great chain of national playgrounds note Additional information concerning these parks stretching across Canada from the Selkirk may be obtained from the Park Superintend­ Mountains in British Columbia to the Atlantic ents, or from the Canadian Government Travel Coast of Nova Scotia.
    [Show full text]
  • Management Plan For
    Measure 8 (2013) Annex Management Plan for Antarctic Specially Protected Area (ASPA) No.138 Linnaeus Terrace, Asgard Range, Victoria Land Introduction Linnaeus Terrace is an elevated bench of weathered Beacon Sandstone located at the western end of the Asgard Range, 1.5km north of Oliver Peak, at 161° 05.0' E 77° 35.8' S,. The terrace is ~ 1.5 km in length by ~1 km in width at an elevation of about 1600m. Linnaeus Terrace is one of the richest known localities for the cryptoendolithic communities that colonize the Beacon Sandstone. The sandstones also exhibit rare physical and biological weathering structures, as well as trace fossils. The excellent examples of cryptoendolithic communities are of outstanding scientific value, and are the subject of some of the most detailed Antarctic cryptoendolithic descriptions. The site is vulnerable to disturbance by trampling and sampling, and is sensitive to the importation of non-native plant, animal or microbial species and requires long-term special protection. Linnaeus Terrace was originally designated as Site of Special Scientific Interest (SSSI) No. 19 through Recommendation XIII-8 (1985) after a proposal by the United States of America. The SSSI expiry date was extended by Resolution 7 (1995), and the Management Plan was adopted in Annex V format through Measure 1 (1996). The site was renamed and renumbered as ASPA No 138 by Decision 1 (2002). The Management Plan was updated through Measure 10 (2008) to include additional provisions to reduce the risk of non-native species introductions into the Area. The Area is situated in Environment S – McMurdo – South Victoria Land Geologic based on the Environmental Domains Analysis for Antarctica and in Region 9 – South Victoria Land based on the Antarctic Conservation Biogeographic Regions.
    [Show full text]
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • A Satellite Case Study of a Katabatic Surge Along the Transantarctic Mountains D
    This article was downloaded by: [Ohio State University Libraries] On: 07 March 2012, At: 15:04 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Journal of Remote Sensing Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tres20 A satellite case study of a katabatic surge along the Transantarctic Mountains D. H. BROMWICH a a Byrd Polar Research Center, The Ohio State Universit, Columbus, Ohio, 43210, U.S.A Available online: 17 Apr 2007 To cite this article: D. H. BROMWICH (1992): A satellite case study of a katabatic surge along the Transantarctic Mountains, International Journal of Remote Sensing, 13:1, 55-66 To link to this article: http://dx.doi.org/10.1080/01431169208904025 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Changing Hillslopes : Evolution and Inheritance
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the Treatise on Geomorphology, the copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Roering J.J., and Hales T.C. Changing Hillslopes: Evolution and Inheritance; Inheritance and Evolution of Slopes. In: John F. Shroder (Editor-in-chief), Marston, R.A., and Stoffel, M. (Volume Editors). Treatise on Geomorphology, Vol 7, Mountain and Hillslope Geomorphology, San Diego: Academic Press; 2013. p. 284-305. © 2013 Elsevier Inc. All rights reserved. Author's personal copy 7.29 Changing Hillslopes: Evolution and Inheritance; Inheritance and Evolution of Slopes JJ Roering, University of Oregon, Eugene, OR, USA TC Hales, Cardiff University, Cardiff, UK r 2013 Elsevier Inc. All rights reserved. 7.29.1 Introduction 285 7.29.2 Hillslope Evolution
    [Show full text]
  • Stratigraphy of Upper Carboniferous and Permian Rocks Exposed Between the Byrd and Nimrod Glaciers JOHN L
    Boulder, here. The project was supported by National Science Founda- belts along the Panthalassan margin of Gondwanaland. Colorado: Geological Society of America. tion grants OPP 89-17348 and OPP 89-15429. Elliot, D.H. 1992. Jurassic magmatism and tectonism associated with Gondwanaland break-up: An antarctic perspective. In B.C. Alabaster and R.J. Pankhurst (Eds.), Magmatism and the causes of References continental break-up (Special Publication No. 68). London: Geo- logical Society of London. Barrett, P.J., D.H. Elliot, and J.F. Lindsay. 1986. The Beacon Super- Elliot, D.H., and D. Larsen. 1993. Mesozoic volcanism in the central group (Devonian-Triassic) and Ferrar Group (Jurassic) in the Transantarctic Mountains, Antarctica: Depositional environment Beardmore Glacier area, Antarctica. In M.D. Turner and J.F. and tectonic setting. In R.H. Findlay, R. Unrug, M.R. Banks, and J.J. Gondwana Eight: Assembly, evolution and Splettstoesser (Eds.), Geology of the central Transantarctic Moun- Veevers, (Eds.), tains (Antarctic Research Series, Vol. 36). Washington, D.C.: Ameri- dispersal. Rotterdam: Balkema. can Geophysical Union. Larsen, D. 1988. The petrology and geochemistry of the volcaniclastic Collinson, J.W., J.L. Isbell, D.H. Elliot, M.F. Miller, and J.W.G. Miller. In upper part of the Falla Formation and Prebble Formation, Beard- press. Permian-Triassic Transantarctic basin. In J.J. Veevers and C. more Glacier area, Antarctica. (Unpublished master of science the- McA. Powell (Eds.), Permian-Triassic Pangaean basins and fold- sis, Ohio State University, Columbus, Ohio.) Stratigraphy of Upper Carboniferous and Permian rocks exposed between the Byrd and Nimrod Glaciers JOHN L.
    [Show full text]
  • Novitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET NEW YORK, N.Y
    NovitatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET NEW YORK, N.Y. 10024 U.S.A. NUMBER 2552 OCTOBER 15, 1974 EDWIN H. COLBERT AND JOHN W COSGRIFF Labyrinthodont Amphibians from Antarctica Labyrinthodont Amphibians from Antarctica EDWIN H. COLBERT Curator Emeritus, The Amer'wan Museum of Natural History Professor Emeritus, Columbia University Curator of Vertebrate Paleontology The Museum of Northern Arizona, Flagstaff JOHN W COSGRIFF Associate Professor of Biology Wayne State University, Michigan AMERICAN MUSEUM NOVITATES NUMBER 2552, pp. 1-30, figs. 1-20, table 1 ISSN 0003-0082 Issued October 15, 1974 Price $1.95 Copyright © The American Museum of Natural History 1974 ABSTRACT ian which, following further comparative studies, Labyrinthodont amphibians from the Lower is identified in the present paper as a brachyopid. Triassic Fremouw Formation of Antarctica are The discovery of this specimen-an accidental described. These consist of a fragment of a lower event tangential to Barrett's study of the geology jaw collected at Graphite Peak in the Transant- of the Transantarctic Mountains in the general arctic Mountains in December, 1967, and various region of the Beardmore Glacier-was the stimu- fossils from Coalsack Bluff (west of the lus for a program of vertebrate paleontological Beardmore Glacier and some 140 km., or about collecting in Antarctica. An expedition under the 88 miles, northwest of Graphite Peak) during the auspices of the Institute of Polar Studies of The austral summer of 1969-1970 and from near the Ohio State University and the National Science junction of the McGregor and Shackleton Gla- Foundation went to the Beardmore Glacier area ciers (about 100 km., or 60 miles, more or less, during the austral summer of 1969-1970 for the to the east and a little south of Graphite Peak) during the austral summer of 1970-1971.
    [Show full text]
  • Atmospheric Gas Records from Taylor Glacier, Antarctica, Reveal Ancient Ice with Ages Spanning the Entire Last Glacial Cycle Daniel Baggenstos1,*, Thomas K
    Clim. Past Discuss., doi:10.5194/cp-2017-25, 2017 Manuscript under review for journal Clim. Past Discussion started: 28 February 2017 c Author(s) 2017. CC-BY 3.0 License. Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle Daniel Baggenstos1,*, Thomas K. Bauska2, Jeffrey P. Severinghaus1, James E. Lee2, Hinrich Schaefer3, Christo Buizert2, Edward J. Brook2, Sarah Shackleton1, and Vasilii V. Petrenko4 1Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92093, USA. 2College of Earth, Ocean and Atmospheric Sciences, Oregon State University (OSU), Corvallis, OR, 97331, USA. 3National Institute of Water and Atmospheric Research Ltd (NIWA), PO Box 14901, Kilbirnie, 301 Evans Bay Parade, Wellington, New Zealand. 4Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA. *Current address: Climate and Environmental Physics, University of Bern, Switzerland. Correspondence to: [email protected] Abstract. Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models 5 need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice 18 and assess the completeness of the stratigraphic section.
    [Show full text]
  • Rb-Sr Provenance Dates of Feldspar in Glacial Deposits of the Wisconsin Range, Transantarctic Mountains
    Rb-Sr provenance dates of feldspar in glacial deposits of the Wisconsin Range, Transantarctic Mountains q F/XUR.E ' I Department of Geology and Mineralogy and Institute of Polar Studies, The Ohio State University, Columbus, J H MERCER ' °hi°43210 ABSTRACT than those of feldspar in the plateau till and range only from 0.46 to 0.66. Nevertheless, three feldspar fractions form a straight line on Glacial deposits in the Wisconsin Range (lat. 85° to 86°30'S, the Rb-Sr isochron diagram, the slope of which indicates a date of long. 120° to 130°W) of the Transantarctic Mountains include a 576 ± 21 Ma. The difference in the date derived from the feldspar of deposit of till on the summit plateau at an elevation of 2,500 m the glaciolacustrine sedimeyt may be caused by the presence of a above sea level and glaciolacustrine sediments along the Reedy component of Precambrian feldspar derived from the East Antarc- Glacier. The plateau till and underlying sediments consist of six tic Shield. units that appear to record the replacement of ice-free, periglacial conditions by ice cap glaciation of pre-Pleistocene age. Alterna- INTRODUCTION tively, the plateau till may have been deposited by the East Antarc- tic ice sheet either when it was thicker than at present or when the The glaciation of Antarctica in Cenozoic time was an important Wisconsin Range was lower in elevation. Feldspar size fractions event in the history of the Earth, the effects of which continue to from the plateau till have Rb/Sr ratios that increase with grain size influence climatic conditions and sea level.
    [Show full text]
  • University Microfilms, a XEROX Company, Ann Arbor, Michigan
    I I 72-15,173 BEHLING, Robert Edward, 1941- PEDOLOGICAL DEVELOPMENT ON MORAINES OF THE MESERVE GLACIER, ANTARCTICA. The Ohio State University in cooperation with Miami (Ohio) University, Ph.D., 1971 Geology University Microfilms,A XEROX Company , Ann Arbor, Michigan PEDOLOGICAL DEVELOPMENT ON MORAINES OF THE MESERVE GLACIER, ANTARCTICA DISSERTATION Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robert E. Behling, B.Sc., M*Sc. ***** The Ohio State University 1971 Approved by Adv Department f Geology PLEASE NOTE: Some pages have indistinct print. Filmed as received. University Microfilms, A Xerox Education Company ACKNOWLEDGEMENTS This study could not have been possible without the cooperation of faculty members of the departments of agronomy, mineralogy, and geology, I wish to thank Dr. R. P. Goldthwait as chairman of my committee, Dr. L. P. Wilding and Dr. R. T. Tettenhorst as members of my reading committee, as well as Dr. C. B. Bull and Dr. K. R. Everett for valuable assistance and criticism of the manuscript. A special thanks is due Dr. K. R. Everett for guidance during that first field season, and to Dr. F. Ugolini who first introduced me to the problems of weathering in cold deserts. Numerous people contributed to this end result through endless discussions: Dr. Lois Jones and Dr. P. Calkin receive special thanks, as do Dr. G. Holdsworth and Maurice McSaveney. Laboratory assistance was given by Mr. Paul Mayewski and R. W. Behling. Field logistic support in Antarctica was supplied by the U.S.
    [Show full text]