University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. Dr. Arthur Mirsky was helpful in numerous ways during the course of the research and in editing the report. Dr. Gunter Faure generously supplied ii unpublished data on the geochronology and chemistry of the basement rocks, and reviewed the manuscript. Dr. C. H. Schultz examined thin sections of the Permian pyroclastic rocks. Dr. Sambhudas Chaudhuri, Kansas State University, assisted in the X-ray diffraction analyses. Dr. Allison R. Palmer identified the trilobites from the Leverett Formation, and Dr. Norman E. Newell examined pelecypod casts from the Weaver Formation. Drs. R. L. Bates, A. LaRocque, E. Rudolph reviewed the manuscript and offered many helpful suggestions. Dr. C. H. Summerson, Department of Geology, The Ohio State University, supervised the research, and spent one month in the field examining the stratigraphic sections of the Mt. Weaver area; the author is grateful to Professor Summerson for his con­ tinuous encouragement and assistance. The final order of this report is due in large part to his constructive criticism, although the author takes the responsibility for all opinions expressed. The author is also indebted to his associates of the Institute of Polar Studies for their many stimulating dis­ cussions and criticisms. P. J. Barrett, R. L. Cameron, D. E. Elliott, K. R. Everett, J. L. Lindsay, and J. H. Mercer were especially helpful. As a result of our many discussions, it is difficult to determine who first suggested some ideas. iii Logistic support to the field was provided by the U. S. Navy, Air Development Squadron Six. U. S. Array UH-1B turbine heli­ copters of the Uo S. Army Aviation Detachment, Antarctic Support, were placed at the disposal of the field party both seasons. Without the assistance of these helicopters, the regional survey would not have been possible. The author was assisted in the typing of the manuscript by Miss Adda Jane Liggitt. Miss Pamela Minshew colored the geologic map. This research was supported by National Science Foundations grants G-22542 and Ga-136, awarded to The Ohio State University Research Foundation, and administered by the Institute of Polar Studies. iv VITA January 11, 1939 Born, Carthage, Mississippi 1958-1959 Laboratory Assistant, Department of Geology University of Southern Mississippi 1959 B. Sc,, University of Southern Mississippi 1959-1962 Teaching Assistant, Department of Geology University of Nebraska 1962 M. Sc., University of Nebraska 1962-present Research Associate, Institute of Polar Studies The Ohio State University 1962-1963 Stratigrapher, Mt, Weaver Geologic Expedition Antarctica 1964-1965 Stratigrapher, Wisconsin Range Geologic Expedition Antarctica v PUBLICATIONS Stratigraphy and sedimentation of the Meridian Sand in east central Mississippi, M. Sc, Thesis, University of Nebraska, 1962; abstract published in 1962 proceedings of the Nebraska Academy of Sciences. Geology of Earth*s southernmost outcrops, (Abstract), with G. A. Doumani, Geol. Soc. Amer. Spec. Paper No. 76, p. 50-51, 1964. Stratigraphic section of the Robert Scott Glacier area, Queen Maud Range, Antarctica, (Abstract), with C. H. Summerson, Geol. Soc. Amer. Spec. Paper No. 76, p. 312-313, 1964. General geology of the Mount Weaver area, Queen Maud Mountains, Antarctica, with G. A. Doumani, in Hadley, J. B., Ed., Geology and Paleontology of the Antarctic, V. 6, Antarctic Research Series, Amer. Geophys. Un., p. 71-116, 1965. Potassium-Argon age from a granite at Mount Wilbur, Queen Maud Range, Antarctica, Science, 150 (3697), p. 741-743, 1965. Stratigraphy of the Wisconsin Range, Horlick Mountains, Antarctica, Science, 152 (3722), p. 637-639, 1966. Petrologic investigations of the Scott Glacier-Wisconsin Range, Antarctica, Antarctic Journal of the U. S., in press. Late Paleozoic glacial stratigraphy, central Transantarctic Mountains, Antarctica, First International Symposium on Gondwana stratigraphy and paleontology, Buenos Aires, in press. Permo-Carboniferous stratigraphy, central Transantarctic Mountains, Antarctica, with C. H. Summerson, Sixth Inter­ national Congress of Carboniferous stratigraphy and geology, in press. Thermal metamorphism of the Beacon Rocks, central Trans­ antarctic Mountains, Antarctica, (A!> vact), for presentation of 1967 Geol. Soc. Amer. Annual Meeting, New Orleans. vi FIELDS OF STUDY Major Field: Geology Studies in Stratigraphy. Professor Charles H. Summerson Studies in Sedimentation. Professor Charles H. Summerson Studies in Petrology, Professor George E. Moore Studies in Glacial Geology. Professor Richard P. Goldthwait Studies in Coal Geology. Professor J. M. Schopf v ii TABLE OF CONTENTS page PREFACE . ii LIST OF TABLES...................................................................... xv LIST OF ILLUSTRATIONS.......................................................... xvii INTRODUCTION.......................................................... 1 AREA OF INVESTIGATION.......................................................... 6 FIELD WORK ............................ 7 PREVIOUS INVESTIGATIONS...................................................... 8 GEOMORPHOLOGY........................................................................... 10 WEATHERING CHARACTERISTICS.............................................. 13 STRUCTURAL GEOLOGY.............................................................. 20 Historical background ...... .......................... 20 Scott Glacier and Wisconsin Range ...... 22 STRATIGRAPHY . .................................................................. 26 Introduction ......................................... 26 Basement stra tig ra p h y .................... 28 Introduction .............................................................. 28 Granitic rocks . ......................... ....... 30 LaGorce Formation .............. 34 Definition and type a r e a ............................. 34 Areal Distribution .................... 34 Thickness ........................ 36 v iii page Structure .............................................= . 36 Petrology .............................................................. 37 Primary s tr u c tu r e s .................. .................... 38 Intrusive contacts ..... ..................... 38 Paleontology ......... 38 Environment of deposition ............................. 39 Age ................................................. 39 Wyatt Formation ......... ..................... 41 Introduction . .............................................. 41 Definition and type a r e a .......................... 41 Areal distribution .......................................... 41 Lower contact ........................ 42 Structure . 42 Thickness ..... 43 Petrology ..................................... 43 Chemical composition ...................................... 48 Metarnorphism ...................................... 49 O r i g i n .................... 50 Age ........................................................................... 51 Leverett Formation ...................................................... 52 Definition and type a r e a ............................ 52 Areal distribution ............................. 52 Thickness.............................................................. 54 ix page Structure ............................................................. 54 Stratigraphy.......................................... 54 Chemistry................................................................. 60 Primary structures ............................................. 61 Paleontology and age ......... 61 Environment of deposition ................................ 63 Metamorphism ..................................................... 64 Basement correlations ... 65 Isolated exposures
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Introduction to Geological Process in Illinois Glacial
    INTRODUCTION TO GEOLOGICAL PROCESS IN ILLINOIS GLACIAL PROCESSES AND LANDSCAPES GLACIERS A glacier is a flowing mass of ice. This simple definition covers many possibilities. Glaciers are large, but they can range in size from continent covering (like that occupying Antarctica) to barely covering the head of a mountain valley (like those found in the Grand Tetons and Glacier National Park). No glaciers are found in Illinois; however, they had a profound effect shaping our landscape. More on glaciers: http://www.physicalgeography.net/fundamentals/10ad.html Formation and Movement of Glacial Ice When placed under the appropriate conditions of pressure and temperature, ice will flow. In a glacier, this occurs when the ice is at least 20-50 meters (60 to 150 feet) thick. The buildup results from the accumulation of snow over the course of many years and requires that at least some of each winter’s snowfall does not melt over the following summer. The portion of the glacier where there is a net accumulation of ice and snow from year to year is called the zone of accumulation. The normal rate of glacial movement is a few feet per day, although some glaciers can surge at tens of feet per day. The ice moves by flowing and basal slip. Flow occurs through “plastic deformation” in which the solid ice deforms without melting or breaking. Plastic deformation is much like the slow flow of Silly Putty and can only occur when the ice is under pressure from above. The accumulation of meltwater underneath the glacier can act as a lubricant which allows the ice to slide on its base.
    [Show full text]
  • 2. Disc Resources
    An early map of the world Resource D1 A map of the world drawn in 1570 shows ‘Terra Australis Nondum Cognita’ (the unknown south land). National Library of Australia Expeditions to Antarctica 1770 –1830 and 1910 –1913 Resource D2 Voyages to Antarctica 1770–1830 1772–75 1819–20 1820–21 Cook (Britain) Bransfield (Britain) Palmer (United States) ▼ ▼ ▼ ▼ ▼ Resolution and Adventure Williams Hero 1819 1819–21 1820–21 Smith (Britain) ▼ Bellingshausen (Russia) Davis (United States) ▼ ▼ ▼ Williams Vostok and Mirnyi Cecilia 1822–24 Weddell (Britain) ▼ Jane and Beaufoy 1830–32 Biscoe (Britain) ★ ▼ Tula and Lively South Pole expeditions 1910–13 1910–12 1910–13 Amundsen (Norway) Scott (Britain) sledge ▼ ▼ ship ▼ Source: Both maps American Geographical Society Source: Major voyages to Antarctica during the 19th century Resource D3 Voyage leader Date Nationality Ships Most southerly Achievements latitude reached Bellingshausen 1819–21 Russian Vostok and Mirnyi 69˚53’S Circumnavigated Antarctica. Discovered Peter Iøy and Alexander Island. Charted the coast round South Georgia, the South Shetland Islands and the South Sandwich Islands. Made the earliest sighting of the Antarctic continent. Dumont d’Urville 1837–40 French Astrolabe and Zeelée 66°S Discovered Terre Adélie in 1840. The expedition made extensive natural history collections. Wilkes 1838–42 United States Vincennes and Followed the edge of the East Antarctic pack ice for 2400 km, 6 other vessels confirming the existence of the Antarctic continent. Ross 1839–43 British Erebus and Terror 78°17’S Discovered the Transantarctic Mountains, Ross Ice Shelf, Ross Island and the volcanoes Erebus and Terror. The expedition made comprehensive magnetic measurements and natural history collections.
    [Show full text]
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • Reevaluation of the Timing and Extent of Late Paleozoic Glaciation in Gondwana: Role of the Transantarctic Mountains
    Reevaluation of the timing and extent of late Paleozoic glaciation in Gondwana: Role of the Transantarctic Mountains John L. Isbell Department of Geosciences, University of Wisconsin, Milwaukee, Wisconsin 53201, USA Paul A. Lenaker Rosemary A. Askin Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA Molly F. Miller Department of Earth and Environmental Science, Vanderbilt University, Nashville, Tennessee 37235, USA Loren E. Babcock Department of Geological Sciences and Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA ABSTRACT Evidence from Antarctica indicates that a 2000-km-long section of the Transantarctic MountainsÐincluding Victoria Land, the Darwin Glacier region, and the central Transantarctic MountainsÐwas not located near the center of an enormous Car- boniferous to Early Permian ice sheet, as depicted in many paleo- Figure 1. Carboniferous and geographic reconstructions. Weathering pro®les and soft-sediment Permian paleogeographic map deformation immediately below the preglacial (pre-Permian) un- of Gondwana (after Powell and Li, 1994), showing several hy- conformity suggest an absence of ice cover during the Carbonif- pothetical ice sheets. erous; otherwise, multiple glacial cycles would have destroyed these features. The occurrence of glaciotectonite, massive and strat- i®ed diamictite, thrust sheets, sandstones containing dewatering structures, and lonestone-bearing shales in southern Victoria Land and the Darwin Glacier region indicate that Permian sedimenta- tion occurred in ice-marginal, periglacial, and/or glaciomarine set- tings. No evidence was found that indicates the Transantarctic Mountains were near a glacial spreading center during the late Paleozoic. Although these ®ndings do not negate Carboniferous Powell, 1987; Ziegler et al., 1997; Scotese, 1997; Scotese et al., 1999; glaciation in Antarctica, they do indicate that Gondwanan glacia- Veevers, 2000, 2001).
    [Show full text]
  • A Satellite Case Study of a Katabatic Surge Along the Transantarctic Mountains D
    This article was downloaded by: [Ohio State University Libraries] On: 07 March 2012, At: 15:04 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Journal of Remote Sensing Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tres20 A satellite case study of a katabatic surge along the Transantarctic Mountains D. H. BROMWICH a a Byrd Polar Research Center, The Ohio State Universit, Columbus, Ohio, 43210, U.S.A Available online: 17 Apr 2007 To cite this article: D. H. BROMWICH (1992): A satellite case study of a katabatic surge along the Transantarctic Mountains, International Journal of Remote Sensing, 13:1, 55-66 To link to this article: http://dx.doi.org/10.1080/01431169208904025 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • S. Antarctic Projects Officer Bullet
    S. ANTARCTIC PROJECTS OFFICER BULLET VOLUME III NUMBER 8 APRIL 1962 Instructions given by the Lords Commissioners of the Admiralty ti James Clark Ross, Esquire, Captain of HMS EREBUS, 14 September 1839, in J. C. Ross, A Voya ge of Dis- covery_and Research in the Southern and Antarctic Regions, . I, pp. xxiv-xxv: In the following summer, your provisions having been completed and your crews refreshed, you will proceed direct to the southward, in order to determine the position of the magnet- ic pole, and oven to attain to it if pssble, which it is hoped will be one of the remarka- ble and creditable results of this expedition. In the execution, however, of this arduous part of the service entrusted to your enter- prise and to your resources, you are to use your best endoavours to withdraw from the high latitudes in time to prevent the ships being besot with the ice Volume III, No. 8 April 1962 CONTENTS South Magnetic Pole 1 University of Miohigan Glaoiologioal Work on the Ross Ice Shelf, 1961-62 9 by Charles W. M. Swithinbank 2 Little America - Byrd Traverse, by Major Wilbur E. Martin, USA 6 Air Development Squadron SIX, Navy Unit Commendation 16 Geological Reoonnaissanoe of the Ellsworth Mountains, by Paul G. Schmidt 17 Hydrographio Offices Shipboard Marine Geophysical Program, by Alan Ballard and James Q. Tierney 21 Sentinel flange Mapped 23 Antarctic Chronology, 1961-62 24 The Bulletin is pleased to present four firsthand accounts of activities in the Antarctic during the recent season. The Illustration accompanying Major Martins log is an official U.S.
    [Show full text]
  • Out for Blood
    SPRING/SUMMER 2017 Division of Marketing and Communications • Spring/Summer 2017 UMaineToday 5703 Alumni Hall Orono, ME 04469-5703 Out for blood How do we stem the growing threat Today of ticks in Maine? CREATIVITY AND ACHIEVEMENT AT THE UNIVERSITY OF MAINE AT AND ACHIEVEMENT CREATIVITY UMaine OLLABORATING FOR the common good message is rewarding and empowering. There is real value in working together with shared vision, Cunderstanding that there is strength in num- bers, that leadership takes many forms and that no single person can think of everything. As Maine’s public research university with a President’s statewide mission, we’ve always been in the role of problem solving, helping discover what’s next and communicating evidence-based knowledge to meet needs. UMaine partnerships are forged among scholars and researchers in different disciplines, and with com- munity groups and organizations to benefit the people we serve. And throughout these efforts, students can gain real-world experience and be engaged in public service. Take the multiple UMaine research and outreach efforts to help the state address its growing human and animal health issues related to tick-borne illnesses. UMaine Cooperative Extension has long been on the front lines of tick identification. In the ongoing search for answers, UMaine faculty, staff and students are involved in research in varied fields, and in part- nership with agencies such as the Maine Department of Inland Fisheries and Wildlife. And with the help of a 2014 bond approved by Maine voters, the state will soon have a new laboratory administered by UMaine Extension to improve the protection of our human health, food and natural resource-based econ- omy.
    [Show full text]
  • Rb-Sr Provenance Dates of Feldspar in Glacial Deposits of the Wisconsin Range, Transantarctic Mountains
    Rb-Sr provenance dates of feldspar in glacial deposits of the Wisconsin Range, Transantarctic Mountains q F/XUR.E ' I Department of Geology and Mineralogy and Institute of Polar Studies, The Ohio State University, Columbus, J H MERCER ' °hi°43210 ABSTRACT than those of feldspar in the plateau till and range only from 0.46 to 0.66. Nevertheless, three feldspar fractions form a straight line on Glacial deposits in the Wisconsin Range (lat. 85° to 86°30'S, the Rb-Sr isochron diagram, the slope of which indicates a date of long. 120° to 130°W) of the Transantarctic Mountains include a 576 ± 21 Ma. The difference in the date derived from the feldspar of deposit of till on the summit plateau at an elevation of 2,500 m the glaciolacustrine sedimeyt may be caused by the presence of a above sea level and glaciolacustrine sediments along the Reedy component of Precambrian feldspar derived from the East Antarc- Glacier. The plateau till and underlying sediments consist of six tic Shield. units that appear to record the replacement of ice-free, periglacial conditions by ice cap glaciation of pre-Pleistocene age. Alterna- INTRODUCTION tively, the plateau till may have been deposited by the East Antarc- tic ice sheet either when it was thicker than at present or when the The glaciation of Antarctica in Cenozoic time was an important Wisconsin Range was lower in elevation. Feldspar size fractions event in the history of the Earth, the effects of which continue to from the plateau till have Rb/Sr ratios that increase with grain size influence climatic conditions and sea level.
    [Show full text]
  • Project ICEFLOW
    ICEFLOW: short-term movements in the Cryosphere Bas Altena Department of Geosciences, University of Oslo. now at: Institute for Marine and Atmospheric research, Utrecht University. Bas Altena, project Iceflow geometric properties from optical remote sensing Bas Altena, project Iceflow Sentinel-2 Fast flow through icefall [published] Ensemble matching of repeat satellite images applied to measure fast-changing ice flow, verified with mountain climber trajectories on Khumbu icefall, Mount Everest. Journal of Glaciology. [outreach] see also ESA Sentinel Online: Copernicus Sentinel-2 monitors glacier icefall, helping climbers ascend Mount Everest Bas Altena, project Iceflow Sentinel-2 Fast flow through icefall 0 1 2 km glacier surface speed [meter/day] Khumbu Glacier 0.2 0.4 0.6 0.8 1.0 1.2 Mt. Everest 300 1800 1200 600 0 2/4 right 0 5/4 4/4 left 4/4 2/4 R 3/4 L -300 terrain slope [deg] Nuptse surface velocity contours Western Chm interval per 1/4 [meter/day] 10◦ 20◦ 30◦ 40◦ [outreach] see also Adventure Mountain: Mount Everest: The way the Khumbu Icefall flows Bas Altena, project Iceflow Sentinel-2 Fast flow through icefall ∆H Ut=2000 U t=2020 H internal velocity profile icefall α 2A @H 3 U = − 3+2 H tan αρgH @x MSc thesis research at Wageningen University Bas Altena, project Iceflow Quantifying precision in velocity products 557 200 557 600 7 666 200 NCC 7 666 000 score 1 7 665 800 Θ 0.5 0 7 665 600 557 460 557 480 557 500 557 520 7 665 800 search space zoom in template/chip correlation surface 7 666 200 7 666 200 7 666 000 7 666 000 7 665 800 7 665 800 7 665 600 7 665 600 557 200 557 600 557 200 557 600 [submitted] Dispersion estimation of remotely sensed glacier displacements for better error propagation.
    [Show full text]
  • List of Place-Names in Antarctica Introduced by Poland in 1978-1990
    POLISH POLAR RESEARCH 13 3-4 273-302 1992 List of place-names in Antarctica introduced by Poland in 1978-1990 The place-names listed here in alphabetical order, have been introduced to the areas of King George Island and parts of Nelson Island (West Antarctica), and the surroundings of A. B. Dobrowolski Station at Bunger Hills (East Antarctica) as the result of Polish activities in these regions during the period of 1977-1990. The place-names connected with the activities of the Polish H. Arctowski Station have been* published by Birkenmajer (1980, 1984) and Tokarski (1981). Some of them were used on the Polish maps: 1:50,000 Admiralty Bay and 1:5,000 Lions Rump. The sheet reference is to the maps 1:200,000 scale, British Antarctic Territory, South Shetland Islands, published in 1968: King George Island (sheet W 62 58) and Bridgeman Island (Sheet W 62 56). The place-names connected with the activities of the Polish A. B. Dobrowolski Station have been published by Battke (1985) and used on the map 1:5,000 Antarctic Territory — Bunger Oasis. Agat Point. 6211'30" S, 58'26" W (King George Island) Small basaltic promontory with numerous agates (hence the name), immediately north of Staszek Cove. Admiralty Bay. Sheet W 62 58. Polish name: Przylądek Agat (Birkenmajer, 1980) Ambona. 62"09'30" S, 58°29' W (King George Island) Small rock ledge, 85 m a. s. 1. {ambona, Pol. = pulpit), above Arctowski Station, Admiralty Bay, Sheet W 62 58 (Birkenmajer, 1980). Andrzej Ridge. 62"02' S, 58° 13' W (King George Island) Ridge in Rose Peak massif, Arctowski Mountains.
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]