Sandstone, but the Proportion of Sandstone Increases to the Northwest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
2. Disc Resources
An early map of the world Resource D1 A map of the world drawn in 1570 shows ‘Terra Australis Nondum Cognita’ (the unknown south land). National Library of Australia Expeditions to Antarctica 1770 –1830 and 1910 –1913 Resource D2 Voyages to Antarctica 1770–1830 1772–75 1819–20 1820–21 Cook (Britain) Bransfield (Britain) Palmer (United States) ▼ ▼ ▼ ▼ ▼ Resolution and Adventure Williams Hero 1819 1819–21 1820–21 Smith (Britain) ▼ Bellingshausen (Russia) Davis (United States) ▼ ▼ ▼ Williams Vostok and Mirnyi Cecilia 1822–24 Weddell (Britain) ▼ Jane and Beaufoy 1830–32 Biscoe (Britain) ★ ▼ Tula and Lively South Pole expeditions 1910–13 1910–12 1910–13 Amundsen (Norway) Scott (Britain) sledge ▼ ▼ ship ▼ Source: Both maps American Geographical Society Source: Major voyages to Antarctica during the 19th century Resource D3 Voyage leader Date Nationality Ships Most southerly Achievements latitude reached Bellingshausen 1819–21 Russian Vostok and Mirnyi 69˚53’S Circumnavigated Antarctica. Discovered Peter Iøy and Alexander Island. Charted the coast round South Georgia, the South Shetland Islands and the South Sandwich Islands. Made the earliest sighting of the Antarctic continent. Dumont d’Urville 1837–40 French Astrolabe and Zeelée 66°S Discovered Terre Adélie in 1840. The expedition made extensive natural history collections. Wilkes 1838–42 United States Vincennes and Followed the edge of the East Antarctic pack ice for 2400 km, 6 other vessels confirming the existence of the Antarctic continent. Ross 1839–43 British Erebus and Terror 78°17’S Discovered the Transantarctic Mountains, Ross Ice Shelf, Ross Island and the volcanoes Erebus and Terror. The expedition made comprehensive magnetic measurements and natural history collections. -
The Commonwealth Trans-Antarctic Expedition 1955-1958
THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword .................................................................................................................................. -
Antarctic Fossil Conchostracans and the Continental Drift Theory
section to the northwest of that locality. At both southern continents to one another during the Per- localities, well-preserved conchostracans (Lioes- mian appears to be the only satisfactory way to ex- theria) and ostracods were found. At two localities plain the distribution of these fossils. Accordingly, a in the Marshall Mountains, the underlying sediments program was devised to collect conchostracans and are cut by features that are probably volcanic vents. to gather other paleolimnological data from the Dolerite sheets are conspicuous throughout the Ohio Range and to search for conchostracans in the Queen Alexandra Range. Concordant or only slightly Polarstar Formation of the Sentinel Range. transgressive sills as much as 150 m thick occur Some of the considerations upon which the study in the northern part of the range and at Painted was based and the preliminary results of the field Cliffs, but from the Prebble Glacier southward to work are given in the following paragraphs. Inas- Mount Wild, relationships are more complex. In the much as the discussion has been drawn primarily latter area, there are a few dolerite dikes up to 18 in from field notes, some modification of it may be re- wide. Most of the sheets there are steeply inclined quired when laboratory analysis has been completed. and transgressive, but a few are concordant over considerable distances. Field observations revealed Ohio Range only inconspicuous differentiation within the sheets. Do leaiid beds recur above and/or below the The Permian part of the stratigraphic sequence "Leaia Ledge" of the Mt. Glossopteris Formation? from the base of the Pagoda Formation to the top of The answer to this question is important to the es- the Buckley Coal Measures was found to be similar tablishment of intercontinental correlations and the to lower Beacon strata in the Queen Maud and Hor- continental drift theory. -
Reevaluation of the Timing and Extent of Late Paleozoic Glaciation in Gondwana: Role of the Transantarctic Mountains
Reevaluation of the timing and extent of late Paleozoic glaciation in Gondwana: Role of the Transantarctic Mountains John L. Isbell Department of Geosciences, University of Wisconsin, Milwaukee, Wisconsin 53201, USA Paul A. Lenaker Rosemary A. Askin Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA Molly F. Miller Department of Earth and Environmental Science, Vanderbilt University, Nashville, Tennessee 37235, USA Loren E. Babcock Department of Geological Sciences and Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA ABSTRACT Evidence from Antarctica indicates that a 2000-km-long section of the Transantarctic MountainsÐincluding Victoria Land, the Darwin Glacier region, and the central Transantarctic MountainsÐwas not located near the center of an enormous Car- boniferous to Early Permian ice sheet, as depicted in many paleo- Figure 1. Carboniferous and geographic reconstructions. Weathering pro®les and soft-sediment Permian paleogeographic map deformation immediately below the preglacial (pre-Permian) un- of Gondwana (after Powell and Li, 1994), showing several hy- conformity suggest an absence of ice cover during the Carbonif- pothetical ice sheets. erous; otherwise, multiple glacial cycles would have destroyed these features. The occurrence of glaciotectonite, massive and strat- i®ed diamictite, thrust sheets, sandstones containing dewatering structures, and lonestone-bearing shales in southern Victoria Land and the Darwin Glacier region indicate that Permian sedimenta- tion occurred in ice-marginal, periglacial, and/or glaciomarine set- tings. No evidence was found that indicates the Transantarctic Mountains were near a glacial spreading center during the late Paleozoic. Although these ®ndings do not negate Carboniferous Powell, 1987; Ziegler et al., 1997; Scotese, 1997; Scotese et al., 1999; glaciation in Antarctica, they do indicate that Gondwanan glacia- Veevers, 2000, 2001). -
Stratigraphy of Upper Carboniferous and Permian Rocks Exposed Between the Byrd and Nimrod Glaciers JOHN L
Boulder, here. The project was supported by National Science Founda- belts along the Panthalassan margin of Gondwanaland. Colorado: Geological Society of America. tion grants OPP 89-17348 and OPP 89-15429. Elliot, D.H. 1992. Jurassic magmatism and tectonism associated with Gondwanaland break-up: An antarctic perspective. In B.C. Alabaster and R.J. Pankhurst (Eds.), Magmatism and the causes of References continental break-up (Special Publication No. 68). London: Geo- logical Society of London. Barrett, P.J., D.H. Elliot, and J.F. Lindsay. 1986. The Beacon Super- Elliot, D.H., and D. Larsen. 1993. Mesozoic volcanism in the central group (Devonian-Triassic) and Ferrar Group (Jurassic) in the Transantarctic Mountains, Antarctica: Depositional environment Beardmore Glacier area, Antarctica. In M.D. Turner and J.F. and tectonic setting. In R.H. Findlay, R. Unrug, M.R. Banks, and J.J. Gondwana Eight: Assembly, evolution and Splettstoesser (Eds.), Geology of the central Transantarctic Moun- Veevers, (Eds.), tains (Antarctic Research Series, Vol. 36). Washington, D.C.: Ameri- dispersal. Rotterdam: Balkema. can Geophysical Union. Larsen, D. 1988. The petrology and geochemistry of the volcaniclastic Collinson, J.W., J.L. Isbell, D.H. Elliot, M.F. Miller, and J.W.G. Miller. In upper part of the Falla Formation and Prebble Formation, Beard- press. Permian-Triassic Transantarctic basin. In J.J. Veevers and C. more Glacier area, Antarctica. (Unpublished master of science the- McA. Powell (Eds.), Permian-Triassic Pangaean basins and fold- sis, Ohio State University, Columbus, Ohio.) Stratigraphy of Upper Carboniferous and Permian rocks exposed between the Byrd and Nimrod Glaciers JOHN L. -
Out for Blood
SPRING/SUMMER 2017 Division of Marketing and Communications • Spring/Summer 2017 UMaineToday 5703 Alumni Hall Orono, ME 04469-5703 Out for blood How do we stem the growing threat Today of ticks in Maine? CREATIVITY AND ACHIEVEMENT AT THE UNIVERSITY OF MAINE AT AND ACHIEVEMENT CREATIVITY UMaine OLLABORATING FOR the common good message is rewarding and empowering. There is real value in working together with shared vision, Cunderstanding that there is strength in num- bers, that leadership takes many forms and that no single person can think of everything. As Maine’s public research university with a President’s statewide mission, we’ve always been in the role of problem solving, helping discover what’s next and communicating evidence-based knowledge to meet needs. UMaine partnerships are forged among scholars and researchers in different disciplines, and with com- munity groups and organizations to benefit the people we serve. And throughout these efforts, students can gain real-world experience and be engaged in public service. Take the multiple UMaine research and outreach efforts to help the state address its growing human and animal health issues related to tick-borne illnesses. UMaine Cooperative Extension has long been on the front lines of tick identification. In the ongoing search for answers, UMaine faculty, staff and students are involved in research in varied fields, and in part- nership with agencies such as the Maine Department of Inland Fisheries and Wildlife. And with the help of a 2014 bond approved by Maine voters, the state will soon have a new laboratory administered by UMaine Extension to improve the protection of our human health, food and natural resource-based econ- omy. -
Preservation of Pliocene Age Surfaces Beneath the WAIS: Insights from Emergent Nunataks in the Ohio Range
Preservation of Pliocene age surfaces beneath the WAIS: Insights from emergent nunataks in the Ohio Range Robert P. Ackert Jr., Sujoy Mukhopadhyay Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 Harold W. Borns, Aaron E. Putnam Climate Change Institute, University of Maine, Orono, ME, 04469 The granitic bedrock forming the Ohio Range Escarpment and adjacent Bennett and Tuning Nunataks is typically cavernously weathered with pits ranging from a few cm to > 100 cm. The rock remaining between pits often forms delicate structures only several cm thick (tafoni). Cosmogenic 21Ne and 10Be concentrations indicate that the weathered bedrock surfaces are at least 4 million years old with average erosion rates of 15-35 cm /Ma on surfaces between pits. However, exposure ages of erratics on the escarpment 125 m above the present WAIS surface (~1500 m) indicates that the nunataks were buried by the WAIS 10,000 years ago (Ackert et al., 2007). Ice temperatures at these relatively shallow depths would be well below freezing, and the WAIS remained cold-based. Consequently, glacial erosion has been minimal, generally restricted to breakage of only the most delicate weathering structures. Tuning Nunatak is located in an area with higher ice velocities as indicated by crevasses and steeper surface slopes. There, limited quarrying of horizontally jointed bedrock has locally removed up to 1 m of rock and produced a few glacial scratches. Paired 21Ne and 10Be data indicate that the duration of ice cover was limited. Samples of bedrock from three nunataks fall within the zone of simple exposure on 21Ne/10Be vs.10Be plots indicating that unsupported decay of 10Be (half life = 1.5 Myr) was minimal, and no recent burial event exceeded 50, 000 years. -
South Pole All the Way Trip Notes
SOUTH POLE ALL THE WAY 2021/22 EXPEDITION TRIP NOTES SOUTH POLE ALL THE WAY EXPEDITION NOTES 2021/22 EXPEDITION DETAILS Hercules Inlet: Dates: November 5, 2021 to January 4, 2022 Duration: 61 days Price: US$72,875 Messner Start: Dates: November 5 to December 30, 2021 Duration: 56 days Price: US$69,350 Axel Heiberg: Dates: November 21 to December 30, 2021 Duration: 40 days Price: US$90,750 An epic journey to the South Pole. Photo: Andy Cole Antarctica has held the imagination of the entire world for over two centuries, yet the allure of this remote continent has not diminished. With huge advances in modern-day technology, travel to any part of the world seems to be considered a ‘fait accomplis’. Yet Antarctica still holds a sense of being impenetrable, a place where man has not tamed nature. Antarctica is a place of adventure. A frontier where we are far removed from our normal ‘safety net’ ROUTE OPTIONS and where we need to rely on our own resources HERCULES INLET (61 DAYS) and decision making to survive. It is in these environments that we are truly in touch with The route from Hercules Inlet is the ultimate nature, where we can embark on a journey of challenge; a journey that traverses 1,130km/702 discovery to remote and untouched places. miles from the edge of the Ronne Ice Shelf to the Geographic South Pole. It is an expedition that In the Southern Hemisphere summer, when the will allow you to join an elite group who have sun is in the sky 24 hours each day, Adventure undertaken this adventure under their own power. -
Crag-And-Tail Features on the Amundsen Sea Continental Shelf, West Antarctica
Downloaded from http://mem.lyellcollection.org/ by guest on November 30, 2016 Crag-and-tail features on the Amundsen Sea continental shelf, West Antarctica F. O. NITSCHE1*, R. D. LARTER2, K. GOHL3, A. G. C. GRAHAM4 & G. KUHN3 1Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA 2British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK 3Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany 4College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK *Corresponding author (e-mail: [email protected]) On parts of glaciated continental margins, especially the inner leads to its characteristic tapering and allows formation of the sec- shelves around Antarctica, grounded ice has removed pre-existing ondary features. Multiple, elongated ridges in the tail could be sedimentary cover, leaving subglacial bedforms on eroded sub- related to the unevenness of the top of the ‘crags’. Secondary, strates (Anderson et al. 2001; Wellner et al. 2001). While the smaller crag-and-tail features might reflect variations in the under- dominant subglacial bedforms often follow a distinct, relatively lying substrate or ice-flow dynamics. uniform pattern that can be related to overall trends in palaeo- While the length-to-width ratio of crag-and-tail features in this ice flow and substrate geology (Wellner et al. 2006), others are case is much lower than for drumlins or elongate lineations, the more randomly distributed and may reflect local substrate varia- boundary between feature classes is indistinct. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
THE KUAN YIN HIKE 2013 Complete
THE KUAN YIN HIKE 2013 (The Kaskavagge Harmonica Hike) Before Anna and I set out on our Lapland mountain hike of 2013, I asked the oracle Kuan Yin (The Bodhisattva of Compassion; Avalokitesvara) – well known in Asia – about our conditions; first a couple of weeks before the hike, and then just ahead of our departure. These are her answers: - HEAVEN AND EARTH Heaven and Earth in complete harmony. The myriad Beings grow and thrive. Peace and satisfaction prevail for blessings and wisdom are given to all You have sown compassion and reap the harvest of joy and love. What a gift you have been given! Anything you wish to do stands under a lucky star. Grasp the opportunity with both hands, so your many ideas can be developed. You don't have to hurry, for success will come without you exhausting yourself. The soul of sweet delight can never be defiled - Kuan Yin's second answer goes: - CLIMBING THE MOUNTAIN A mountain climber works his way to the peak The sun is setting, a critical situation He prays to the heavens and finds refuge among the rocks The darkest hour before the dawn. Concentrate your insight and shelter in the rewards it brings Although things don't look too rosy at the moment, don't be worried. As soon as you can get to work, the obstacles will vanish. Think over each step carefully, and you won't go wrong. The Wise One is flexible as water and always finds the way - These were wonderful answers to receive, and how great are the chances to get such replies when you want advice on a mountain hike; Heaven and Earth and Climbing the Mountain? Some things Kuan Yin said didn't make sense until the hike developed either, but then the meaning hit like a hammer! I'll get to that when that part of the hike comes up.