Bulgaria - Flowers of the Balkans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of the Orchids of the Crimea (Orchidaceae)
J. Eur. Orch. 46 (2): 407 - 436. 2014. Alexander V. Fateryga and Karel C.A.J. Kreutz Checklist of the orchids of the Crimea (Orchidaceae) Keywords Orchidaceae, checklist of species, new nomenclature combinations, hybrids, flora of the Crimea. Summary Fateryga, A.V. & C.A.J. Kreutz (2014): Checklist of the orchids of the Crimea (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. A new nomenclature checklist of the Crimean orchids with 49 taxa and 16 hybrids is proposed. Six new taxa are added and ten taxa are excluded from the latest checklist of the Crimean vascular flora published by YENA (2012). In addition, five nomenclature changes are proposed: Epipactis persica (Soó) Nannf. subsp. taurica (Fateryga & Kreutz) Fateryga & Kreutz comb. et stat. nov., Orchis mascula (L.) L. var. wanjkovii (E. Wulff) Fateryga & Kreutz stat. nov., Anacamptis ×simorrensis (E.G. Camus) H. Kretzschmar, Eccarius & H. Dietr. nothosubsp. ticinensis (Gsell) Fateryga & Kreutz stat. nov., ×Dactylocamptis uechtritziana (Hausskn.) B. Bock ex M. Peregrym & Kuzemko nothosubsp. magyarii (Soó) Fateryga & Kreutz comb. et stat. nov., and Orchis ×beyrichii Kern. nothosubsp. mackaensis (Kreutz) Fateryga & Kreutz comb. et stat. nov. Moreover, a new variety, Limodorum abortivum (L.) Sw. var. viridis Fateryga & Kreutz var. nov. is described. Zusammenfassung Fateryga, A.V. & C.A.J. Kreutz (2014): Eine Übersicht der Orchideen der Krim (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. Eine neue nomenklatorische Liste der Orchideen der Krim mit 49 Taxa und 16 Hybriden wird vorgestellt. Sechs Arten sind neu für die Krim. Zehn Taxa, die noch bei YENA (2012) in seiner Checklist aufgelistet wurden, kommen auf der Krim nicht vor und wurden gestrichen. -
Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations
Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids. -
Globalna Strategija Ohranjanja Rastlinskih
GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 HORTUS BOTANICUS UNIVERSITATIS LABACENSIS, SLOVENIA INDEX SEMINUM ANNO 2017 COLLECTORUM GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 Recenzenti / Reviewers: Dr. sc. Sanja Kovačić, stručna savjetnica Botanički vrt Biološkog odsjeka Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu muz. svet./ museum councilor/ dr. Nada Praprotnik Naslovnica / Front cover: Semeska banka / Seed bank Foto / Photo: J. Bavcon Foto / Photo: Jože Bavcon, Blanka Ravnjak Urednika / Editors: Jože Bavcon, Blanka Ravnjak Tehnični urednik / Tehnical editor: D. Bavcon Prevod / Translation: GRENS-TIM d.o.o. Elektronska izdaja / E-version Leto izdaje / Year of publication: 2018 Kraj izdaje / Place of publication: Ljubljana Izdal / Published by: Botanični vrt, Oddelek za biologijo, Biotehniška fakulteta UL Ižanska cesta 15, SI-1000 Ljubljana, Slovenija tel.: +386(0) 1 427-12-80, www.botanicni-vrt.si, [email protected] Zanj: znan. svet. dr. Jože Bavcon Botanični vrt je del mreže raziskovalnih infrastrukturnih centrov © Botanični vrt Univerze v Ljubljani / University Botanic Gardens Ljubljana ----------------------------------- Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani COBISS.SI-ID=297076224 ISBN 978-961-6822-51-0 (pdf) ----------------------------------- 1 Kazalo / Index Globalna strategija ohranjanja rastlinskih vrst (točka 8) -
Relationships Among Levels of Biodiversity and the Relevance of Intraspecific Diversity in Conservation – a Project Synopsis F
ARTICLE IN PRESS Perspectives in Plant Ecology, Evolution and Systematics Perspectives in Plant Ecology, Evolution and Systematics 10 (2008) 259–281 www.elsevier.de/ppees Relationships among levels of biodiversity and the relevance of intraspecific diversity in conservation – a project synopsis F. Gugerlia,Ã, T. Englischb, H. Niklfeldb, A. Tribschc,1, Z. Mirekd, M. Ronikierd, N.E. Zimmermanna, R. Holdereggera, P. Taberlete, IntraBioDiv Consortium2,3 aWSL Swiss Federal Research Institute, Zu¨rcherstrasse 111, 8903 Birmensdorf, Switzerland bDepartment of Biogeography, University of Vienna, Rennweg 14, 1030 Wien, Austria cDepartment of Systematic and Evolutionary Botany, Rennweg 14, 1030 Wien, Austria dDepartment of Vascular Plant Systematics, Institute of Botany, Polish Academy of Science, Krako´w, Lubicz 46, 31-512 Krako´w, Poland eLaboratoire d’Ecologie Alpine (LECA), CNRS UMR 5553, University Joseph Fourier, BP 53, 2233 Rue de la Piscine, 38041 Grenoble Cedex 9, France Received 11 June 2007; received in revised form 4 June 2008; accepted 9 July 2008 Abstract The importance of the conservation of all three fundamental levels of biodiversity (ecosystems, species and genes) has been widely acknowledged, but only in recent years it has become technically feasible to consider intraspecific diversity, i.e. the genetic component to biodiversity. In order to facilitate the assessment of biodiversity, considerable efforts have been made towards identifying surrogates because the efficient evaluation of regional biodiversity would help in designating important areas for nature conservation at larger spatial scales. However, we know little about the fundamental relationships among the three levels of biodiversity, which impedes the formulation of a general, widely applicable concept of biodiversity conservation through surrogates. -
Watsonia 14 (1982), 79-100
Walsonia , 14, 79-100 (\982) 79 Book Reviews Flowers of Greece and the Balkans. A field guide. Oleg Polunin. Pp. xv+592 including 62 pages of line drawings and 21 maps, with 80 colour plates. Oxford University Press, Oxford. 1980. Price £40.00 (ISBN 0-19- 217-6269). This latest of Oleg Polunin's Field guides to the European flora presents a concise, but by no means superficial, picture of the flowering plants and conifers of the Balkan peninsula. The area that is covers takes in the whole of Greece (including the East Aegean Islands, excluded from Flora Europaea), Turkey-in-Europe, Albania, Bulgaria, Jugoslavia as far north as the River Sava, and the small portion of Romania that lies south and east of the River Danube. The author has condensed his account of the rich and varied flora of the region, together with the associated mass of published material, into a form that is attractive, comprehensible and useful to the amateur botanist. A book of this type has been badly needed, as the available floristic texts on the Balkans tend to be over 50 years old, scarce, extremely expensive and written in a foreign language, often Latin. However, the most significant attribute of this book is not that it gives access to diffuse and obscure information, but that it provides a radical alternative to popular botanical accounts of Greece which emphasize the lowland spring flora, notably the orchids and other petaloid monocots. Based on the author's many years of botanical experience and extensive travel in the region, Flowers of Greece and the Balkans demonstrates the wide range of flora and vegetation that the amateur botanist can expect to see in the Balkan peninsula. -
Differential Evolutionary History in Visual and Olfactory Floral Cues of the Bee-Pollinated Genus Campanula (Campanulaceae)
plants Article Differential Evolutionary History in Visual and Olfactory Floral Cues of the Bee-Pollinated Genus Campanula (Campanulaceae) Paulo Milet-Pinheiro 1,*,† , Pablo Sandro Carvalho Santos 1, Samuel Prieto-Benítez 2,3, Manfred Ayasse 1 and Stefan Dötterl 4 1 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee, 89081 Ulm, Germany; [email protected] (P.S.C.S.); [email protected] (M.A.) 2 Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, s/n, Móstoles, 28933 Madrid, Spain; [email protected] 3 Ecotoxicology of Air Pollution Group, Environmental Department, CIEMAT, Avda. Complutense, 40, 28040 Madrid, Spain 4 Department of Biosciences, Paris-Lodron-University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; [email protected] * Correspondence: [email protected] † Present address: Universidade de Pernambuco, Campus Petrolina, Rodovia BR 203, KM 2, s/n, Petrolina 56328-900, Brazil. Abstract: Visual and olfactory floral signals play key roles in plant-pollinator interactions. In recent decades, studies investigating the evolution of either of these signals have increased considerably. However, there are large gaps in our understanding of whether or not these two cue modalities evolve in a concerted manner. Here, we characterized the visual (i.e., color) and olfactory (scent) floral cues in bee-pollinated Campanula species by spectrophotometric and chemical methods, respectively, with Citation: Milet-Pinheiro, P.; Santos, the aim of tracing their evolutionary paths. We found a species-specific pattern in color reflectance P.S.C.; Prieto-Benítez, S.; Ayasse, M.; and scent chemistry. -
Towards an Updated Checklist of the Libyan Flora
Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K. -
17 December 2014 FIELD CHECKLIST of the VASCULAR
17 December 2014 TAXACEAE (Yew Family) __ Taxus canadensis Canada Yew FIELD CHECKLIST OF THE VASCULAR PLANTS OF JOKERS HILL King Township, Regional Municipality of York PINACEAE (Pine Family) C.S Blaney and P.M. Kotanen* __ Larix laricina Tamarack *Correspondence author: __ Picea glauca White Spruce Department of Ecology & Evolutionary Biology __ Pinus strobus White Pine University of Toronto at Mississauga __ Pinus sylvestris Scots Pine 3359 Mississauga Road North __ Tsuga canadensis Eastern Hemlock Mississauga, ON Canada CUPRESSACEAE (Cypress Family) e-mail: [email protected] __ Juniperus communis Common Juniper __ Juniperus virginiana Eastern Red Cedar The following list is based on observations and collections by the authors between 1997 and 1999, __ Thuja occidentalis Eastern White Cedar with later additions by numerous observers. It includes all species known to be growing outside of cultivation within the Jokers Hill property. Also listed are native species found in land adjacent to the TYPHACEAE (Cat-tail Family) Jokers Hill property, but not yet found on the site (scientific name preceded by "*" - 13 species). A __ Typha angustifolia Narrow-leaved Cat-tail total of 631 taxa (species and hybrids) are listed; 450 taxa are considered native to Jokers Hill (those __ Typha latifolia Common Cat-tail listed in bold typeface) and 181 are considered non-native (listed in regular typeface). Determining native versus non-native status required a few rather arbitrary judgements. SPARGANIACEAE (Bur-reed Family) __ Sparganium chlorocarpum Green Bur-reed Several people assisted in the preparation of this list. P. Ball of the University of Toronto at Mississauga and A. -
DCDB: an Updated On-Line Database of Chromosome Numbers of Tribe Delphinieae (Ranunculaceae)
DCDB: an updated on-line database of chromosome numbers of tribe Delphinieae (Ranunculaceae) Maria Bosch1, Joan Simon1, Jordi López-Pujol2 & Cèsar Blanché1 1BioC-GReB, Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona. Av. Joan XXIII s/n. 08028 Barcelona, Catalonia (Spain) 2BioC-GReB, Botanic Institute of Barcelona (IBB-CSIC-ICUB). Passeig del Migdia s/n. 08028 Barcelona, Catalonia (Spain) VERSION 2.0 UPDATED 23/IV/2016 Abstract. A new version of the earlier chromosome database of tribe Delphinieae (Simon, J., M. Bosch, J. Molero & C. Blanché. 1999. A conspect of chromosome numbers in tribe Delphinieae (Ranunculaceae). Biodiversity Electronic Publications, 1 [Available online at http://hdl.handle.net/2445/95875]) is presented, after an accurate extensive literature and Internet survey, by adding the chromosome counts for the genera Aconitum L. (including Gymnaconitum (Stapf) Wei Wang & Z. D. Chen), Delphinium L. (including Staphisagria Spach), Consolida (DC.) S.F. Gray and Aconitella Spach, accumulated in the last 17 years. A total number of 2598 reports are presented, belonging to 389 species, representing a 44.5% of the total species number of the tribe (an increase of c. 137% compared with the 1097 reports gathered in the 1999 version). This increase is due both to chromosome research progress (analysed as counts/year) and an improved information capture system (including checking of populations location through Cyrillic alphabet, and Japanese and Chinese writing systems). Additionally, recent taxonomic advances, synonimization and new phylogenetic criteria have also been taken in account. The main basic number x = 8 is found at 2x, 3x, 4x, 5x, 6x, and 8x ploidy levels, whereas x = 9 is much rarer. -
ISSN: 2320-5407 Int. J. Adv. Res. 5(7), 1301-1312
ISSN: 2320-5407 Int. J. Adv. Res. 5(7), 1301-1312 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/4841 DOI URL: http://dx.doi.org/10.21474/IJAR01/4841 RESEARCH ARTICLE FLORA OF CHEPAN MOUNTAIN (WESTERN BULGARIA). Dimcho Zahariev. Faculty of Natural Sciences, Department of Plant Protection, Botany and Zoology, University of Shumen, Bulgaria. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Chepan Mountain is located in Western Bulgaria. It is part of Balkan Mountains on the territory of Balkan Peninsula in Southern Europe. As Received: 13 May 2017 a result of this study in Chepan Mountain on the territory of only 25 Final Accepted: 15 June 2017 km2 were found 784 species of wild vascular plants from 378 genera Published: July 2017 and 84 families. Such amazing biodiversity can be found in Southern Europe only. The floristic analysis indicates that the most of the Key words:- families and the genera are represented by a small number of inferior Chepan Mountain, floristic analysis, taxa. The hemicryptophytes dominate among the life forms with vascular plants 53.32%. The biological types are represented mainly by perennial herbaceous plants (59.57%). In the flora of the Mountain there are 49 floristic elements. The most of the species are European-Asiatic floristic elements (14.54%), followed by European-Mediterranean floristic elements (13.78%) and subMediterranean floristic elements (13.52%). Among the vascular plants, there are 26 Balkan endemic species, 4 Bulgarian endemic species and 26 relic species. The species with protection statute are 66 species. The anthropophytes among the vascular plants are 390 species (49.74%). -
Higher Seed Number Compensates for Lower Fruit Set in Deceptive Orchids
Journal of Ecology 2016, 104, 343–351 doi: 10.1111/1365-2745.12511 Higher seed number compensates for lower fruit set in deceptive orchids Judit Sonkoly1*, Anna E. Vojtko2,Jacint Tok€ olyi€ 3,Peter Tor€ ok€ 4,Gabor Sramko5,6, Zoltan Illyes 7 and Attila Molnar V.5 1Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary; 2Department of Tisza Research, Centre for Ecological Research, MTA, H-4026 Debrecen, Hungary; 3MTA-DE “Lendulet€ ” Behavioural Ecology Research Group, University of Debrecen, H-4032 Debrecen, Hungary; 4MTA-DE Biodiversity and Ecosystem Services Research Group, University of Debrecen, H-4032 Debrecen, Hungary; 5Department of Botany, University of Debrecen, H-4032 Debrecen, Hungary; 6MTA-ELTE-MTM Ecology Research Group, H-1117 Budapest, Hungary; and 7Mindszenty Youth House, H-8900, Zalaegerszeg-Botfa, Hungary Summary 1. Floral deception is widespread in orchids, with more than one-third of the species being polli- nated this way. The evolutionary success of deceptive orchids is puzzling, as species employing this strategy are thought to have low reproductive success (less flowers yielding fruits) because of low pollination rates. However, direct measurements of total seed production in orchids – which is a bet- ter measure of reproductive success – are scarce due to the extremely small size of their seeds. 2. Here, we quantified seed numbers in 1015 fruits belonging to 48 orchid species from the Pannon- ian ecoregion (central Europe) and obtained fruit set and thousand-seed weight data for these species from the literature. We used phylogenetic comparative methods to test the hypothesis that deceptive species should compensate for their lower fruit set by having either more flowers, larger seeds or more seeds in a fruit. -
Phylogeny and Biogeography of Isophyllous Species of Campanula (Campanulaceae) in the Mediterranean Area
Systematic Botany (2006), 31(4): pp. 862–880 # Copyright 2006 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Isophyllous Species of Campanula (Campanulaceae) in the Mediterranean Area JEONG-MI PARK,1 SANJA KOVACˇ IC´ ,2 ZLATKO LIBER,2 WILLIAM M. M. EDDIE,3 and GERALD M. SCHNEEWEISS4,5 1Department of Systematic and Evolutionary Botany, Institute of Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria; 2Botanical Department and Botanical Garden of the Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia; 3Office of Lifelong Learning, University of Edinburgh, 11 Buccleuch Place, Edinburgh, EH8 9LW, Scotland, U.K.; 4Department of Biogeography and Botanical Garden, Institute of Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria 5Author for correspondence ([email protected]) Communicating Editor: Thomas G. Lammers ABSTRACT. Sequence data from the nuclear internal transcribed spacer (ITS) were used to infer phylogenetic relationships within a morphologically, karyologically, and geographically well-defined group of species of Campanula (Campanulaceae), the Isophylla group. Although belonging to the same clade within the highly paraphyletic Campanula, the Rapunculus clade, members of the Isophylla group do not form a monophyletic group but fall into three separate clades: (i) C. elatines and C. elatinoides in the Alps; (ii) C. fragilis s.l. and C. isophylla with an amphi-Tyrrhenian distribution; and (iii) the garganica clade with an amphi-Adriatic distribution, comprised of C. fenestrellata s.l., C. garganica s.l., C. portenschlagiana, C. poscharskyana, and C. reatina. Taxa currently classified as subspecies of C. garganica (garganica, cephallenica, acarnanica) and C. fenestrellata subsp.