Ice Dynamics of the Darwin-Hatherton Glacial System, Transantarctic Mountains, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Ice Dynamics of the Darwin-Hatherton Glacial System, Transantarctic Mountains, Antarctica Ice dynamics of the Darwin-Hatherton glacial system, Transantarctic Mountains, Antarctica A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Geography By Mette Riger-Kusk University of Canterbury 2011 i Abstract The Darwin-Hatherton glacial system (DHGS) drains from the East Antarctic Ice Sheet (EAIS) and through the Transantarctic Mountains (TAM) before entering the Ross Embayment. Large ice-free areas covered in glacial sediments surround the DHGS, and at least five glacial drift sheets mark the limits of previous ice extent. The glacier belongs to a group of slow-moving EAIS outlet glaciers which are poorly understood. Despite this, an extrapolation of a glacial drift sheet boundary has been used to determine the thickness of the EAIS and the advanced West Antarctic Ice Sheet (WAIS) during the Last Glacial Maximum (LGM). In order to accurately determine the past and present contributions of the Antarctic ice sheets to sea level changes, these uncertainties should be reduced. This study aims to examine the present and LGM ice dynamics of the DHGS by combining newly acquired field measurements with a 3-D numerical ice sheet-shelf model. The fieldwork included a ground penetrating radar survey of ice thickness and surface velocity measurements by GPS. In addition, an extensive dataset of airborne radar measurements and meteorological recordings from automatic weather stations were made available. The model setup involved nesting a high-resolution (1 km) model of the DHGS within a lower resolution (20 km) all-Antarctic simulation. The nested 3-D modelling procedure enables an examination of the impact of changes of the EAIS and WAIS on the DHGS behaviour, and accounts for a complex glacier morphology and surface mass balance within the glacial system. The findings of this study illustrate the difference in ice dynamics between the Darwin and Hatherton Glaciers. The Darwin Glacier is up to 1500 m thick, partially warm-based, has high driving stresses (~150 kPa), and measured ice velocities increase from 20-30 m yr-1 in the upper parts to ~180 m yr-1 in the lowermost steepest regions, where modelled flow velocities peak at 330 m yr-1. In comparison, the Hatherton Glacier is relatively thin (<900 m), completely cold-based, has low driving stresses (~85 kPa), and is likely to flow with velocities <10 m yr-1 in most regions. It is inferred that the slow velocities with which the DHGS flows are a result of high subglacial mountains restricting ice flow from the EAIS, large regions of frozen basal conditions, low SMB and undulating bedrock topography. The model simulation of LGM ice conditions within the DHGS implies that the ice thickness of the WAIS has been significantly overestimated in previous reconstructions. Results show that the surface of the WAIS and EAIS away from the TAM would have been elevated 600-750 and 0-80 m above present-day levels, respectively, for the DHGS to reach what was inferred to represent the LGM drift sheet limit. Ultimately, this research contributes towards a better understanding of the dynamic behaviour of slow moving TAM outlet glaciers, and provides new insight into past changes of the EAIS and WAIS. This will facilitate more accurate quantifications of contributions of the WAIS and EAIS to changes in global sea level. ii Acknowledgements This has been a long journey, which has taken me to one of the most remarkable places on the planet, and I would like to thank all of the people that have helped me on my way. First of all, a big thank you to my three supervisors Wendy Lawson, Wolfgang Rack and Brian Anderson. You have all helped me move forward when I most needed it, and I especially enjoyed the discussion and stories shared during dinner in a small yellow tent. During my studies I have had had the privilege of working alongside helpful and enthusiastic people in the Department of Geography and Gateway Antarctica, some of whom I will mention here. Bryan Storey introduced me to the Antarctic environment for which I will always be grateful. Peyman Zawar-Reza inspired me about meteorological datasets and Ian Owens, with his wealth of knowledge, offered timely and important advice. I would also like to thank Irfon Jones who taught me about cartography with patience and humour, Justin Harrison and Nick Key who helped organise and plan my fieldwork, Marney Brosnan who twice ‘volunteered’ for the ungrateful task of designing my posters while I was away, and Graham Furniss and Steven Sykes who made the modelling part of this work possible with their knowledge of computers and programming. I would also like to acknowledge the expertise and help offered by people from outside the department. In particularly, I would like to thank David Pollard for allowing me to use his model in my work and for providing invaluable advice along the way, and Donald D. Blankenship and his team for adjusting their ICECAP field campaign to include airborne radar measurements over the DHGS and letting me use these in my work. I am also grateful for the advice on GPR processing and interpretation offered by Mike Finnemore, Matt Nolan and David Nobes, which significantly improved this part of my work. Thank you also to Dean Arthur for his great company and ability to keep us safe during the fieldwork. Also of importance to this work is the SPIRIT DEM which was made available through the project IPY ASAID (Co-PI: W. Rack). Without the financial and logistical support of Antarctic New Zealand, none of this could have been possible, and I thank the staff in Christchurch and at Scott Base for an enjoyable working relationship. Education New Zealand has supported me throughout this research with a New Zealand International Doctoral Research Scholarship, and my participation in a course in Italy was financed by the Department of Geography and Gateway Antarctica. Finally, I would like to thank my family and friends at home and in New Zealand, who have supported me with humour and love in whatever adventure I have embarked upon. I especially thank Mark, who despite these last crazy months, still plans to marry me this autumn. iii Contents Abstract ....................................................................................................... ii Acknowledgements ......................................................................................iii List of tables .............................................................................................. viii List of figures ............................................................................................... ix List of abbreviations .................................................................................... xii 1 Introduction ........................................................................................... 1 1.1 Aims and objectives .................................................................................... 2 1.2 General characteristics of the WAIS and EAIS ................................................ 5 1.3 Current mass balance of the WAIS and EAIS ................................................. 6 1.4 Changes in the WAIS and EAIS since the LGM ................................................ 7 1.4.1 Changes in the WAIS during and since the LGM .................................... 8 1.4.2 Changes in the EAIS during and since the LGM ................................... 10 1.5 Glaciers in the Transantarctic Mountains ..................................................... 10 1.5.1 Mass balance ................................................................................. 11 1.5.2 Characteristics of fast moving outlet glaciers ...................................... 13 1.5.3 Characteristics of slow moving outlet glaciers ..................................... 16 1.6 Change of glaciers in the Transantarctic Mountains since the LGM .................. 18 1.7 Thesis outline .......................................................................................... 19 1.8 Summary ................................................................................................ 21 2 Introduction to the Darwin-Hatherton glacial system ........................... 22 2.1 Regional setting ....................................................................................... 24 2.2 Surface topography .................................................................................. 25 2.3 Climate and surface mass balance .............................................................. 26 2.4 Ice surface features .................................................................................. 27 2.5 Ice thickness ........................................................................................... 29 2.6 Ice velocity .............................................................................................. 30 2.7 Grounding line position ............................................................................. 31 iv 2.8 Basal properties ....................................................................................... 31 2.9 Geomorphology and glacial history ............................................................. 32 2.9.1 Glacial drift sheets .......................................................................... 33 2.9.2 Glacial history of the DHGS .............................................................. 34 2.9.3 Evidence from the DHGS on past changes of the Antarctic Ice Sheet ..... 36 2.10 Summary ..............................................................................................
Recommended publications
  • University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
    This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript.
    [Show full text]
  • Local Topography Increasingly Influences the Mass Balance of A
    Local topography increasingly influences the mass balance of a retreating cirque glacier Caitlyn Florentine1, 2, Joel Harper2, Daniel Fagre1, Johnnie Moore2, Erich Peitzsch1 1U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, Montana, 59936, USA 5 2Department of Geosciences, University of Montana, Missoula, Montana, 59801, USA Correspondence to: Caitlyn Florentine ([email protected]) Abstract. Local topographically driven processes, such as wind drifting, avalanching, and shading, are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of some glaciers. We 10 address this problem for Sperry Glacier in Glacier National Park, USA using field-measured surface mass balance, geodetic constraints on mass balance, and regional climate data recorded at a network of meteorological and snow stations. Geodetically derived mass changes between 1950-1960, 1960-2005, and 2005-2014 document average mass change rates during each period at -0.22±0.12 m w.e. yr-1, -0.18±0.05 m w.e. yr-1, and -0.10±0.03 m w.e. yr-1. A correlation of field- measured mass balance and regional climate variables closely (i.e. within 0.08 m w.e. yr-1) predicts the geodetically 15 measured mass loss from 2005-2014. However, this correlation overestimates glacier mass balance for 1950-1960 by +1.18±0.92 m w.e. yr-1. Our analysis suggests that local effects, not represented in regional climate variables, have become a more dominant driver of the net mass balance as the glacier lost 0.50 km2 and retreated further into its cirque.
    [Show full text]
  • Characteristics of the Bergschrund of an Avalanche-Cone Glacier in the Canadian Rocky Mountains
    JOlIl"lla/ o/G/aci%gl'. VoL 29. No. 10 1. 1983 CHARACTERISTICS OF THE BERGSCHRUND OF AN AVALANCHE-CONE GLACIER IN THE CANADIAN ROCKY MOUNTAINS By G ERALD OSBORN (Department of Geology and Geophysics, Uni versity o f Calgary, Calgary, Alberta T2N I N4, Canada) ABSTRACT. Fi eld study of th e bergschrund of a small avalanche-cone glacier at the base of Mt Chephren, in Banff Nati onal Park , has been ca rried out as part of a general ex pl oratory study of glacier-head crevasses in th e Canadi an Roc ki es. The bergsc hrun d consists of a wide. shall ow. partl y bedrock-fl oored gap, und erneath whi ch ex tends a nearl y vertical Ralldklu!I, and a small , offset, subsidi ary crevasse (or crevasses). The fo ll owin g observations rega rdin g the behavior of th e bergsc hruncl and ice adjacent to it are of parti cul ar interest: ( I) topograph y of the subglaeial bedrock is a control on the location of the main bergschrund and subsidi a ry crevasses. (2) th e main bergschrund and subsid ia ry crevasse(s) are conn ected by subglacial gaps betwee n bedrock and ice; th e gaps are part of th e "bergschrund system" , (3) snow/ ice immedi ately down-glacier of the bergschrund system moves nea rl y verticall y dow nwa rd in response to rotational fl ow of the glacier. a ll owin g the bergschrund components to keep the same location and size fro m year to year, (4) an inde pend ent accumul ati on, fl ow.
    [Show full text]
  • Heterogenous Thinning and Subglacial Lake Activity on Thwaites Glacier, West Antarctica Andrew O
    https://doi.org/10.5194/tc-2020-80 Preprint. Discussion started: 9 April 2020 c Author(s) 2020. CC BY 4.0 License. Brief Communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica Andrew O. Hoffman1, Knut Christianson1, Daniel Shapero2, Benjamin E. Smith2, Ian Joughin2 1Department of Earth and Space Sciences, University of Washington, Seattle, 98115, United States of America 5 2Applied Physics Laboratory, University of Washington, 98115, United States of America Correspondence to: Andrew O. Hoffman ([email protected]) Abstract. A system of subglacial laKes drained on Thwaites Glacier from 2012-2014. To improve coverage for subsequent drainage events, we extended the elevation and ice velocity time series on Thwaites Glacier through austral winter 2019. These new observations document a second drainage cycle and identified two new laKe systems located in the western tributaries of 10 Thwaites and Haynes Glaciers. In situ and satellite velocity observations show temporary < 3% speed fluctuations associated with laKe drainages. In agreement with previous studies, these observations suggest that active subglacial hydrology has little influence on Thwaites Glacier thinning and retreat on decadal to centennial timescales. 1 Introduction Although subglacial laKes beneath the Antarctic Ice Sheet were first discovered more than 50 years ago (Robin et al., 1969; 15 Oswald and Robin, 1973), they remain one of the most enigmatic components of the subglacial hydrology system. Initially identified in ice-penetrating radar data as flat, bright specular reflectors (Oswald and Robin, 1973; Carter et al., 2007) subglacial laKes were thought to be relatively steady-state features of the basal hydrology system with little impact on the dynamics of the overlying ice on multi-year timescales.
    [Show full text]
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • Reevaluation of the Timing and Extent of Late Paleozoic Glaciation in Gondwana: Role of the Transantarctic Mountains
    Reevaluation of the timing and extent of late Paleozoic glaciation in Gondwana: Role of the Transantarctic Mountains John L. Isbell Department of Geosciences, University of Wisconsin, Milwaukee, Wisconsin 53201, USA Paul A. Lenaker Rosemary A. Askin Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA Molly F. Miller Department of Earth and Environmental Science, Vanderbilt University, Nashville, Tennessee 37235, USA Loren E. Babcock Department of Geological Sciences and Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA ABSTRACT Evidence from Antarctica indicates that a 2000-km-long section of the Transantarctic MountainsÐincluding Victoria Land, the Darwin Glacier region, and the central Transantarctic MountainsÐwas not located near the center of an enormous Car- boniferous to Early Permian ice sheet, as depicted in many paleo- Figure 1. Carboniferous and geographic reconstructions. Weathering pro®les and soft-sediment Permian paleogeographic map deformation immediately below the preglacial (pre-Permian) un- of Gondwana (after Powell and Li, 1994), showing several hy- conformity suggest an absence of ice cover during the Carbonif- pothetical ice sheets. erous; otherwise, multiple glacial cycles would have destroyed these features. The occurrence of glaciotectonite, massive and strat- i®ed diamictite, thrust sheets, sandstones containing dewatering structures, and lonestone-bearing shales in southern Victoria Land and the Darwin Glacier region indicate that Permian sedimenta- tion occurred in ice-marginal, periglacial, and/or glaciomarine set- tings. No evidence was found that indicates the Transantarctic Mountains were near a glacial spreading center during the late Paleozoic. Although these ®ndings do not negate Carboniferous Powell, 1987; Ziegler et al., 1997; Scotese, 1997; Scotese et al., 1999; glaciation in Antarctica, they do indicate that Gondwanan glacia- Veevers, 2000, 2001).
    [Show full text]
  • A Satellite Case Study of a Katabatic Surge Along the Transantarctic Mountains D
    This article was downloaded by: [Ohio State University Libraries] On: 07 March 2012, At: 15:04 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Journal of Remote Sensing Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tres20 A satellite case study of a katabatic surge along the Transantarctic Mountains D. H. BROMWICH a a Byrd Polar Research Center, The Ohio State Universit, Columbus, Ohio, 43210, U.S.A Available online: 17 Apr 2007 To cite this article: D. H. BROMWICH (1992): A satellite case study of a katabatic surge along the Transantarctic Mountains, International Journal of Remote Sensing, 13:1, 55-66 To link to this article: http://dx.doi.org/10.1080/01431169208904025 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Atmospheric Gas Records from Taylor Glacier, Antarctica, Reveal Ancient Ice with Ages Spanning the Entire Last Glacial Cycle Daniel Baggenstos1,*, Thomas K
    Clim. Past Discuss., doi:10.5194/cp-2017-25, 2017 Manuscript under review for journal Clim. Past Discussion started: 28 February 2017 c Author(s) 2017. CC-BY 3.0 License. Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle Daniel Baggenstos1,*, Thomas K. Bauska2, Jeffrey P. Severinghaus1, James E. Lee2, Hinrich Schaefer3, Christo Buizert2, Edward J. Brook2, Sarah Shackleton1, and Vasilii V. Petrenko4 1Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92093, USA. 2College of Earth, Ocean and Atmospheric Sciences, Oregon State University (OSU), Corvallis, OR, 97331, USA. 3National Institute of Water and Atmospheric Research Ltd (NIWA), PO Box 14901, Kilbirnie, 301 Evans Bay Parade, Wellington, New Zealand. 4Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA. *Current address: Climate and Environmental Physics, University of Bern, Switzerland. Correspondence to: [email protected] Abstract. Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models 5 need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice 18 and assess the completeness of the stratigraphic section.
    [Show full text]
  • Out for Blood
    SPRING/SUMMER 2017 Division of Marketing and Communications • Spring/Summer 2017 UMaineToday 5703 Alumni Hall Orono, ME 04469-5703 Out for blood How do we stem the growing threat Today of ticks in Maine? CREATIVITY AND ACHIEVEMENT AT THE UNIVERSITY OF MAINE AT AND ACHIEVEMENT CREATIVITY UMaine OLLABORATING FOR the common good message is rewarding and empowering. There is real value in working together with shared vision, Cunderstanding that there is strength in num- bers, that leadership takes many forms and that no single person can think of everything. As Maine’s public research university with a President’s statewide mission, we’ve always been in the role of problem solving, helping discover what’s next and communicating evidence-based knowledge to meet needs. UMaine partnerships are forged among scholars and researchers in different disciplines, and with com- munity groups and organizations to benefit the people we serve. And throughout these efforts, students can gain real-world experience and be engaged in public service. Take the multiple UMaine research and outreach efforts to help the state address its growing human and animal health issues related to tick-borne illnesses. UMaine Cooperative Extension has long been on the front lines of tick identification. In the ongoing search for answers, UMaine faculty, staff and students are involved in research in varied fields, and in part- nership with agencies such as the Maine Department of Inland Fisheries and Wildlife. And with the help of a 2014 bond approved by Maine voters, the state will soon have a new laboratory administered by UMaine Extension to improve the protection of our human health, food and natural resource-based econ- omy.
    [Show full text]
  • The U-Pb Detrital Zircon Signature of West Antarctic Ice Stream Tills in The
    Antarctic Science 26(6), 687–697 (2014) © Antarctic Science Ltd 2014. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102014000315 The U-Pb detrital zircon signature of West Antarctic ice stream tills in the Ross embayment, with implications for Last Glacial Maximum ice flow reconstructions KATHY J. LICHT, ANDREA J. HENNESSY and BETHANY M. WELKE Indiana University-Purdue University Indianapolis, Department of Earth Sciences, 723 West Michigan Street, Indianapolis, IN 46202, USA [email protected] Abstract: Glacial till samples collected from beneath the Bindschadler and Kamb ice streams have a distinct U-Pb detrital zircon signature that allows them to be identified in Ross Sea tills. These two sites contain a population of Cretaceous grains 100–110 Ma that have not been found in East Antarctic tills. Additionally, Bindschadler and Kamb ice streams have an abundance of Ordovician grains (450–475 Ma) and a cluster of ages 330–370 Ma, which are much less common in the remainder of the sample set. These tracers of a West Antarctic provenance are also found east of 180° longitude in eastern Ross Sea tills deposited during the last glacial maximum (LGM). Whillans Ice Stream (WIS), considered part of the West Antarctic Ice Sheet but partially originating in East Antarctica, lacks these distinctive signatures. Its U-Pb zircon age population is dominated by grains 500–550 Ma indicating derivation from Granite Harbour Intrusive rocks common along the Transantarctic Mountains, making it indistinguishable from East Antarctic tills.
    [Show full text]
  • The Eastern Margin of the Ross Sea Rift in Western Marie Byrd Land
    Characterization Geochemistry 3 Volume 4, Number 10 Geophysics 29 October 2003 1090, doi:10.1029/2002GC000462 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: Crustal structure and tectonic development Bruce P. Luyendyk Department of Geological Sciences and Institute for Crustal Studies, University of California, Santa Barbara, California 93106, USA ([email protected]) Douglas S. Wilson Department of Geological Sciences, Marine Science Institute, Institute for Crustal Studies, University of California, Santa Barbara, California 93106, USA Also at Marine Science Institute, University of California, Santa Barbara, California 93106, USA Christine S. Siddoway Department of Geology, Colorado College, Colorado Springs, Colorado 80903, USA [1] The basement rock and structures of the Ross Sea rift are exposed in coastal western Marie Byrd Land (wMBL), West Antarctica. Thinned, extended continental crust forms wMBL and the eastern Ross Sea continental shelf, where faults control the regional basin-and range-type topography at 20 km spacing. Onshore in the Ford Ranges and Rockefeller Mountains of wMBL, basement rocks consist of Early Paleozoic metagreywacke and migmatized equivalents, intruded by Devonian-Carboniferous and Cretaceous granitoids. Marine geophysical profiles suggest that these geological formations continue offshore to the west beneath the eastern Ross Sea, and are covered by glacial and glacial marine sediments. Airborne gravity and radar soundings over wMBL indicate a thicker crust and smoother basement inland to the north and east of the northern Ford Ranges. A migmatite complex near this transition, exhumed from mid crustal depths between 100–94 Ma, suggests a profound crustal discontinuity near the inboard limit of extended crust, 300 km northeast of the eastern Ross Sea margin.
    [Show full text]
  • The Antarctic Sun, December 28, 2003
    Published during the austral summer at McMurdo Station, Antarctica, for the United States Antarctic Program December 28, 2003 Photo by Kristan Hutchison / The Antarctic Sun A helicopter lands behind the kitchen and communications tents at Beardmore Camp in mid-December. Back to Beardmore: By Kristan Hutchison Researchers explore the past from temporary camp Sun staff ike the mythical town of Brigadoon, a village of tents appears on a glacial arm 50 miles L from Beardmore Glacier about once a decade, then disappears. It, too, is a place lost in time. For most people, a visit to Beardmore Camp is a trip back in history, whether to the original camp structure from 19 years ago, now buried under snow, or to the sites of ancient forests and bones, now buried under rock. Ever since Robert Scott collected fos- sils on his way back down the Beardmore Glacier in February 1912, geologists and paleontologists have had an interest in the rocky outcrops lining the broad river of ice. This year’s Beardmore Camp was the third at the location on the Lennox-King Glacier and the researchers left, saying there Photo by Andy Sajor / Special to The Antarctic Sun Researchers cut dinosaur bones out of the exposed stone on Mt. Kirkpatrick in December. See Camp on page 7 Some of the bones are expected to be from a previously unknown type. INSIDE Quote of the Week Dinosaur hunters Fishing for fossils “The penguins are happier than Page 9 Page 11 Trackers clams.” Plant gatherers - Adelie penguin researcher summing Page 10 Page 12 up the attitude of a colony www.polar.org/antsun 2 • The Antarctic Sun December 28, 2003 Ross Island Chronicles By Chico That’s the way it is with time son.
    [Show full text]