Out for Blood
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
Reevaluation of the Timing and Extent of Late Paleozoic Glaciation in Gondwana: Role of the Transantarctic Mountains
Reevaluation of the timing and extent of late Paleozoic glaciation in Gondwana: Role of the Transantarctic Mountains John L. Isbell Department of Geosciences, University of Wisconsin, Milwaukee, Wisconsin 53201, USA Paul A. Lenaker Rosemary A. Askin Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA Molly F. Miller Department of Earth and Environmental Science, Vanderbilt University, Nashville, Tennessee 37235, USA Loren E. Babcock Department of Geological Sciences and Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA ABSTRACT Evidence from Antarctica indicates that a 2000-km-long section of the Transantarctic MountainsÐincluding Victoria Land, the Darwin Glacier region, and the central Transantarctic MountainsÐwas not located near the center of an enormous Car- boniferous to Early Permian ice sheet, as depicted in many paleo- Figure 1. Carboniferous and geographic reconstructions. Weathering pro®les and soft-sediment Permian paleogeographic map deformation immediately below the preglacial (pre-Permian) un- of Gondwana (after Powell and Li, 1994), showing several hy- conformity suggest an absence of ice cover during the Carbonif- pothetical ice sheets. erous; otherwise, multiple glacial cycles would have destroyed these features. The occurrence of glaciotectonite, massive and strat- i®ed diamictite, thrust sheets, sandstones containing dewatering structures, and lonestone-bearing shales in southern Victoria Land and the Darwin Glacier region indicate that Permian sedimenta- tion occurred in ice-marginal, periglacial, and/or glaciomarine set- tings. No evidence was found that indicates the Transantarctic Mountains were near a glacial spreading center during the late Paleozoic. Although these ®ndings do not negate Carboniferous Powell, 1987; Ziegler et al., 1997; Scotese, 1997; Scotese et al., 1999; glaciation in Antarctica, they do indicate that Gondwanan glacia- Veevers, 2000, 2001). -
University Microfilms, a XEROX Company, Ann Arbor, Michigan
I I 72-4508 GUNNER, John Duncan, 1945- AGE AND ORIGIN OF THE NIMROD GROUP AND OF THE GRANITE HARBOUR INTRUSIVES, BEARDMORE GLACIER REGION, ANTARCTICA. The Ohio State University, Ph.D., 1971 Geology University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED AGE AND ORIGIN OP THE NIMROD GROUP AND OF THE GRANITE HARBOUR INTRUSIVES, BEARDMORE GLACIER REGION, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By John Duncan Gunner, 3.A., M.A ****** The Ohio State University 1971 Approved by Adviser Department of Geology PLEASE NOTE: Some Pages have indistinct p rin t. Filmed as received. UNIVERSITY MICROFILMS igure 1: View across the Beardmore Glacier from the Summit of Mount Kyffin. The Rocks in the Foreground are Argillites and Arenites of the 'Goldie Formation, and the Sharp Peak is formed of Hope Granite. The Rounded Mountain on the Left Horizon is The Cloudmaker. ACKNOWLEDGMENTS I am greatly indebted to Dr. Gunter Faure for his enthusiastic ad vice and encouragement throughout this study. I am grateful also to the members of the Institute of Polar Studies expeditions to the Beardmore Glacier region during the 1967-1968 and 1969-1970 field seasons, and especially to David Johnston and to Drs. I. C. Rust and D. H. Elliot for willing assistance and stimulating dis cussions in the field. Logistic field support was provided by Squadron VXE-6 of the U. S. Naval Support Force, Antarctica, without whose help this study would not have been possible. -
Geological Survey Research 1962
Geological Survey Research 1962 Synopsis of Geologic, Hydrologic, and Topographic Results GEOLOGICAL SURVEY PROFESSIONAL PAPER 450-A Geological Survey Research 1962 THOMAS B. NOLAN, Director GEOLOGICAL SURVEY PROFESSIONAL PAPER 450 Asynopsis of results ofgeologic, hydro logic, and topo graphic investigations for fiscalyear 1962, accom panied by short papers in the fields of geology, hydrology, topography, and allied sciences. Pub lished separately as Chapters A, B, C, D, and E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 FOREWORD The reception accorded the 1960 and 1961 Annual Reviews of Geological Survey research has encouraged us to prepare this volume, "Geological Survey Research, 1962," in a con tinuing effort to publish more quickly the significant results of our current investigations. We continue to consider these reports as experimental and have again this year modified the content, format, and frequency of release of chapters in an attempt to serve better the interests of the users of the reports. The comments and suggestions of these users are here solicited and will be considered carefully as future volumes are planned. The current Annual Review consists of five chapters (Chapters A through E) of Pro fessional Paper 450. As in the preceding two Annual Reviews, Chapter A is a synopsis of recent findings in the many and varied lines of study pursued by Survey personnel. Chap ters, B, C, D, and E of this volume are collections of short articles in geology, hydrology, topography, and allied fields. These articles are numbered as follows: Prof. Paper 450-B Articles 1-59 Prof. Paper 450-C Articles 60-119 Prof. -
United States Antarctic Activities 2003-2004
United States Antarctic Activities 2003-2004 This site fulfills the annual obligation of the United States of America as an Antarctic Treaty signatory to report its activities taking place in Antarctica. This portion details planned activities for July 2003 through June 2004. Modifications to these plans will be published elsewhere on this site upon conclusion of the 2003-2004 season. National Science Foundation Arlington, Virginia 22230 November 30, 2003 Information Exchange Under United States Antarctic Activities Articles III and VII(5) of the ANTARCTIC TREATY Introduction Organization and content of this site respond to articles III(1) and VII(5) of the Antarctic Treaty. Format is as prescribed in the Annex to Antarctic Treaty Recommendation VIII-6, as amended by Recommendation XIII-3. The National Science Foundation, an agency of the U.S. Government, manages and funds the United States Antarctic Program. This program comprises almost the totality of publicly supported U.S. antarctic activities—performed mainly by scientists (often in collaboration with scientists from other Antarctic Treaty nations) based at U.S. universities and other Federal agencies; operations performed by firms under contract to the Foundation; and military logistics by units of the Department of Defense. Activities such as tourism sponsored by private U.S. groups or individuals are included. In the past, some private U.S. groups have arranged their activities with groups in another Treaty nation; to the extent that these activities are known to NSF, they are included. Visits to U.S. Antarctic stations by non-governmental groups are described in Section XVI. This document is intended primarily for use as a Web-based file, but can be printed using the PDF option. -
Abstract Book
4th Interdisciplinary Antarctic Earth Sciences Conference Oct. 13-15, 2019 Antarctic deep field camp planning workshop Oct. 15-16, 2019 Camp Cedar Glen, Julian, CA Thanks to those who make our science possible and many others... AGENDA 2019 Interdisciplinary Antarctic Earth Sciences Conference Saturday, Oct. 12 4:00 pm Earliest possible check in at Camp Cedar Glen 5:00 8:00 Badge pick up @ Camp Cedar Glen, dinner and social at Julian Brewing Co. (Participants pay) Rides available. See Christine Kassab to load Sunday presentations. Sunday, Oct. 13 start End notes Title Authors 8:00 9:00 Breakfast with Safety Orientation from Camp staff. Badge pick up and load talks in Griffin Hall 9:00 9:10 Welcome Organizing Committee: B. Adams, B. Goehring, J. Isbell, K. Licht, K. Panter, L. Stearns, K. Tinto 9:10 9:20 NSF remarks Mike Jackson 9:20 9:35 Processes acting on Antarctic mantle: Implications for James M.D. Day flexure and volcanism 9:35 9:50 Sub-Ice Thermal Anomaly Mapping Using Phil Wannamaker, G. Hill, V. Magnetotellurics. Considering the U.S. Great Basin as Maris, J. Stodt, Y. Ogawa an Analog 9:50 10:10 INVITED: Pre-glacial and glacial uplift and incision Stuart N. Thomson, P. W. Reiners, history of the central Transantarctic Mountains J. He, S. R. Hemming, K.J. Licht reevaluated using multiple low-temperature thermochronometers 10:10 10:25 New single-crystal age determinations for basement K.W. Parsons, Willis Hames, S. rocks in the Miller Range of the Ross Orogen, Central Thomson Transantarctic Mountains 10:25 10:45 Break 10:45 11:05 INVITED: Antarctic Subglacial Limnology: John E. -
Glacial Geology Near Mcmurdo Sound and Comparison with the Central Transantarctic Mountains
river level to the tops of the ice wedges. The remain- et al., 1970; and 0.6 million years, Behling, 1971). ing 90 centimeters of fill above is ice free, and the This past season, the authors located an abundance of transition from ice wedge to sand wedge is abrupt. basaltic bombs on the surface of an Alpine II lateral The sand-wedges capping the ice are of coarse and moraine of Meserve Glacier. These should provide a fine sand (figs. 1 and 2), little different from alluvium minimum age for the Alpine II glacial event if the in one wedge and noticeably finer in another. material proves satisfactory for potassium-argon A feature of the overlying alluvial fan surface is the dating. The Alpine II event is known to have oc- total lack of disturbance of any kind. No polygonal curred after an eruptive event dated at 2.5 to 3.4 ground is present at the surface, despite the presence million years (our interpretation of a potassium-argon of open cracks in ice at depth. This implies wedge age by Dr. Robert Fleck, in Behling, 1971). growth and decay prior to fan development. Adjacent The evidence suggests that the ice wedges are no to the fan, large, well developed polygons occur, and longer active, being totally deprived of a viable mois- all surface cracks show signs of recent collapse of sand ture source. Degradation of the ice-cemented layer into them. There is no difference in the amount of and ice wedges with simultaneous replacement of ice water available to these two areas, and the margins wedge by sand infilling has produced sand casts of the of the fan clearly can be seen to overlap the wedged former ice wedges. -
A News Bulletin New Zealand Antarctic Society
A N E W S B U L L E T I N p u b l i s h e d q u a r t e r l y b y t h e NEW ZEALAND ANTARCTIC SOCIETY WINTER AT SCOTT BASE Phoio: H. D. O'Kane. Vol. 3, No. 7 SEPTEMBER, 1963 Winter and Summer bases Scott" S u m m e r b a s i ' o n l y t S k y - H i Jointly operated base Halletr NEW ZEALAND TransferredT J L base Wilkes( U S - N Z . ) T . , U S t o A u s t TASMANIA lemporanly non -operational....HSyowa . Campbell I. (n.z) Micquar.c I. (Aust) // \&S %JMM(U.S.-MZJ ^'tfurdo^ AT // MFScott Base-f f HAAF tLitlleRockfo K». » NAAF IU.S.) /\\ '*\",7 °iui ""Byi-d (u.S)< +"Vost-ok , .(u.s.s.a) ^Amundsen -Scott (U.S.) _ ,A N Tl A R Da.v'iO~.\ -".(Aust) u . \ "«S Maud. ;\ rift*ttd /*y\ DRAWN BY DEPARTMENT OF LANDS t SURVEY WELLINGTON, NEW ZEALAND, SEP. Z96Z- (Successor to "Antarctic News Bulletin") Vol. 3, No. 7 SEPTEMBER, 1963 Editor: L. B. Quartermain. M.A., 1 Ariki Road. Wellington, E.2, New Zealand. Business Communications. Subscriptions, etc.. to: Secretary. New Zealand Antarctic Society, P.O. Box 2110, Wellington. N.Z. GOVERNOR-GENERAL NOW READY TO GO SOUTH I N D E X " A N TA R C T I C " V O L . 2 His Excellency the Governor- After considerable delays for General of New Zealand, Sir Bernard which we apologise, the Index for Fergusson, is lo visit the Ross De volume 2. -
Amundsen's Polar Conquest
N.S. ARUN KUMAR Story 100th ANNIVERSARY OF REACHING THE SOUTH POLE Cover Amundsen’s Polar Conquest The story of the race to reach the South Pole is a tribute to Roald Amundsen’s grasp of the prevailing conditions in the icy continent and his sense of intricate planning. The year 2011 celebrates the hundredth anniversary of the conquest of the South Pole. IS life was as much adventurous and It was 14 December 1911 when And enthrallingly enough it was true. mysterious as his death. While alive, Amundsen achieved this, putting to great During his entire preparation for the Hhe never let anyone on his plans shame the British Empire by defeating their expedition, Amundsen kept saying that he and eventually became the first human imperialistic naval explorer Captain Scott. was going to the North Pole. Only on the ever to reach the barren icy continent of The British team reached there on 17 deck of his ship, he disclosed his real Antarctica. His death was equally January 1912 only to find that Amundsen destination to his shipmates. But he did mysterious. He just disappeared while flying had preceded them by 33 days. More send a telegraphic message to Scott that a rescue mission over the Barents Sea on humiliating was the death of all the team, he was moving to the South Pole. 18 June 1928. It is believed that his plane including Scott, starving and dying in bad Many, however, believed that nobody crashed and he died. But his body was weather. It was a great shame, rather than reached the South Pole other than Scott never found. -
2016-2017 Science Planning Summaries
Project Indexes Find information about projects approved for the 2016-2017 USAP field season using the available indexes. Project Web Sites Find more information about 2016-2017 USAP projects by viewing project web sites. More Information Additional information pertaining to the 2016-2017 Field Season. Home Page Station Schedules Air Operations Staffed Field Camps Event Numbering System 2016-2017 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2016-2017 USAP field season using the USAP Program Indexes available indexes. Astrophysics and Geospace Sciences Dr. Vladimir Papitashvili, Program Manager Project Web Sites Organisms and Ecosystems Dr. Chris Fritsen, Program Director Find more information about 2016-2017 USAP projects by Earth Sciences viewing project web sites. Dr. Thomas Wilch, Program Manager Glaciology Dr. Julie Palais, Program Manager More Information Ocean and Atmospheric Sciences Additional information pertaining Dr. Peter Milne, Program Manager to the 2016-2017 Field Season. Integrated System Science Home Page Dr. Paul Cutler, Program Manager Station Schedules Artists and Writers Air Operations Mr. Peter West, Program Manager Staffed Field Camps Instrumentation and Technology Development Index Event Numbering System Dr. Michael Jackson, Program Manager Education and Outreach Ms. Valentine Kass , Program Manager USAP Station and Vessel Indexes Amundsen-Scott South Pole Station McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects Principal Investigator Index Deploying Team Members Index Institution Index Event Number Index Technical Event Index Other Science Events Project Web Sites 2016-2017 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2016-2017 USAP field season using the Project Web Sites available indexes. -
Roald Amundsen - Pole to Pole Norwegian Explorer
Roald Amundsen - Pole to Pole Norwegian Explorer Amundsen-Scott Station First to South Pole 1872-1928 100 yr anniversary Nordic Spirit Symposium February 2011 Amundsen’s Youth * Born July 16, 1872 in Borge, Norway ~50 miles south of Oslo. * 4th son in a family of relatively affluent shipowners and captains. Borge is near Fredrikstad * Father died when he was 14. * Mother wanted him to be doctor. * Mother died when he was 21, freeing him to pursue life as explorer. * Loved outdoors and skiing. * Driven to be exceptionally physically fit. Trained in army. Amundsen as a young boy Amundsen’s Inspirations * As youth, he was inspired by Nansen‟s crossing of Greenland and later Arctic Fram expedition. * He was in crowd welcoming Fridtjof Nansen home. See photograph at right. * Nansen a continual influence for all of Amundsen‟s life: * Nansen provided advice, encouragement. * Nansen allowed him to use Fram for Arctic expedition. But he surreptitiously sailed Fram to Antarctica for polar expedition. * Other inspirations: Sir John Franklin: doomed NW Passage expedition. “Secretly … I irretrievably decided to be an Arctic explorer.” from Amundsen‟s autobiography. Frederick Cook, controversial polar explorer. Nansen, Liv Nansen, and Amundsen Belgian Antarctic Expedition (1897-1899) * Amundsen went to sea at age of 15 reaching rank of mate (much like Nansen). Belgica Nov. 1889 * Read all books on polar exploration –immersed in preparations for life as polar explorer and obtained skipper‟s license. * Joined Adrien de Gerlaches‟ 1899 Belgica Expedition to Antarctica as First Mate at age of 25. * Belgica goal to locate South Magnetic Pole‟s position during a summer cruise. -
Queen Maud Mountains Geological Investigations In
pop-up recorders to measure bottom currents at if at all. (2) The eastern side of the plateau is nor- strategic locations. The Massachusetts Institute of mally faulted and very steep and appears to be a Technology geochemistry program required five large mirror-image of Broken Ridge (to the north) but samples of sea water in the deep ocean basins near is a much more complicated structure. (3) A ridge the Kerguelen Islands and near Australia. spur northeast of the Kerguelen Islands was pre- Owing to equipment malfunctions (now repaired) viously unreported and has an important effect on the sonobuoy program obtained only poor to fair bottom water circulation. results. Pack ice and limited time prevented the The sediments on the plateau and its flanks are oceanographers from obtaining water samples near mostly 1 to 2 km thick. Slump structures and a sedi- the Amery Ice Shelf. All other objectives were ment ridge exist on the eastern side. Basement veloc- achieved satisfactorily. ities on the plateau are typically 5.0 to 5.5 km per Preliminary results are not yet available from the sec. Normal faulting within the plateau massif is station work, which requires a good deal of analysis. complex and includes repetitive basin-and-range However, underway geophysical investigations re- structures and numerous graben-horst systems. There vealed numerous significant bottom features at vari- is evidence that much of the plateau has undergone ance with the existing bathymetry: (1) Gribb Bank wave-base erosion and that it has subsided about does not exist in its plotted position (6130S.