Stratigraphy of Upper Carboniferous and Permian Rocks Exposed Between the Byrd and Nimrod Glaciers JOHN L

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy of Upper Carboniferous and Permian Rocks Exposed Between the Byrd and Nimrod Glaciers JOHN L Boulder, here. The project was supported by National Science Founda- belts along the Panthalassan margin of Gondwanaland. Colorado: Geological Society of America. tion grants OPP 89-17348 and OPP 89-15429. Elliot, D.H. 1992. Jurassic magmatism and tectonism associated with Gondwanaland break-up: An antarctic perspective. In B.C. Alabaster and R.J. Pankhurst (Eds.), Magmatism and the causes of References continental break-up (Special Publication No. 68). London: Geo- logical Society of London. Barrett, P.J., D.H. Elliot, and J.F. Lindsay. 1986. The Beacon Super- Elliot, D.H., and D. Larsen. 1993. Mesozoic volcanism in the central group (Devonian-Triassic) and Ferrar Group (Jurassic) in the Transantarctic Mountains, Antarctica: Depositional environment Beardmore Glacier area, Antarctica. In M.D. Turner and J.F. and tectonic setting. In R.H. Findlay, R. Unrug, M.R. Banks, and J.J. Gondwana Eight: Assembly, evolution and Splettstoesser (Eds.), Geology of the central Transantarctic Moun- Veevers, (Eds.), tains (Antarctic Research Series, Vol. 36). Washington, D.C.: Ameri- dispersal. Rotterdam: Balkema. can Geophysical Union. Larsen, D. 1988. The petrology and geochemistry of the volcaniclastic Collinson, J.W., J.L. Isbell, D.H. Elliot, M.F. Miller, and J.W.G. Miller. In upper part of the Falla Formation and Prebble Formation, Beard- press. Permian-Triassic Transantarctic basin. In J.J. Veevers and C. more Glacier area, Antarctica. (Unpublished master of science the- McA. Powell (Eds.), Permian-Triassic Pangaean basins and fold- sis, Ohio State University, Columbus, Ohio.) Stratigraphy of Upper Carboniferous and Permian rocks exposed between the Byrd and Nimrod Glaciers JOHN L. ISBELL, GINA M. SEEGERS, and GREG GELHAR, Department of Geosciences, University of Wisconsin, Milwaukee, Wisconsin 53201 PETER MACKENZIE, Department of Geological Sciences, Ohio State University, Columbus, Ohio 43210 uring the austral summers of 1992-1993 and 1993-1994, Byrd Glacier to the Ohio Range. Paleocurrent orientations D Upper Carboniferous and Permian rocks exposed from these rocks display regional directions toward the pre- between the heads of the Nimrod and Byrd Glaciers were sent Weddell Sea (Collinson et al. in press); these orientations examined to identify the nature of strata exposed in this suggest that the rocks were deposited within the same deposi- region. Rocks of this age were not previously known to exist tional basin. north of the Starshot Glacier (c.f., Laird, Mansergh, and Chap- Late Paleozoic strata in the area between the Nimrod and pell 1971). The area between the Nimrod and Byrd Glaciers Byrd Glacier differ from rocks exposed in southern Victoria was believed to occupy a high which separated strata in Land to the north of the Byrd Glacier. In southern Victoria southern Victoria Land from strata in the central Transantarc- Land, a discontinuous diamictite is overlain by interbedded sandstone and coal-bearing shale (Bradshaw, Harmsen, and tic Mountains (c.f., Elliot 1975, pp. 493-536; Collinson et al. in press). The purpose of this paper is the following: Kirkbride 1990). Regional paleocurrent directions for these to describe the late Paleozoic strata in this region, strata are toward northern Victoria Land, opposite of those in • to define the outcrop belts for rocks in the central the central Transantarctic Mountains (Barrett and Kohn 1975, Transantarctic Mountains and southern Victoria Land, pp. 329-332). Differences in strata on opposite sides of the • to compare and contrast strata in the two areas, and Byrd Glacier support the hypothesis that this glacier marks • to define the extent of the depositional basin/basins for the position of a major Cenozoic strike slip fault (c.f., Grindley late Paleozoic rocks in the Transantarctic Mountains. and Laird 1969) and that strata in the central Transantarctic Late Paleozoic strata in the area between the Nimrod and Mountains and southern Victoria Land were deposited in two Byrd Glaciers were found to consist of the following, in separate basins. ascending order: Rocks of the Pagoda rest unconformably on Precambrian • interstratified diamictite, coarse-grained sandstone, and and lower Paleozoic rocks in the area between the Nimrod laminated siltstone; and Byrd Glaciers. The Pagoda is 180 meters (m) thick and • interstratifled black shale and fine-grained sandstone; laterally continuous across the study area, except at Mount • thick fine-to-medium grained sandstone; and Cerberus, where it fills erosional depressions on the top of • interstratifled coarse-grained sandstone, shale, and coal. the Devonian Alexandria Formation. Lithofacies consist of Respectively, these rocks are laterally continuous with strata unstratified diamictite, crudely stratified diamictite, lenticu- of the Pagoda, Mackellar, Fairchild, and Buckley Formations lar sandstone within diamictite, coarse-grained sheet sand- exposed in the Beardmore Glacier region. We propose that stone, and laminated shale deposits. These are interpreted as these formational names be extended into the Nimrod-Byrd lodgement till, melt-out till, sub- or englacial meltwater area. Upper Carboniferous and Lower Permian strata in the channel, outwash stream, and lacustrine deposits, respec- central Transantarctic Mountains are continuous from the tively. These lithofacies and the presence of numerous stri- ANTARC11C JOuRNAL. - REVIEW 1994 35 ated surfaces suggest deposition from wet-based terrestrial gist Range and the All Black Nunataks and at Mount Cerberus glaciers. and Turbidite Hill. Sandstones contain abundant silicified Black shales of the overlying Mackellar Formation are in logs, some of which are contained within large deformed sharp contact with diamictite and sandstone of the Pagoda mudstone clasts. The presence of mudstone clast suggest Formation. Lonestones are extremely rare in these shales and slumping of cutbanks into the adjacent channel. The associ- were observed only in the lower 1.5 m. Two coarsening-upward ated logs were probably transported only a few hundred sequences occur within rocks of the Mackellar Formation. meters or less. Silicified peat and logs in the Nimrod-Byrd These sequences consist of basal shales that grade upward into area occur lower in the Buckley Formation than similar fossils interstratified cross-laminated sandstone (0.01-0.1 m thick) in the Beardmore Glacier region. These fossils may be the old- and shale (0.1-0.5 m thick); the shale in turn grades into hori- est silicified Permian plant material in the central zontally and cross laminated sandstone (1-10 m thick). Sand- Transantarctic Mountains. stone at the top of the lower sequences is in sharp contact with We are grateful to Nicholas Rowe, Shaun Norman, and black shale of the overlying sequence. The second sequence Mike Roberts for their help in the field. Dr. Rowe collected coarsens upward into medium-grained sandstone of the most of the plant fossils reported in this paper. These fossils Fairchild Formation. Shales in the Mackellar were deposited are being examined at the paleobotanical laboratory at the from suspension in a basinal setting. Sandstones were intro- Ohio State University. Logistics in Antarctica were provided duced into this environment as underfiow currents in front of a by Antarctic Support Associates, the U.S. Navy Squadron VXE- prograding deltaic system. The sharp lower contact of the 6, Ken Bork Air Ltd., and the National Science Foundation. Mackellar Formation is a flooding surface and suggests rapid This research was supported by National Science Foundation destruction of the late Paleozoic ice sheets followed by flooding grant OPP 91-18495. of the depositional basin. The sharp contact separating the two coarsening-upward sequences is also a flooding surface and due to its widespread distribution across the Byrd-Nimrod area References indicates a rapid rise in basinal water levels. Barrett, P.J., and B.P. Kohn. 1975. Changing sediment transport direc- Basal medium-grained sandstones of the 150-rn-thick tions from Devonian to Triassic in the Beacon Supergroup of Fairchild Formation contain dipping foreset beds 1-5 rn thick south Victoria Land, Antarctica. In K.S.W. Campbell (Ed.), Gond- These foresets dip at 4-16 0 and grade downward into fine- wana geology. Canberra: Australian National University Press. grained sandstone that interfingers with shale in the underlying Bradshaw, M.A., F.J. Harmsen, and M.P. Kirkbride. 1990. Preliminary Mackellar Formation. Upward, the Fairchild is characterized by results of the 1988-1989 expedition to the Darwin Glacier area. New Zealand Antarctic Record, 10(1), 28-48. sandstone filled channel-form structures. Deltaic sedimenta- Collinson, J.W., J.L. Isbell, D.H. Elliot, M.F. Miller, and J.M.G. Miller. tion characterizes the lower Fairchild, whereas rocks in the In press. Transantarctic Basin. In J.J. Veevers (Ed.), Paleo -Pacific upper portions of the unit were deposited by braided streams. margin of Gondwana (Geological Society of America Memoir). The 250(+) -m-thick Buckley Formation consists predomi- New York: Geological Society of America. nantly of coarse-grained sandstone (5-40 m thick) interstrati- Elliot, D.H. 1975. Gondwana basins in Antarctica. In K.S.W. Campbell (Ed.), Gondwana geology. Canberra: Australian National Univer- fled with shale (0.5-5 rn thick) and coal (0.05-0.3 m thick) sity Press. beds. The sandstones occur as sheets, which contain numer- Grindley, G.W., and M.G. Laird. 1969. Sheet 15, Shackleton Coast geo- ous downstream accreting macroforms surfaces
Recommended publications
  • Mesozoic and Cenozoic Structural Patterns in the Transantarctic
    and J . Berg for providing powders of xenoliths from the 0 kilometers 300 McMurdo Volcanic Province and unpublished data for these samples. I Victoria Land 0 miles 200 Mc rdo Station 0 GlIB? --BGB Byrd Glacier h East Antarctic Ice Sheet + 80.S RB Ross Ice Shelf Byrd Glacier1 -7 MRB BGB References Nimrod Glacier Berg, J.H., R.A. Hank, and R.I. Kalamarides. 1985. Petrology and Marsh Glacier geochemistry of lower crustal basic granulites from the Erebus Vol- canic Province, Antarctica. 1985. Antarctic Journal of the U.S., 20(5), 22-23. Beardmore Shackleton Glacier Glacier Borg, S.C., and D.J. DePaolo. 1990. Isotopic imaging of deep conti- nental lithosphere. Systematics and applications downunder (ab- stract). 7th International Conference on Geochronology, Cosmochronology, and Isotope Geology, Canberra, Australia, Sep- IAntarcScaS Outcrop area: tember 1990. (Abstracts, Vol. 27.) Canberra: Geological Society of ______________ outh Pole Transantarctic ___________________ + Mountains Australia. Borg, S.C., and D.J. DePaolo. In press. A tectonic model of the Ant- arctic Gondwana margin with implications for southeastern Aus- Figure 3. This map of the Transantarctic Mountains in the vicinity tralia: Isotopic and geochemical evidence. Tectonopliysics. of the Ross Ice Shelf shows our working hypothesis for the dis- Borg, S.C., D.J. DePaolo, E.D. Wendlandt, and T.G. Drake. 1989. tribution of lower crustal provinces. This interpretation is based Studies of granites and metamorphic rocks, Byrd Glacier area. Ant- on the inferences from the isotopic compositions shown in figure arctic Journal of the U.S., 25(5), 19-21. 2 and on our inference from field work that the entire north side of Borg, S.C., D.J.
    [Show full text]
  • Mm^Umamm a N E W S B U L L E T I N
    mm^umamm A N E W S B U L L E T I N p u b l i s h e d q u a r t e r l y b y t h e NEW ZEALAND ANTARCTIC SOCIETY ■ H.M.N.Z.S. ENDEAVOUR about to tie up in Winter Quarters Bay. On right, Vince's Cross and Scott's hut. J. Calvert photo. MARCH, 1965 AUSTRALIA Winter and Summer bases Scott- S u m m e r b a s e o n l y t H a l l e f t "cton NEW ZEALAND Transferred base Wilkes UStcAust Temporarily non -operational. .KSyowa TASMANIA , Campbell I. (N-l) , ^ V - r . ^ ^ N . AT // \$ 5«|* Pasar'C ^rd(i/.sA . *"Vp»tuk , N |(I/.«.AJ i - S c o t t ( U . 5 J i t - A N T A R. M^ciJ ^>cwj a fi/V wX " < S M a u d **$P -Marion I. ttM DRAWN BY DEPARTMENT OF LANDS 1 SURVEY WELLINGTON, NEW ZEALAND, MAR.I9l»4- 1 " . " E D I T I O N m ilHl^IBS^IKB^k (Successor to "Antarctic News Bulletin") MARCH, 1965 Editor: L. B. Quartermain, M.A., 1 Ariki Road, Wellington, E.2, New Zealand. Business Communications, Subscriptions, etc., to: Secretary, New Zealand Antarctic Society, P.O. Box 2110, Wellington, N.Z. CONTENTS EXPEDITIONS New Zealand The Central Nimrod Glacier Geological Expedition: M. G. Laird Victoria University Research in Ice-free Areas: W. M. Prebble The D-region Project: J. B. Gregory France United States First Leg of Traverse Australia Belgium-Holland U.S.S.R South Africa Argentina United Kingdom Chile Japan Sub-Antarctic Islands British South Georgia Expedition Big Ben Conquered Special Articles: Hallett Closed Antarctic Stations—I.
    [Show full text]
  • 100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants 19 J
    Antarctica: A Keystone in a Changing World Proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California, August 26 to September 1, 2007, Alan K. Cooper, Peter Barrett, Howard Stagg, Bryan Storey, Edmund Stump, Woody Wise, and the 10th ISAES editorial team, Polar Research Board, National Research Council, U.S. Geological Survey ISBN: 0-309-11855-7, 164 pages, 8 1/2 x 11, (2008) This free PDF was downloaded from: http://www.nap.edu/catalog/12168.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press.
    [Show full text]
  • Provenance Signatures of the Antarctic Ice Sheets in the Ross Embayment During the Late Miocene to Early Pliocene: the ANDRILL AND-1B Core Record
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln ANDRILL Research and Publications Antarctic Drilling Program 11-2009 Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record Franco M. Talarico Università di Siena, [email protected] Sonia Sandroni Università di Siena, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/andrillrespub Part of the Environmental Indicators and Impact Assessment Commons Talarico, Franco M. and Sandroni, Sonia, "Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record" (2009). ANDRILL Research and Publications. 49. https://digitalcommons.unl.edu/andrillrespub/49 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in ANDRILL Research and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Global and Planetary Change 69:3 (November 2009), pp. 103–123; doi:10.1016/j.gloplacha.2009.04.007 Copyright © 2009 Elsevier B.V. Used by permission. Submitted December 23, 2008; accepted April 22, 2009; published online May 4, 2009. Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record F. M. Talarico Dipartimento di Scienze della Terra, Università di Siena, Via Laterina 8, Siena, Italy (Corresponding author; tel 39 577233812, fax 39 577233938, email [email protected] ) S. Sandroni Museo Nazionale dell’Antartide, Università di Siena, Via Laterina 8, Siena, Italy Abstract Significant down-core modal and compositional variations are described for granule- to cobble-sized clasts in the Early Pliocene to Middle/Late Miocene sedimentary cycles of the AND-1B drill core at the NW edge of the Ross Ice Shelf (McMurdo Sound).
    [Show full text]
  • Dr. John L. Isbell Department of Geosciences, University of Wisconsin-Milwaukee P.O
    Dr. John L. Isbell Department of Geosciences, University of Wisconsin-Milwaukee P.O. Box 413, Milwaukee, WI 53201 Phone: (414) 229-2877 e-mail: [email protected] http://www.uwm.edu/People/jisbell/index.html EDUCATION 1990 Ph.D., Geology. THE OHIO STATE UNIVERSITY, Columbus, Ohio. Dissertation Topic: Fluvial sedimentology and basin analysis of the Permian Fairchild and Buckley Formations, Beardmore Glacier Region, and the Weller Coal Measures, southern Victoria Land, Antarctica. Dissertation Advisor: Dr. James W. Collinson. 1985 M.S., Geology. NORTHERN ILLINOIS UNIVERSITY, DeKalb, Illinois. Thesis topic: Palynology and sedimentology of Pennsylvanian strata in the northwestern portion of the Illinois Basin. Thesis advisors: Dr. Ross D. Powell and Dr. Hsin Yi Ling. 1981 B.A., Geology. AUGUSTANA COLLEGE, Rock Island, Illinois. Advisors: Dr. Richard Anderson and Dr. Fred H. Behnken. POSITIONS HELD 9/04-Present Professor: Department of Geosciences, The University of Wisconsin-Milwaukee. Clastic sedimentologist. 9/09-8/12 Department Chair: Department of Geosciences, The University of Wisconsin- Milwaukee. 9/98-9/04 Associate Professor: Department of Geosciences, The University of Wisconsin- Milwaukee. Clastic sedimentologist. 9/92-8/98 Assistant Professor: Department of Geosciences, The University of Wisconsin- Milwaukee. Clastic sedimentologist. 5/95-97 Project Contributor: Geological Evolution and Hydrocarbon Plays of the Southern South Atlantic. A joint international project utilizing the specialties of geologists from the Cambridge Arctic Shelf Programme, Cambridge, U.K.; Centro de Investigaciones Geologicas, La Plata, Argentina; University of Aberdeen, Scotland; Institute of Geophysics at the University of Texas-Austin; University of Cambridge, U.K.; and the Department of Geosciences at the University of Wisconsin-Milwaukee.
    [Show full text]
  • United States Antarctic Activities 2003-2004
    United States Antarctic Activities 2003-2004 This site fulfills the annual obligation of the United States of America as an Antarctic Treaty signatory to report its activities taking place in Antarctica. This portion details planned activities for July 2003 through June 2004. Modifications to these plans will be published elsewhere on this site upon conclusion of the 2003-2004 season. National Science Foundation Arlington, Virginia 22230 November 30, 2003 Information Exchange Under United States Antarctic Activities Articles III and VII(5) of the ANTARCTIC TREATY Introduction Organization and content of this site respond to articles III(1) and VII(5) of the Antarctic Treaty. Format is as prescribed in the Annex to Antarctic Treaty Recommendation VIII-6, as amended by Recommendation XIII-3. The National Science Foundation, an agency of the U.S. Government, manages and funds the United States Antarctic Program. This program comprises almost the totality of publicly supported U.S. antarctic activities—performed mainly by scientists (often in collaboration with scientists from other Antarctic Treaty nations) based at U.S. universities and other Federal agencies; operations performed by firms under contract to the Foundation; and military logistics by units of the Department of Defense. Activities such as tourism sponsored by private U.S. groups or individuals are included. In the past, some private U.S. groups have arranged their activities with groups in another Treaty nation; to the extent that these activities are known to NSF, they are included. Visits to U.S. Antarctic stations by non-governmental groups are described in Section XVI. This document is intended primarily for use as a Web-based file, but can be printed using the PDF option.
    [Show full text]
  • US Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and Their Postal Cachets: US Navy (1946–48, 1954–60), International
    Prepared in cooperation with United States Antarctic Program, National Science Foundation U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and their Postal Cachets: U.S. Navy (1946–48, 1954–60), International Geophysical Year (1957–58), and USGS (1960–2006) By Tony K. Meunier Richard S. Williams, Jr., and Jane G. Ferrigno, Editors Open-File Report 2006–1116 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Cover: 2006 postal cachet commemorating sixty years of USGS scientific innovation in Antarctica (designed by Kenneth W. Murphy and Tony K. Meunier, art work by Kenneth W. Murphy). ii Table of Contents Introduction......................................................................................................................................................................1 Selected.References.........................................................................................................................................................2
    [Show full text]
  • Tectonic Model for Development of the Byrd Glacier Discontinuity and Surrounding Regions of the Transantarctic Mountains During the Neoproterozoic – Early Paleozoic
    Published in: Fütterer, D K, Damaske, D, Kleinschmidt, G, Miller, H & Tessensohn, F (eds.), Antarctica: contributions to global earth sciences, Springer, Berlin, Heidelberg, New York, 45-54 http://dx.doi.org/10.1007/3-540-32934-X The original publication is available at http://www.springerlink.com see http://dx.doi.org/10.1007/3-540-32934-X_22 Data are available at: http://dx.doi.org/10.1594/PANGAEA.611703 Tectonic Model for Development of the Byrd Glacier Discontinuity and Surrounding Regions of the Transantarctic Mountains during the Neoproterozoic – Early Paleozoic Edmund Stump1 · Brian Gootee1 · Franco Talarico2 1 Department of Geological Sciences, Arizona State University, Tempe, Arizona AZ 85287-1404, USA 2 Dipartimento di Scienze della Terra, Università di Siena, Via del Laterino 8, 53100 Siena, Italy Abstract. The Byrd Glacier discontinuity is a major tectonic boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consist of two-dimensional transects across the belt, but do not address the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic produced a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of a terrane (Beardmore microcontinent) during the latest Neoproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in support of this hypothesis are U-Pb dates of 545.7 ±6.8 Ma and 531.0 ±7.5 Ma on plutonic rocks from the Britannia Range, directly north of Byrd Glacier.
    [Show full text]
  • Licht and Hemming 2017.Pdf
    Quaternary Science Reviews 164 (2017) 1e24 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications * Kathy J. Licht a, , Sidney R. Hemming b a Department of Earth Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA b Department of Earth and Environmental Sciences, Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA article info abstract Article history: The number of provenance studies of glacigenic sediments in Antarctica has increased dramatically over Received 2 October 2016 the past decade, providing an enhanced understanding of ice sheet history and dynamics, along with the Received in revised form broader geologic history. Such data have been used to assess glacial erosion patterns at the catchment 10 February 2017 scale, flow path reconstructions over a wide range of scales, and ice sheet fluctuations indicated by Accepted 6 March 2017 iceberg rafted debris in circumantarctic glacial marine sediments. It is notable that even though most of the bedrock of the continent is ice covered and inaccessible, provenance data can provide such valuable information about Antarctic ice and can even be used to infer buried rock types along with their geo- and Keywords: Glacial geology thermochronologic history. Glacigenic sediments provide a broader array of provenance analysis op- Bedrock geology portunities than any other sediment type because of their wide range of grain sizes, and in this paper we Till review methods and examples from all size fractions that have been applied to the Antarctic glacigenic Ice-rafted debris sedimentary record.
    [Show full text]
  • Subglacial Hydrological Connectivity Within the Byrd Glacier Catchment, East Antarctica
    Journal of Glaciology, Vol. 60, No. 220, 2014 doi: 10.3189/2014JoG13J014 345 Subglacial hydrological connectivity within the Byrd Glacier catchment, East Antarctica A.P. WRIGHT,1 D.A. YOUNG,2 J.L. BAMBER,1 J.A. DOWDESWELL,3 A.J. PAYNE,1 D.D. BLANKENSHIP,2 M.J. SIEGERT1 1Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UK E-mail: [email protected] 2Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA 3Scott Polar Research Institute, University of Cambridge, Cambridge, UK ABSTRACT. Ice, Cloud and land Elevation Satellite (ICESat) repeat-track laser altimetry has identified 17 sites within the Byrd Glacier catchment, East Antarctica, where rapid ice-surface height changes have occurred, which have been interpreted as evidence for `active' subglacial lakes. Here we present evidence from a new radio-echo sounding (RES) survey at 11 of these locations to understand the bed conditions associated with the proposed hydrological activity. At none of the sites examined did we find evidence in support of substantial pooled basal water. In the majority of cases, along-track RES bed reflection amplitudes either side of the locations of surface height change are indistinguishable from those within the features. These results indicate that, in most cases, hypothesized `active' lakes are not discrete radar targets and are therefore much smaller than the areas of surface height change. In addition, we have identified three new relatively large subglacial lakes upstream of the region where most `active' subglacial lakes are found, in an area where the hydraulic gradient is significantly lower.
    [Show full text]
  • Glaciers of Antarctica! WALT: Order Decimals
    Glaciers of Antarctica! WALT: Order decimals A glacier is a large mass of ice that moves slowly down a mountain. Sometimes these are also called ice rivers. The largest include the Lambert, Mellop, Byrd, Farrar, Slessor, Recovery, Hatherton, Filchner, Ronne, Mulock, Nimrod, Beardmore, Shackleton, Scott and Amundsen glaciers. Here is a Glacial fact file on some of the glaciers in Antarctica. Lambert Glacier Scott Glacier Shackleton Glacier Length: 400km Length: 190km Length: 100km Width: 100km Width: 11km Width: 8-16km ( use 16km) Height: 2, 500m Height: 2,680m Height: 2,700m Thwaites Glacier Nimrod Glacier Beardmore Glacier Length: 160km Length: 135km Length: 200km Width: 50km Width: 16km Width: 40km Height: 300m Height: 4, 350m Height: 2, 200m Answer the following questions relating to these glaciers: 1. Which is the highest glacier? 2. Which is the longest glacier? 3. Which is the widest glacier? 4. What is the combined height of the two widest glaciers? 5. Convert the height of all the glaciers into kilometers. 6. Using the squared pages in your maths book make a bar chart showing the different heights in kilometers of the 6 glaciers above. 7. Using the squared pages in your maths book make a scatter plot graph showing the width of the glaciers in relation to their lengths. 8. Find two more glaciers in Antarctica. Record their height, width and length on a bar chart on your ipad/in your maths book. Answers: Answer the following questions relating to these glaciers: 9. Which is the highest glacier? Nimrod Glacier at 4,350m high. 10. Which is the longest glacier? Lambert Glacier at 400km long.
    [Show full text]
  • Structural Provinces of the Ross Ice Shelf, Antarctica
    Annals of Glaciology 58(75pt1) 2017 doi: 10.1017/aog.2017.24 88 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Structural provinces of the Ross Ice Shelf, Antarctica Christine M. LEDOUX,1 Christina L. HULBE,2 Martin P. FORBES,2 Ted A. SCAMBOS,3 Karen ALLEY3 1Department of Geology, Portland State University, Portland, OR 97215, USA 2School of Surveying, University of Otago, Dunedin, New Zealand. E-mail: [email protected] 3National Snow and Ice Data Center, University of Colorado Boulder, Boulder, CO, USA ABSTRACT. The surface of the Ross Ice Shelf (RIS) is textured by flow stripes, crevasses and other fea- tures related to ice flow and deformation. Here, moderate resolution optical satellite images are used to map and classify regions of the RIS characterized by different surface textures. Because the textures arise from ice deformation, the map is used to identify structural provinces with common deformation history. We classify four province types: regions associated with large outlet glaciers, shear zones, exten- sion downstream of obstacles and suture zones between provinces with different upstream sources. Adjacent provinces with contrasting histories are in some locations deforming at different rates, suggest- ing that our province map is also an ice fabric map. Structural provinces have more complicated shapes in the part of the ice shelf fed by West Antarctic ice streams than in the part fed by outlet glaciers from the Transantarctic Mountains.
    [Show full text]