Project ICEFLOW

Total Page:16

File Type:pdf, Size:1020Kb

Project ICEFLOW ICEFLOW: short-term movements in the Cryosphere Bas Altena Department of Geosciences, University of Oslo. now at: Institute for Marine and Atmospheric research, Utrecht University. Bas Altena, project Iceflow geometric properties from optical remote sensing Bas Altena, project Iceflow Sentinel-2 Fast flow through icefall [published] Ensemble matching of repeat satellite images applied to measure fast-changing ice flow, verified with mountain climber trajectories on Khumbu icefall, Mount Everest. Journal of Glaciology. [outreach] see also ESA Sentinel Online: Copernicus Sentinel-2 monitors glacier icefall, helping climbers ascend Mount Everest Bas Altena, project Iceflow Sentinel-2 Fast flow through icefall 0 1 2 km glacier surface speed [meter/day] Khumbu Glacier 0.2 0.4 0.6 0.8 1.0 1.2 Mt. Everest 300 1800 1200 600 0 2/4 right 0 5/4 4/4 left 4/4 2/4 R 3/4 L -300 terrain slope [deg] Nuptse surface velocity contours Western Chm interval per 1/4 [meter/day] 10◦ 20◦ 30◦ 40◦ [outreach] see also Adventure Mountain: Mount Everest: The way the Khumbu Icefall flows Bas Altena, project Iceflow Sentinel-2 Fast flow through icefall ∆H Ut=2000 U t=2020 H internal velocity profile icefall α 2A @H 3 U = − 3+2 H tan αρgH @x MSc thesis research at Wageningen University Bas Altena, project Iceflow Quantifying precision in velocity products 557 200 557 600 7 666 200 NCC 7 666 000 score 1 7 665 800 Θ 0.5 0 7 665 600 557 460 557 480 557 500 557 520 7 665 800 search space zoom in template/chip correlation surface 7 666 200 7 666 200 7 666 000 7 666 000 7 665 800 7 665 800 7 665 600 7 665 600 557 200 557 600 557 200 557 600 [submitted] Dispersion estimation of remotely sensed glacier displacements for better error propagation. The Cryosphere. Bas Altena, project Iceflow Quantifying precision in velocity products 49.5◦E 49.0◦E 48.5◦E Radon crevasse orientation 0◦ ◦ N 69.2 N 180◦ 10 km 1.0 Shear strain rate +1/16 69.1◦N 0.5 streamlines 0 5 km 10 km 0.0 0 -1 surface velocity [ m · d ] N 10 km 31.6 10.0 3.16 1.00 0.32 0.10 -1/16 [submitted] Dispersion estimation of remotely sensed glacier displacements for better error propagation. The Cryosphere. Bas Altena, project Iceflow Monitoring river ice break-up local equatorial crossing time [hh:mm] 14:00 Aqua Sentinel-3A Sentinel-3B 13:00 spatial resolution coarse (500-100m) medium (100-10m) 12:00 high (10-3m) 11:00 Terra PROBA-V CBERS-4 Venµs entropy filter post processing final IRS 1C SPOT5IRS P6 Sentinel-2A displacements CBERS-1 CBERS-2 Sentinel-2 10:00 Landsat 8 Q Landsat 7 EO1 feature raw Dove 10m red locations displacements Flock-3P & 3P’ directional 9:00 1995 2000 2005 2010 2015 2020 filter upsampling weights template 100m centerline & direction 30m Global River PROBA-V similarity score Widths from search space Landsat mathematical image matching morphology [outreach] see also ESA Sentinel Online: Copernicus Sentinels observe vast and fast movements in the Arctic Bas Altena, project Iceflow Monitoring river ice break-up 500 000 Zhigansk Kystatyam 100 km 600 000 N ice speed [m/s] Kyusyur 700 000 0 1 2 3 x y 7 500 000 7 600 000 7 700 000 7 800 000 7 900 000 UTM [m] [in review] Noticing river ice movement through a combination of European satellite monitoring services. International Journal of Applied Remote Sensing and Geo-information. Bas Altena, project Iceflow Wiley book bookchapter in Surface Displacement Measurement by Remote Sensing Imagery or Mesure de Deplacement´ de Surface par Imagerie de Tel´ ed´ etection´ Glaciology: Studying glaciers dynamics from remote sensing images. Bas Altena, project Iceflow.
Recommended publications
  • University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
    This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript.
    [Show full text]
  • GLACIERS of NEPAL—Glacier Distribution in the Nepal Himalaya with Comparisons to the Karakoram Range
    Glaciers of Asia— GLACIERS OF NEPAL—Glacier Distribution in the Nepal Himalaya with Comparisons to the Karakoram Range By Keiji Higuchi, Okitsugu Watanabe, Hiroji Fushimi, Shuhei Takenaka, and Akio Nagoshi SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD Edited by RICHARD S. WILLIAMS, JR., and JANE G. FERRIGNO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1386–F–6 CONTENTS Glaciers of Nepal — Glacier Distribution in the Nepal Himalaya with Comparisons to the Karakoram Range, by Keiji Higuchi, Okitsugu Watanabe, Hiroji Fushimi, Shuhei Takenaka, and Akio Nagoshi ----------------------------------------------------------293 Introduction -------------------------------------------------------------------------------293 Use of Landsat Images in Glacier Studies ----------------------------------293 Figure 1. Map showing location of the Nepal Himalaya and Karokoram Range in Southern Asia--------------------------------------------------------- 294 Figure 2. Map showing glacier distribution of the Nepal Himalaya and its surrounding regions --------------------------------------------------------- 295 Figure 3. Map showing glacier distribution of the Karakoram Range ------------- 296 A Brief History of Glacier Investigations -----------------------------------297 Procedures for Mapping Glacier Distribution from Landsat Images ---------298 Figure 4. Index map of the glaciers of Nepal showing coverage by Landsat 1, 2, and 3 MSS images ---------------------------------------------- 299 Figure 5. Index map of the glaciers of the Karakoram Range showing coverage
    [Show full text]
  • A Statistical Analysis of Mountaineering in the Nepal Himalaya
    The Himalaya by the Numbers A Statistical Analysis of Mountaineering in the Nepal Himalaya Richard Salisbury Elizabeth Hawley September 2007 Cover Photo: Annapurna South Face at sunrise (Richard Salisbury) © Copyright 2007 by Richard Salisbury and Elizabeth Hawley No portion of this book may be reproduced and/or redistributed without the written permission of the authors. 2 Contents Introduction . .5 Analysis of Climbing Activity . 9 Yearly Activity . 9 Regional Activity . .18 Seasonal Activity . .25 Activity by Age and Gender . 33 Activity by Citizenship . 33 Team Composition . 34 Expedition Results . 36 Ascent Analysis . 41 Ascents by Altitude Range . .41 Popular Peaks by Altitude Range . .43 Ascents by Climbing Season . .46 Ascents by Expedition Years . .50 Ascents by Age Groups . 55 Ascents by Citizenship . 60 Ascents by Gender . 62 Ascents by Team Composition . 66 Average Expedition Duration and Days to Summit . .70 Oxygen and the 8000ers . .76 Death Analysis . 81 Deaths by Peak Altitude Ranges . 81 Deaths on Popular Peaks . 84 Deadliest Peaks for Members . 86 Deadliest Peaks for Hired Personnel . 89 Deaths by Geographical Regions . .92 Deaths by Climbing Season . 93 Altitudes of Death . 96 Causes of Death . 97 Avalanche Deaths . 102 Deaths by Falling . 110 Deaths by Physiological Causes . .116 Deaths by Age Groups . 118 Deaths by Expedition Years . .120 Deaths by Citizenship . 121 Deaths by Gender . 123 Deaths by Team Composition . .125 Major Accidents . .129 Appendix A: Peak Summary . .135 Appendix B: Supplemental Charts and Tables . .147 3 4 Introduction The Himalayan Database, published by the American Alpine Club in 2004, is a compilation of records for all expeditions that have climbed in the Nepal Himalaya.
    [Show full text]
  • Aim for Emotionally Sticky Goals to Get Your Team to the Top
    Aim for Emotionally Sticky Goals to Get Your Team to the Top Skills and Professional Development 1 / 4 The riskiest thing you will ever encounter on the mountain is your own team. In January, I had the pleasure of meeting Cathy O’Dowd at a company event in Madrid, Spain. O’Dowd is a South African rock climber, mountaineer, and motivational speaker. She is famous for being the first woman to summit Everest from both the south and north sides. Her first Everest ascent was in 1996 — the year that eight climbers died after being caught in a storm high on the mountain. This is the tragedy that became the subject of Jon Krakauer’s best-selling book Into Thin Air and the 2015 Hollywood movie Everest. O’Dowd was a perfect fit as a speaker for our European sales kick-off meeting because the business unit had elected to use the mountain climbing metaphor as its underlying theme. The cover slide for every presentation was of a mountain profile with climbers making their way up the slope. Our regional director even took the stage at one point wearing traditional German alpine climbing gear that included lederhosen, boots, a climbing ax, and a coil of rope slung across his chest. O’Dowd's remarks on the first day of our conference centered on the gripping tale of her 1996 South African Everest expedition. She began her talk by observing that if you ever find yourself at the base of Everest, with the ambition to reach the top, you should take stock of two important numbers.
    [Show full text]
  • Debris-Covered Glacier Energy Balance Model for Imja–Lhotse Shar Glacier in the Everest Region of Nepal
    The Cryosphere, 9, 2295–2310, 2015 www.the-cryosphere.net/9/2295/2015/ doi:10.5194/tc-9-2295-2015 © Author(s) 2015. CC Attribution 3.0 License. Debris-covered glacier energy balance model for Imja–Lhotse Shar Glacier in the Everest region of Nepal D. R. Rounce1, D. J. Quincey2, and D. C. McKinney1 1Center for Research in Water Resources, University of Texas at Austin, Austin, Texas, USA 2School of Geography, University of Leeds, Leeds, LS2 9JT, UK Correspondence to: D. R. Rounce ([email protected]) Received: 2 June 2015 – Published in The Cryosphere Discuss.: 30 June 2015 Revised: 28 October 2015 – Accepted: 12 November 2015 – Published: 7 December 2015 Abstract. Debris thickness plays an important role in reg- used to estimate rough ablation rates when no other data are ulating ablation rates on debris-covered glaciers as well as available. controlling the likely size and location of supraglacial lakes. Despite its importance, lack of knowledge about debris prop- erties and associated energy fluxes prevents the robust inclu- sion of the effects of a debris layer into most glacier sur- 1 Introduction face energy balance models. This study combines fieldwork with a debris-covered glacier energy balance model to esti- Debris-covered glaciers are commonly found in the Everest mate debris temperatures and ablation rates on Imja–Lhotse region of Nepal and have important implications with regard Shar Glacier located in the Everest region of Nepal. The de- to glacier melt and the development of glacial lakes. It is bris properties that significantly influence the energy bal- well understood that a thick layer of debris (i.e., > several ance model are the thermal conductivity, albedo, and sur- centimeters) insulates the underlying ice, while a thin layer face roughness.
    [Show full text]
  • List of Place-Names in Antarctica Introduced by Poland in 1978-1990
    POLISH POLAR RESEARCH 13 3-4 273-302 1992 List of place-names in Antarctica introduced by Poland in 1978-1990 The place-names listed here in alphabetical order, have been introduced to the areas of King George Island and parts of Nelson Island (West Antarctica), and the surroundings of A. B. Dobrowolski Station at Bunger Hills (East Antarctica) as the result of Polish activities in these regions during the period of 1977-1990. The place-names connected with the activities of the Polish H. Arctowski Station have been* published by Birkenmajer (1980, 1984) and Tokarski (1981). Some of them were used on the Polish maps: 1:50,000 Admiralty Bay and 1:5,000 Lions Rump. The sheet reference is to the maps 1:200,000 scale, British Antarctic Territory, South Shetland Islands, published in 1968: King George Island (sheet W 62 58) and Bridgeman Island (Sheet W 62 56). The place-names connected with the activities of the Polish A. B. Dobrowolski Station have been published by Battke (1985) and used on the map 1:5,000 Antarctic Territory — Bunger Oasis. Agat Point. 6211'30" S, 58'26" W (King George Island) Small basaltic promontory with numerous agates (hence the name), immediately north of Staszek Cove. Admiralty Bay. Sheet W 62 58. Polish name: Przylądek Agat (Birkenmajer, 1980) Ambona. 62"09'30" S, 58°29' W (King George Island) Small rock ledge, 85 m a. s. 1. {ambona, Pol. = pulpit), above Arctowski Station, Admiralty Bay, Sheet W 62 58 (Birkenmajer, 1980). Andrzej Ridge. 62"02' S, 58° 13' W (King George Island) Ridge in Rose Peak massif, Arctowski Mountains.
    [Show full text]
  • Everest – South Col Route – 8848M  the Highest Mountain in the World  South Col Route from Nepal
    Everest – South Col Route – 8848m The highest mountain in the world South Col Route from Nepal EXPEDITION OVERVIEW Join Adventure Peaks on their twelfth Mt Everest Expedition to the world’s highest mountain at 8848m (29,035ft). Our experience is amongst the best in the world, combined with a very high success rate. An ultimate objective in many climbers’ minds, the allure of the world’s highest summit provides a most compelling and challenging adventure. Where there is a will, we aim to provide a way. Director of Adventure Peaks Dave Pritt, an Everest summiteer, has a decade of experience on Everest and he is supported by Stu Peacock, a regular and very talented high altitude mountaineer who has led successful expeditions to both sides of Everest as well as becoming the first Britt to summit Everest three times on the North Side. The expedition is a professionally-led, non-guided expedition. We say non-guided because our leader and Sherpa team working with you will not be able to protect your every move and you must therefore be prepared to move between camps unsupervised. You will have an experienced leader who has previous experience of climbing at extreme high altitude together with the support of our very experienced Sherpa team, thus increasing your chance of success. Participation Statement Adventure Peaks recognises that climbing, hill walking and mountaineering are activities with a danger of personal injury or death. Participants in these activities should be aware of and accept these risks and be responsible for their own actions and involvement. Adventure Travel – Accuracy of Itinerary Although it is our intention to operate this itinerary as printed, it may be necessary to make some changes as a result of flight schedules, climatic conditions, limitations of infrastructure or other operational factors.
    [Show full text]
  • P1616 Text-Only PDF File
    A Geologic Guide to Wrangell–Saint Elias National Park and Preserve, Alaska A Tectonic Collage of Northbound Terranes By Gary R. Winkler1 With contributions by Edward M. MacKevett, Jr.,2 George Plafker,3 Donald H. Richter,4 Danny S. Rosenkrans,5 and Henry R. Schmoll1 Introduction region—his explorations of Malaspina Glacier and Mt. St. Elias—characterized the vast mountains and glaciers whose realms he invaded with a sense of astonishment. His descrip­ Wrangell–Saint Elias National Park and Preserve (fig. tions are filled with superlatives. In the ensuing 100+ years, 6), the largest unit in the U.S. National Park System, earth scientists have learned much more about the geologic encompasses nearly 13.2 million acres of geological won­ evolution of the parklands, but the possibility of astonishment derments. Furthermore, its geologic makeup is shared with still is with us as we unravel the results of continuing tectonic contiguous Tetlin National Wildlife Refuge in Alaska, Kluane processes along the south-central Alaska continental margin. National Park and Game Sanctuary in the Yukon Territory, the Russell’s superlatives are justified: Wrangell–Saint Elias Alsek-Tatshenshini Provincial Park in British Columbia, the is, indeed, an awesome collage of geologic terranes. Most Cordova district of Chugach National Forest and the Yakutat wonderful has been the continuing discovery that the disparate district of Tongass National Forest, and Glacier Bay National terranes are, like us, invaders of a sort with unique trajectories Park and Preserve at the north end of Alaska’s panhan­ and timelines marking their northward journeys to arrive in dle—shared landscapes of awesome dimensions and classic today’s parklands.
    [Show full text]
  • Nuptse 7,861M / 25,790Ft
    NUPTSE 7,861M / 25,790FT 2022 EXPEDITION TRIP NOTES NUPTSE EXPEDITION TRIP NOTES 2022 EXPEDITION DETAILS Dates: April 9 to May 20, 2022 Duration: 42 days Departure: ex Kathmandu, Nepal Price: US$38,900 per person Crossing ladders in the Khumbu Glacier. Photo: Charley Mace. During the spring season of 2022, Adventure Consultants will operate an expedition to climb Nuptse, a peak just shy of 8,000m that sits adjacent to the world’s highest mountain, Mount Everest, and the world’s fourth highest mountain, Mount Lhotse. Sitting as it does, in the shadows of its more famous partners, Nuptse receives a relatively low number of EXPEDITION OUTLINE ascents. Nuptse’s climbing route follows the same We congregate in Nepal’s capital, Kathmandu, line of ascent as Everest as far as Camp 2, from where we meet for a team briefing, gear checks where we cross the Western Cwm to establish a and last-minute purchases before flying by fixed Camp 3 on Nuptse. From that position, we ascend wing into Lukla Airport in the Khumbu Valley. We directly up the steep North East Face and into trek the delightful approach through the Sherpa Nuptse’s summit. The terrain involves hard ice, homelands via the Khumbu Valley Along the way, sometimes weaving through rocky areas and later we enjoy Sherpa hospitality in modern lodges with lower angled snow slopes. good food, all the while being impressed by the spectacular scenery of the incredible peaks of the The Nuptse climb will be operated alongside the lower Khumbu. Adventure Consultants Everest Expedition and therefore will enjoy the associated infrastructure We trek over the Kongma La (5,535m/18,159ft), a and legendary Base Camp support.
    [Show full text]
  • Nepal 1989 a V Saunders
    AV SAUNDERS (Plates 25-27) These notes have been arranged in (more or less) height order. The intention has been to report developments and first ascents completed during the year, rather than to list repeat ascents of existing routes. 1989 was not a good year. There were few new routes, and several fatalities. On Everest (8 848m), reports ofovercrowding have become common­ place; this year they have been linked to outbreaks ofviral flu. As if this were not enough, there are now perennial arguments about the fixing of the route through the Khumbu icefall. Apparently the earlier expeditions who set up a route often demand payment from the-following expeditions who use the route. During the spring season, the Polish expedition organized by Eugeniusz Chrobak followed a variation on the W ridge route, avoiding the normal Lho La approach. Following a line with minimum avalanche danger, the team climbed Khumbutse (6640m) before descending to the Rongbuk glacier, where they established Camp I at 5850m. The line continued left of previous ascents to gain the W shoulder. Five more camps were established on the ridge and in the Hornbein Couloir. On 24 May Chrobak and Andrzej Marciniak reached the summit. Over the next two days they descended, stripping the camps with the help of two other team members. They reached Camp I in deteriorating weather to join another team arriving from base. The next day all the climbers set out for base, up the 600m fixed ropes over Khumbutse. At 1pm the six climbers were struck by an avalanche which broke the ropes.
    [Show full text]
  • HILLARY TRAIL People, Auckland’S Mountains Also Have More Than One Hillary Step the STORY of the ASCENT Name
    (5380m) BASE CAMP CAMP BASE Khumbu Glacier Khumbu THIS TRAIL SUPPORTS THE EXHIBITION THE SUPPORTS TRAIL THIS L I S O T M Puketapapa (5486) T M O B H Khumbu icefall Khumbu Ohinerau N E T M Maungawhau O L W T M Maungarei (6000-6800m) H T O Maungakiekie NEPAL CHINA Western Cwm Western September. Winners will be notified by email. email. by notified be will Winners September. the end of the From The Summit exhibition on 29 29 on exhibition Summit The From the of end the the Museum Shop. Prizes will be drawn monthly until until monthly drawn be will Prizes Shop. Museum the (6800-7920m) and you’ll go into a draw to win a prize pack from from pack prize a win to draw a into go you’ll and Lhotse Face Lhotse [email protected] your answers to to answers your (7920m) South Col South of these maunga. Try Google if you get stuck. Email Email stuck. get you if Google Try maunga. these of Lhotse name. See if you can work out the European names names European the out work can you if See name. people, Auckland’s mountains also have more than one one than more have also mountains Auckland’s people, THE STORY OF THE ASCENT THE OF STORY THE Hillary Step Hillary Just as Mt Everest has different names to different different to names different has Everest Mt as Just HILLARY TRAIL SUMMIT SUMMIT (8850m) Nuptse DID YOU KNOW? YOU DID ROUTE TO THE SUMMIT THE TO ROUTE THE THE HILLARY TRAIL THE MAIN PLAYERS THE GEAR THE MOUNTAIN We’re sure you’ve heard the name of Sir Edmund The expedition carried over 11 tons of supplies Mt Everest was discovered to be the highest Hillary and how he was the first person to climb to onto the mountain.
    [Show full text]
  • Of the Tasman Glacier
    1 ICE DYNAMICS OF THE HAUPAPA/TASMAN GLACIER MEASURED AT HIGH SPATIAL AND TEMPORAL RESOLUTION, AORAKI/MOUNT COOK, NEW ZEALAND A THESIS Presented to the School of Geography, Environment and Earth Sciences Victoria University of Wellington In Partial Fulfilment of the Requirements for the Degree of MASTERS OF SCIENCE By Edmond Anderson Lui, B.Sc., GradDipEnvLaw Wellington, New Zealand October, 2016 2 TABLE OF CONTENTS SIGNATURE PAGE .................................................................................................................... TITLE PAGE ............................................................................................................................................... 1 TABLE OF CONTENTS .......................................................................................................................... 2 LIST OF FIGURES ..................................................................................................................................... 5 LIST OF TABLES ....................................................................................................................................... 9 LIST OF EQUATIONS ...........................................................................................................................10 ACKNOWLEDGEMENTS ....................................................................................................................11 MOTIVATIONS ........................................................................................................................................12
    [Show full text]