Glacial Processes and Landforms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
View of Theoretical Approaches 51
University of Alberta Caribou Hunting at Ice Patches: Seasonal Mobility and Long-term Land-Use in the Southwest Yukon By Vandy E. Bowyer A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Anthropology © Vandy E. Bowyer Spring 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. In memory of Tagish ABSTRACT Recently documented ice patch sites in the southwest Yukon are ideal for evaluating precontact hunter-gatherer land-use patterns in the western subarctic. Located in the alpine of the mountainous regions of the boreal forest, ice patches are associated with well preserved hunting equipment, caribou (Rangifer tarandus) dung and an abundance of faunal remains dating to over 8000 years ago. However, current models are inadequate for explaining caribou hunting at ice patches as they tend to emphasize large-scale communal hunts associated with latitudinal movements of caribou. Much less is known about the alititudinal movment of caribou and the associated hunting forays to ice patches in the alpine. -
Name These Glacial Features 1.) 1
Name these Glacial Features 1.) 1.)____________________________________ 2.) 2.) ___________________________________ 3.) 3.)_____________________________________ 4.) 4.) ____________________________________ Name these types of Glaciers 5.) 5.)___________________________________________ 6.) 6.) __________________________________________ 7.) 7.) __________________________________________ 8.) 8.) __________________________________________ True or False 9.) __________ The terminus marks the farthest extent of a glacier. 10.) _________ An arête is a bow or amphitheater shape in a glacier. 11.) _________CO2 levels are higher during glacial episodes. 12.) _________ Methane Hydrate breaks down into H20. 13.) _________ Glaciers exist on every continent. 14.) _________ The Great Lakes were created by glaciation. 15.) _________ Calving is a process that creates icebergs. 16.) ________ Glacier National Park is in Alaska 17.) ________ Alaska has 100 glaciers. 18.) ________ 75% of the world’s glaciers are retreating. 19.) ________ A glacier can move forward and retreat at the same time. 20.) ________ Ogives are alternating wave crests and valleys that appear as dark and light bands of ice on glacier surfaces. 21.) ________ A drumlin field east of Rochester, New York is estimated to contain about 100 drumlins. Short Answer 22.) Give a general definition of the milankovitch cycles. _________________________________________________________________________________ _________________________________________________________________________________ _________________________________________________________________________________ -
Introduction to Geological Process in Illinois Glacial
INTRODUCTION TO GEOLOGICAL PROCESS IN ILLINOIS GLACIAL PROCESSES AND LANDSCAPES GLACIERS A glacier is a flowing mass of ice. This simple definition covers many possibilities. Glaciers are large, but they can range in size from continent covering (like that occupying Antarctica) to barely covering the head of a mountain valley (like those found in the Grand Tetons and Glacier National Park). No glaciers are found in Illinois; however, they had a profound effect shaping our landscape. More on glaciers: http://www.physicalgeography.net/fundamentals/10ad.html Formation and Movement of Glacial Ice When placed under the appropriate conditions of pressure and temperature, ice will flow. In a glacier, this occurs when the ice is at least 20-50 meters (60 to 150 feet) thick. The buildup results from the accumulation of snow over the course of many years and requires that at least some of each winter’s snowfall does not melt over the following summer. The portion of the glacier where there is a net accumulation of ice and snow from year to year is called the zone of accumulation. The normal rate of glacial movement is a few feet per day, although some glaciers can surge at tens of feet per day. The ice moves by flowing and basal slip. Flow occurs through “plastic deformation” in which the solid ice deforms without melting or breaking. Plastic deformation is much like the slow flow of Silly Putty and can only occur when the ice is under pressure from above. The accumulation of meltwater underneath the glacier can act as a lubricant which allows the ice to slide on its base. -
LESSON PLAN #2: Creating the Driftless: a Study in Glacial Movement
LESSON PLAN #2: Creating the Driftless: A Study in Glacial Movement Overview: Glaciers are moving mountains of ice. They move like slow rivers and actually flow. Gravity and the sheer weight of the ice mass are the causes of glacial motion. Ice is softer than rock so is easily deformed by the pressure of its own weight. Movement at the underside of a glacier is slower than movement along the top. Glaciers retreat and advance, depending on snow accumulation, evaporation, or ice melt. Glaciers transport materials as they move. They also sculpt and carve the land beneath them. A glacier’s weight combined with gradual movement, reshapes the land over hundreds to thousands of years. The ice erodes the land surface and carries broken rock and soil debris far from their original places, resulting in some interesting glacial landforms. Due to the nature of land formations, some areas in northwest Illinois along with southwest Wisconsin, southeast Minnesota, and northeast Iowa were missed by the four glaciers that at different times covered the rest of these states. This area not covered by glaciers and the resulting glacial drift is called “The Driftless Area.” This Driftless Area is rich with historic and geological information free from glacial impact. Duration: 30 minutes Subject Areas: Earth Science, Physical Science, Geography Standards Addressed: 4-PS3-1 4-PS3-4 5-ESS3-1 MS-ESS3-1 MS-ESS2-5 MS-ESS2-3 MS-ESS1-C MS-PS2-4 Objectives: Gain an understanding of how glaciers move Understand the types of landforms created from glacial movement and glacial scraping Define what is meant by The Driftless Area Teacher Background: Glaciers are made up of fallen snow that, over many years, compresses into large, thickened ice masses. -
Cold-Climate Landform Patterns in the Sudetes. Effects of Lithology, Relief and Glacial History
ACTA UNIVERSITATIS CAROLINAE 2000 GEOGRAPHICA, XXXV, SUPPLEMENTUM, PAG. 185–210 Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history ANDRZEJ TRACZYK, PIOTR MIGOŃ University of Wrocław, Department of Geography, Wrocław, Poland ABSTRACT The Sudetes have the whole range of landforms and deposits, traditionally described as periglacial. These include blockfields and blockslopes, frost-riven cliffs, tors and cryoplanation terraces, solifluction mantles, rock glaciers, talus slopes and patterned ground and loess covers. This paper examines the influence, which lithology and structure, inherited relief and time may have had on their development. It appears that different rock types support different associations of cold climate landforms. Rock glaciers, blockfields and blockstreams develop on massive, well-jointed rocks. Cryogenic terraces, rock steps, patterned ground and heterogenic solifluction mantles are typical for most metamorphic rocks. No distinctive landforms occur on rocks breaking down through microgelivation. The variety of slope form is largely inherited from pre- Pleistocene times and includes convex-concave, stepped, pediment-like, gravitational rectilinear and concave free face-talus slopes. In spite of ubiquitous solifluction and permafrost creep no uniform characteristic ‘periglacial’ slope profile has been created. Mid-Pleistocene trimline has been identified on nunataks in the formerly glaciated part of the Sudetes and in their foreland. Hence it is proposed that rock-cut periglacial relief of the Sudetes is the cumulative effect of many successive cold periods during the Pleistocene and the last glacial period alone was of relatively minor importance. By contrast, slope cover deposits are usually of the Last Glacial age. Key words: cold-climate landforms, the Sudetes 1. -
Gradient Approach to INSAR Modelling of Glacial Dynamics and Morphology
Gradient approach to INSAR modelling of glacial dynamics and morphology A. I. Sharov Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, A - 8010 Graz, Austria E-mail: [email protected] Keywords: differential interferometry, phase gradient, change detection, glacier velocity, geodetic survey ABSTRACT: This paper describes the development and testing of an original gradient approach (GINSAR) to the reconstruction of glacial morphology and ice motion estimation from the interferometric phase gradient that does not involve the procedure of interferometric phase unwrapping, thus excluding areal error propagation and improving the modelling accuracy. The global and stringent GINSAR algorithm is applicable to unsupervised glacier change detection, ice motion estimation and glacier mass balance measurement at regional scale. Experimental studies and field surveys proved its efficacy and robustness. Some algorithmic singularities and limitations are discussed. 1 INTRODUCTION detect and to measure quite small glacier motions and ice deformations in the centimetre range from There is a close interrelation between glacier motion spaceborne SAR interferograms with a nominal and glacial topography. Irregularities in the glacier ground resolution of several tens of meters. Accurate width, thickness, slope or direction alter the reconstruction of the configuration and external character of ice flow. On the other hand, glacial structure of the glacier surface from INSAR data is topography is dynamically supported by the moving also possible. Differential interferometry (DINSAR) ice (Fatland & Lingle 1998). Both, glacier dynamic based on differencing between two different SAR quantities and topographic variables are essential interferograms of the same glacier allows the parameters for studying the glacier mass balance and impacts of glacial topography and surface monitoring actual and potential glacier changes. -
Erosional and Depositional Study Guide
Erosional and Depositional Study Guide Erosional 32. (2pts) Name the two ways glaciers erode the bed. 33. (6pts) Explain abrasion. Use the equation for abrasion to frame your answer. 34. (3pts) Contrast the hardness of ice compared to the hardness of bedrock. What is doing the abrading and why? 35. (3pts) Contrast the normal stress (weight of the ice) on the rock tool in the ice compared to the contact pressure. Are they the same, different? Why? 36. (3pts) The tools in the ice abrade along with the bedrock so the tools must be replenished for the glacier to erode over its entire base. What is the source of the tools? Explain. 37. (3pts) What is the role of subglacial hydrology in abrasion? Explain. 38. (3pts) Although we did not explicitly discuss this in class, consider abrasion and bulk erosion in a deforming subglacial till. Explain what might be happening. 39. (2 pts) Name the two ways plucking occurs. 40. (5pts) Explain how plucking occurs at a step in the bedrock. 41. (3pts) What is a roche mountonee and how does it form? 42. (3pts) Name 3 erosional landscapes created by glaciers. Do not include roche mountonee and U-shaped valley. 43. (6pts) How does a U-shaped valley form? Be specific. Depositional 44. (3pts) How does a glacier transport rock debris? 45. (3pts) Where do you find lateral moraines on a glacier and what glacial processes determine their location? Draw a plan view diagram of a glacier, identify its relevant parts and the locations of lateral moraines. 46. (3pts) In class we discussed how the vertical extent of moraines is not correlated with glacier size. -
Geotechnical and Geologic Constraints on Tsunamigenic Submarine Landslides
GEOTECHNICAL AND GEOLOGIC CONSTRAINTS ON TSUNAMIGENIC SUBMARINE LANDSLIDES H.J. LEE U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 USA Abstract Modeling submarine-landslide-induced tsunamis requires many simplifications of the landslide process, although the real world is much more complicated. Clearly tsunami modelers cannot consider all facets, but there is value in being aware of the complications. This paper describes the many environments in which submarine landslides can occur and the triggers that typically initiate them. Earthquakes acting on continental or canyon slopes comprise probably the most common scenario but many other combinations of environments and triggers are possible. Surprisingly, many sediment-covered slopes in highly seismically active areas have not failed. A possible explanation for this phenomenon is a process called “seismic strengthening.” The existence of such a process reduces somewhat the risk of landslide tsunamis along active margins while maintaining the risk along passive margins. Once a trigger has initiated a landslide in one of the vulnerable environments, failed masses begin to move downslope. Depending upon initial density state, the masses may convert into fluid-like sediment flows or even more dilute turbidity currents. A model for quantifying the tendency to flow is provided. Finally, a case study of the landslides and landslide tsunamis that occurred in Port Valdez, Alaska, during the 1964 Great Alaska Earthquake is provided. The excellent data base, including before and after bathymetry, shows that both large rigid block motion and mobilized sediment flows can occur near each other during the same event. The intact blocks are more efficient in producing tsunamis but the sediment flow can move farther and can erode and entrain considerable bottom sediment as they progress across the seafloor. -
Glaciers and Glaciation
M18_TARB6927_09_SE_C18.QXD 1/16/07 4:41 PM Page 482 M18_TARB6927_09_SE_C18.QXD 1/16/07 4:41 PM Page 483 Glaciers and Glaciation CHAPTER 18 A small boat nears the seaward margin of an Antarctic glacier. (Photo by Sergio Pitamitz/ CORBIS) 483 M18_TARB6927_09_SE_C18.QXD 1/16/07 4:41 PM Page 484 limate has a strong influence on the nature and intensity of Earth’s external processes. This fact is dramatically illustrated in this chapter because the C existence and extent of glaciers is largely controlled by Earth’s changing climate. Like the running water and groundwater that were the focus of the preceding two chap- ters, glaciers represent a significant erosional process. These moving masses of ice are re- sponsible for creating many unique landforms and are part of an important link in the rock cycle in which the products of weathering are transported and deposited as sediment. Today glaciers cover nearly 10 percent of Earth’s land surface; however, in the recent ge- ologic past, ice sheets were three times more extensive, covering vast areas with ice thou- sands of meters thick. Many regions still bear the mark of these glaciers (Figure 18.1). The basic character of such diverse places as the Alps, Cape Cod, and Yosemite Valley was fashioned by now vanished masses of glacial ice. Moreover, Long Island, the Great Lakes, and the fiords of Norway and Alaska all owe their existence to glaciers. Glaciers, of course, are not just a phenomenon of the geologic past. As you will see, they are still sculpting and depositing debris in many regions today. -
Periglacial Processes, Features & Landscape Development 3.1.4.3/4
Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months. -
Short-Lived Ice Speed-Up and Plume Water Flow Captured by a VTOL UAV
Remote Sensing of Environment 217 (2018) 389–399 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Short-lived ice speed-up and plume water flow captured by a VTOL UAV give insights into subglacial hydrological system of Bowdoin Glacier T Guillaume Jouveta,*, Yvo Weidmanna, Marin Kneiba, Martin Deterta, Julien Seguinota,c, Daiki Sakakibarab, Shin Sugiyamab a ETHZ, VAW, Zurich, Switzerland b Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan c Arctic Research Center, Hokkaido University, Sapporo, Japan ARTICLE INFO ABSTRACT Keywords: The subglacial hydrology of tidewater glaciers is a key but poorly understood component of the complex ice- Unmanned Aerial Vehicle ocean system, which affects sea level rise. As it is extremely difficult to access the interior of a glacier, our Structure-from-Motion photogrammetry knowledge relies mostly on the observation of input variables such as air temperature, and output variables such Feature-tracking as the ice flow velocities reflecting the englacial water pressure, and the dynamics of plumes reflecting the Particle Image Velocimetry discharge of meltwater into the ocean. In this study we use a cost-effective Vertical Take-Off and Landing (VTOL) Calving glaciers Unmanned Aerial Vehicle (UAV) to monitor the daily movements of Bowdoin Glacier, north-west Greenland, and Meltwater plume Ice flow the dynamics of its main plume. Using Structure-from-Motion photogrammetry and feature-tracking techniques, we obtained 22 high-resolution ortho-images and 19 velocity fields at the calving front for 12 days in July 2016. Our results show a two-day-long speed-up event (up to 170%) – caused by an increase in buoyant subglacial forces – with a strong spatial variability revealing that enhanced acceleration is an indication of shallow bedrock.