A Satellite Case Study of a Katabatic Surge Along the Transantarctic Mountains D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
S. Antarctic Projects Officer Bullet
S. ANTARCTIC PROJECTS OFFICER BULLET VOLUME III NUMBER 8 APRIL 1962 Instructions given by the Lords Commissioners of the Admiralty ti James Clark Ross, Esquire, Captain of HMS EREBUS, 14 September 1839, in J. C. Ross, A Voya ge of Dis- covery_and Research in the Southern and Antarctic Regions, . I, pp. xxiv-xxv: In the following summer, your provisions having been completed and your crews refreshed, you will proceed direct to the southward, in order to determine the position of the magnet- ic pole, and oven to attain to it if pssble, which it is hoped will be one of the remarka- ble and creditable results of this expedition. In the execution, however, of this arduous part of the service entrusted to your enter- prise and to your resources, you are to use your best endoavours to withdraw from the high latitudes in time to prevent the ships being besot with the ice Volume III, No. 8 April 1962 CONTENTS South Magnetic Pole 1 University of Miohigan Glaoiologioal Work on the Ross Ice Shelf, 1961-62 9 by Charles W. M. Swithinbank 2 Little America - Byrd Traverse, by Major Wilbur E. Martin, USA 6 Air Development Squadron SIX, Navy Unit Commendation 16 Geological Reoonnaissanoe of the Ellsworth Mountains, by Paul G. Schmidt 17 Hydrographio Offices Shipboard Marine Geophysical Program, by Alan Ballard and James Q. Tierney 21 Sentinel flange Mapped 23 Antarctic Chronology, 1961-62 24 The Bulletin is pleased to present four firsthand accounts of activities in the Antarctic during the recent season. The Illustration accompanying Major Martins log is an official U.S. -
Downloaded 10/01/21 06:40 AM UTC 3112 JOURNAL of CLIMATE VOLUME 10
DECEMBER 1997 VAN DEN BROEKE ET AL. 3111 Representation of Antarctic Katabatic Winds in a High-Resolution GCM and a Note on Their Climate Sensitivity MICHIEL R. VAN DEN BROEKE Norwegian Polar Institute, Oslo, Norway RODERIK S. W. VAN DE WAL Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands MARTIN WILD Department of Geography, Swiss Federal Institute of Technology, Zurich, Switzerland (Manuscript received 7 October 1996, in ®nal form 25 April 1997) ABSTRACT A high-resolution GCM (ECHAM-3 T106, resolution 1.1831.18) is found to simulate many characteristic features of the Antarctic climate. The position and depth of the circumpolar storm belt, the semiannual cycle of the midlatitude westerlies, and the temperature and wind ®eld over the higher parts of the ice sheet are well simulated. However, the strength of the westerlies is overestimated, the annual latitudinal shift of the storm belt is suppressed, and the wintertime temperature and wind speed in the coastal areas are underestimated. These errors are caused by the imperfect simulation of the position of the subtropical ridge, the prescribed sea ice characteristics, and the smoothened model topography in the coastal regions. Ice shelves in the model are erroneously treated as sea ice, which leads to a serious overestimation of the wintertime surface temperature in these areas. In spite of these de®ciencies, the model results show much improvement over earlier simulations. In a climate run, the model was forced to a new equilibrium state under enhanced greenhouse conditions (IPCC scenario A, doubled CO2), which enables us to cast a preliminary look at the climate sensitivity of Antarctic katabatic winds. -
Introducing Katabatic Winds in Global ERA40 Fields to Simulate Their
Introducing katabatic winds in global ERA40 fields to simulate their impacts on the Southern Ocean and sea-ice Pierre Mathiot, Bernard Barnier, Hubert Gallée, Jean-Marc Molines, Julien Le Sommer, Mélanie Juza, Thierry Penduff To cite this version: Pierre Mathiot, Bernard Barnier, Hubert Gallée, Jean-Marc Molines, Julien Le Sommer, et al.. In- troducing katabatic winds in global ERA40 fields to simulate their impacts on the Southern Ocean and sea-ice. Ocean Modelling, Elsevier, 2010, 35 (3), pp.146-160. 10.1016/j.ocemod.2010.07.001. hal-00570152 HAL Id: hal-00570152 https://hal.archives-ouvertes.fr/hal-00570152 Submitted on 13 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introducing katabatic winds in global ERA40 fields to simulate their impacts on the Southern Ocean and sea-ice Pierre Mathiot a,d,*, Bernard Barnier a, Hubert Gallée b, Jean Marc Molines a, Julien Le Sommer a, Mélanie Juza a, Thierry Penduff a,c a LEGI UMR5519, CNRS, UJF, Grenoble, France b LGGE UMR5183, CNRS, UJF, Grenoble, France c FSU, Department of Oceanography, The Florida State University, Tallahassee, FL, United States d TECLIM, Earth and Life Institute, Université Catholique de Louvain, Louvain la Neuve, Belgium A medium resolution (10–20 km around Antarctica) global ocean/sea-ice model is used to evaluate the impact of katabatic winds on sea-ice and hydrography. -
Categorization of Santa Ana Winds with Respect to Large Fire Potential
Categorization of Santa Ana Winds With Respect To Large Fire Potential Tom Rolinski1, Brian D’Agostino2, and Steve Vanderburg2 1US Forest Service, Riverside, California. 2San Diego Gas and Electric, San Diego, California. ABSTRACT Santa Ana winds, common to southern California during the fall through early spring, are a type of katabatic wind that originates from a direction generally ranging from 360°/0° to 100° and is usually accompanied by very low humidity. Since fuel conditions tend to be driest from late September through the middle of November, Santa Ana winds occurring during this time have the greatest potential to produce large, devastating fires when an ignition occurs. Such catastrophic fires occurred in 1993, 2003, 2007, and 2008. Because of the destructive nature of such fires, there has been a growing desire to categorize Santa Ana wind events in much the same way that tropical cyclones and tornadoes have been categorized. The Offshore Flow Severity Index (OFSI), previously developed by Predictive Services, is an attempt to categorize such events with respect to large fire potential, specifically the potential for new ignitions to reach or exceed 100 ha based on breakpoints of surface wind speed and humidity. More recently, Predictive Services has collaborated with meteorologists from the San Diego Gas and Electric utility to develop a new methodology that addresses flaws inherent in the initial index. Specific methods for improving spatial coverage and the effects of fuel moisture have been employed. High resolution reanalysis data from the Weather Research and Forecasting (WRF) model generated by the Department of Atmospheric and Oceanic Sciences at UCLA is being used to redefine the OFSI. -
Bulletin Vol. 13 No. 1 ANTARCTIC PENINSULA O 1 0 0 K M Q I Q O M L S
ANttlcnc Bulletin Vol. 13 No. 1 ANTARCTIC PENINSULA O 1 0 0 k m Q I Q O m l s 1 Comandante fettai brazil 2 Henry Arctowski poono 3 Teniente Jubany Argentina 4 Artigas Uruguay 5 Teniente Rodolfo Marsh chile Bellingshausen ussr Great Wall china 6 Capitan Arturo Prat chile 7 General Bernardo O'Higgins chile 8 Esperania argentine 9 Vice Comodoro Marambio Argentina 10 Palmer us* 11 Faraday uk SOUTH 12 Rotheraux 13 Teniente Carvajal chile SHETLAND 14 General San Martin Argentina ISLANDS jOOkm NEW ZEALAND ANTARCTIC SOCIETY MAP COPYRIGHT Vol.l3.No.l March 1993 Antarctic Antarctic (successor to the "Antarctic News Bulletin") Vol. 13 No. 1 Issue No. 145 ^H2£^v March.. 1993. .ooo Contents Polar New Zealand 2 Australia 9 ANTARCTIC is published Chile 15 quarterly by the New Zealand Antarctic Italy 16 Society Inc., 1979 United Kingdom 20 United States 20 ISSN 0003-5327 Sub-antarctic Editor: Robin Ormerod Please address all editorial inquiries, Heard and McDonald 11 contributions etc to the Macquarie and Campbell 22 Editor, P.O. Box 2110, Wellington, New Zealand General Telephone: (04) 4791.226 CCAMLR 23 International: +64 + 4+ 4791.226 Fax: (04) 4791.185 Whale sanctuary 26 International: +64 + 4 + 4791.185 Greenpeace 28 First footings at Pole 30 All administrative inquiries should go to Feinnes and Stroud, Kagge the Secretary, P.O. Box 2110, Wellington and the Women's team New Zealand. Ice biking 35 Inquiries regarding back issues should go Vaughan expedition 36 to P.O. Box 404, Christchurch, New Zealand. Cover: Ice biking: Trevor Chinn contem plates biking the glacier slope to the Polar (S) No part of this publication may be Plateau, Mt. -
A Year on Ice
A Year on Ice By William J. Cromie Copyright TXu1-721-869 Chapter 1 The Great Ice Shelf Extending from the front of the world’s largest piece of floating ice, we saw the orange wing of what once was an airplane. We stood on the deck of the USS Curtis on our way to Little America V. It was late January 1957, the beginning of summer in Antarctica. My companions and I faced the biggest wall of ice on Earth, the front of the Ross Ice Shelf. The white, frozen barrier at the bottom of the Pacific Ocean extends some 450 miles from east to west. The shelf it fronts reaches southward, 400 miles in places, to about 300 miles from the South Pole. Few, if any, of the scientists, sailors, airmen, or Seabees had ever seen anything like the Ross Ice Shelf so close. One hundred fourteen of us would spend the next year living on it. The orange airplane remains sticking out of the ice front came from a past Little America station, probably Little America IV 1947. The craft may have been flown over the South Pole by the greatest U.S. Antarctic explorer, Richard E. Byrd. He would have loved to see the old plane, and had been scheduled to ride with us on the USS Curtis. But he became sick, then died in March 1957. Glaciers moving down from the polar plateau push the Ross Ice Shelf toward the Pacific Ocean. Never ending snows cover what explorers leave behind. Eventually, the ice wall we faced would move forward, break off, and float away as an iceberg. -
17 Regional Winds
Copyright © 2017 by Roland Stull. Practical Meteorology: An Algebra-based Survey of Atmospheric Science. v1.02 17 REGIONAL WINDS Contents Each locale has a unique landscape that creates or modifies the wind. These local winds affect where 17.1. Wind Frequency 645 we choose to live, how we build our buildings, what 17.1.1. Wind-speed Frequency 645 we can grow, and how we are able to travel. 17.1.2. Wind-direction Frequency 646 During synoptic high pressure (i.e., fair weather), 17.2. Wind-Turbine Power Generation 647 some winds are generated locally by temperature 17.3. Thermally Driven Circulations 648 differences. These gentle circulations include ther- 17.3.1. Thermals 648 mals, anabatic/katabatic winds, and sea breezes. 17.3.2. Cross-valley Circulations 649 During synoptically windy conditions, moun- 17.3.3. Along-valley Winds 653 tains can modify the winds. Examples are gap 17.3.4. Sea breeze 654 winds, boras, hydraulic jumps, foehns/chinooks, 17.4. Open-Channel Hydraulics 657 and mountain waves. 17.4.1. Wave Speed 658 17.4.2. Froude Number - Part 1 659 17.4.3. Conservation of Air Mass 660 17.4.4. Hydraulic Jump 660 17.5. Gap Winds 661 17.1. WIND FREQUENCY 17.5.1. Basics 661 17.5.2. Short-gap Winds 661 17.1.1. Wind-speed Frequency 17.5.3. Long-gap Winds 662 Wind speeds are rarely constant. At any one 17.6. Coastally Trapped Low-level (Barrier) Jets 664 location, wind speeds might be strong only rare- 17.7. Mountain Waves 666 ly during a year, moderate many hours, light even 17.7.1. -
1 Compiled by Mike Wing New Zealand Antarctic Society (Inc
ANTARCTIC 1 Compiled by Mike Wing US bulldozer, 1: 202, 340, 12: 54, New Zealand Antarctic Society (Inc) ACECRC, see Antarctic Climate & Ecosystems Cooperation Research Centre Volume 1-26: June 2009 Acevedo, Capitan. A.O. 4: 36, Ackerman, Piers, 21: 16, Vessel names are shown viz: “Aconcagua” Ackroyd, Lieut. F: 1: 307, All book reviews are shown under ‘Book Reviews’ Ackroyd-Kelly, J. W., 10: 279, All Universities are shown under ‘Universities’ “Aconcagua”, 1: 261 Aircraft types appear under Aircraft. Acta Palaeontolegica Polonica, 25: 64, Obituaries & Tributes are shown under 'Obituaries', ACZP, see Antarctic Convergence Zone Project see also individual names. Adam, Dieter, 13: 6, 287, Adam, Dr James, 1: 227, 241, 280, Vol 20 page numbers 27-36 are shared by both Adams, Chris, 11: 198, 274, 12: 331, 396, double issues 1&2 and 3&4. Those in double issue Adams, Dieter, 12: 294, 3&4 are marked accordingly. Adams, Ian, 1: 71, 99, 167, 229, 263, 330, 2: 23, Adams, J.B., 26: 22, Adams, Lt. R.D., 2: 127, 159, 208, Adams, Sir Jameson Obituary, 3: 76, A Adams Cape, 1: 248, Adams Glacier, 2: 425, Adams Island, 4: 201, 302, “101 In Sung”, f/v, 21: 36, Adamson, R.G. 3: 474-45, 4: 6, 62, 116, 166, 224, ‘A’ Hut restorations, 12: 175, 220, 25: 16, 277, Aaron, Edwin, 11: 55, Adare, Cape - see Hallett Station Abbiss, Jane, 20: 8, Addison, Vicki, 24: 33, Aboa Station, (Finland) 12: 227, 13: 114, Adelaide Island (Base T), see Bases F.I.D.S. Abbott, Dr N.D. -
Winds Created by Terrain by Terrain
ATSC 201 - Meteorology of Storms Week 12 Day 5 Learning Goals Discussion Points & Demos Local Winds: Topic: West-coast Weather & Local / 1. Discussion & interaction on topics Winds created by the terrain. Regional Winds from readings (bring your clicker). Winds modified by the terrain. At the end of this section, you should be able to: 1. Synthesize all aspects of the general 2. Look at transparencies from case- circulation, air masses, fronts, midlatitude study West Coast extratropical cyclone. view is looking toward the northeast cyclones to explain why we get the weather we do. 2. Demonstrate the UBC NWP forecast North Shore Mtns. 2. Describe west-coast weather phenomena web page. Howe including: pre-frontal jets, the pineapple Sound express, outflow & gap winds, the cyclone Burrard Inlet graveyard, orographic precipitation, instant occlusions upon landfall, mountain waves, polar lows, etc. UBC 3. Access web-based weather, satellite, radar, and numerical weather forecast info on current and future weather. 4. Describe and explain these local winds: anabatic wind, katabatic wind, mountain and valley winds, sea breeze, gap winds, coastally trapped jet, mountain waves, Bora, Foehn (Chinook) winds. 1 2 Scales of Motion Rossby wave Winds Created by L Midlatitude Cyclone Terrain Hurricane ... by differential heating of different terrain features. Thunderstorm Boundary-layer Thermals 3 4 Winds Created Winds Created by Terrain by Terrain Daytime. Mountain Nighttime. Mountain slopes heated by slopes cool by IR sunlight. radiation to space. Warm updrafts called Cold downdrafts anabatic winds hug called katabatic the slopes. Conditions needed: light synoptic- winds hug the slopes. Conditions needed: light synoptic- scale winds, mostly clear, sunny skies. -
Chapter 7 – Atmospheric Circulations (Pp
Chapter 7 - Title Chapter 7 – Atmospheric Circulations (pp. 165-195) Contents • scales of motion and turbulence • local winds • the General Circulation of the atmosphere • ocean currents Wind Examples Fig. 7.1: Scales of atmospheric motion. Microscale → mesoscale → synoptic scale. Scales of Motion • Microscale – e.g. chimney – Short lived ‘eddies’, chaotic motion – Timescale: minutes • Mesoscale – e.g. local winds, thunderstorms – Timescale mins/hr/days • Synoptic scale – e.g. weather maps – Timescale: days to weeks • Planetary scale – Entire earth Scales of Motion Table 7.1: Scales of atmospheric motion Turbulence • Eddies : internal friction generated as laminar (smooth, steady) flow becomes irregular and turbulent • Most weather disturbances involve turbulence • 3 kinds: – Mechanical turbulence – you, buildings, etc. – Thermal turbulence – due to warm air rising and cold air sinking caused by surface heating – Clear Air Turbulence (CAT) - due to wind shear, i.e. change in wind speed and/or direction Mechanical Turbulence • Mechanical turbulence – due to flow over or around objects (mountains, buildings, etc.) Mechanical Turbulence: Wave Clouds • Flow over a mountain, generating: – Wave clouds – Rotors, bad for planes and gliders! Fig. 7.2: Mechanical turbulence - Air flowing past a mountain range creates eddies hazardous to flying. Thermal Turbulence • Thermal turbulence - essentially rising thermals of air generated by surface heating • Thermal turbulence is maximum during max surface heating - mid afternoon Questions 1. A pilot enters the weather service office and wants to know what time of the day she can expect to encounter the least turbulent winds at 760 m above central Kansas. If you were the weather forecaster, what would you tell her? 2. -
Climatology of Katabatic Winds in the Mcmurdo Dry Valleys, Southern Victoria Land, Antarctica Thomas H
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, D03114, doi:10.1029/2003JD003937, 2004 Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica Thomas H. Nylen and Andrew G. Fountain Department of Geology and Department of Geography, Portland State University, Portland, Oregon, USA Peter T. Doran Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, Illinois, USA Received 1 July 2003; revised 16 October 2003; accepted 3 December 2003; published 14 February 2004. [1] Katabatic winds dramatically affect the climate of the McMurdo dry valleys, Antarctica. Winter wind events can increase local air temperatures by 30°C. The frequency of katabatic winds largely controls winter (June to August) temperatures, increasing 1°C per 1% increase in katabatic frequency, and it overwhelms the effect of topographic elevation (lapse rate). Summer katabatic winds are important, but their influence on summer temperature is less. The spatial distribution of katabatic winds varies significantly. Winter events increase by 14% for every 10 km up valley toward the ice sheet, and summer events increase by 3%. The spatial distribution of katabatic frequency seems to be partly controlled by inversions. The relatively slow propagation speed of a katabatic front compared to its wind speed suggests a highly turbulent flow. The apparent wind skip (down-valley stations can be affected before up-valley ones) may be caused by flow deflection in the complex topography and by flow over inversions, which eventually break down. A strong return flow occurs at down-valley stations prior to onset of the katabatic winds and after they dissipate.