From Cover Crop Treatments to the Characterization and Detection

Total Page:16

File Type:pdf, Size:1020Kb

From Cover Crop Treatments to the Characterization and Detection DEVELOPING AND TESTING INTEGRATED PEST MANAGEMENT STRATEGIES: FROM COVER CROP TREATMENTS TO THE CHARACTERIZATION AND DETECTION OF PSEUDOPERONOSPORA CUBENSIS AND P. HUMULI A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Carly Faye Summers August 2015 © 2015 Carly Faye Summers ABSTRACT DEVELOPING AND TESTING INTEGRATED PEST MANAGEMENT STRATEGIES: FROM COVER CROP TREATMENTS TO THE CHARACTERIZATION AND DETECTION OF PSEUDOPERONOSPORA CUBENSIS AND P. HUMULI Carly Summers, Ph.D. Cornell University 2015 The practice of integrated management of plant diseases incorporates a vast body of scientific information for effective pathogen control as well as environmental stewardship. Pathogen biology, environmental and epidemiological patterns, preventative cultural practices and judicious chemical applications are a few examples of the scientific areas of research used to support integrated disease management. This body of work focuses on research involved in the integrated disease management approach: cover cropping, early detection of plant pathogens and a pathogen population study. The first chapter explores the effects of mixed-species cover crops on organic tomato crop productivity and disease severity in the field. This research, taken over three field seasons (2010, 2011 and 2012) at sixteen field sites in three states, Maryland, New York and Ohio (MD, NY and OH), each with distinct soilborne disease pressure, was based on measurement of plant growth and vigor, crop yield and disease ratings of naturally occurring infection over time. Our research revealed no short-term effects of cover crop treatments on productivity or disease severity in tomato crops. The second chapter looked at the same tomato crops, turning attention to how the cover crops affect fungal and oomycete pathogen presence in the rhizosphere of tomato plants. For this, two years (2010 and 2011) of field samples from 260 plots were evaluated using two molecular tools: macroarray analysis, a diagnostic tool used to test for the presence of 31 solanaceous pathogens, and terminal restriction fragment length polymorphism (T-RFLP), used to evaluate the microbial fingerprint of the samples. Our findings showed that cover crops did not affect pathogen presence in the rhizosphere and that macroarray was able to detect certain fungi with much greater sensitivity than T-RFLP. Chapter 3 explores the development of techniques used for early detection of Pseudoperonospora cubensis and P. humuli, causal agents of cucurbit and hop downy mildews, respectively. Two techniques were designed which allow for detection and differentiation of both pathogens from environmental samples: real-time PCR with locked-nucleic acid probes and high resolution melt curve analysis. These assays were then used to test for pathogen presence in air samples collected in New York using spore traps. Chapter 4 presents the results of a comparative analysis between RNA sequencing (RNA-seq) and genotyping by sequencing (GBS) conducted in order to determine which technique is most effective in single nucleotide polymorphism (SNP) identification for Pseudoperonospora cubensis and P. humuli, as well as to discover novel SNPs that determine population structure between and among these two genetically similar species. Finally, included in the appendix is a case study summarizing a collaboration with St. John’s University in Tanzania, facilitated by a Horticulture Collaborative Research Support Program grant. The project aims were to train a graduate student in extension talks for IPM of tomato, implement the talks with growers and a pesticide alternative in an experiment-based field study. BIOGRAPHICAL SKETCH Carly Faye Summers received a Bachelor of Arts in Biochemistry from New College, a small liberal arts college in Sarasota, Florida. After graduating in 2005, she served in the Peace Corps in Ahuachapán, El Salvador, for two years and three months. As part of the Agroforestry and Environmental Education field unit, she worked with farmers, families and schools in various areas from integrated pest management to recycling. Upon return to Florida, she worked as a research chemist at Archer Pharmaceuticals, a systematics botanist at Selby Gardens then a technician in a plant pathology laboratory at the University of Florida. In 2010 she began her PhD work at Cornell, working with Dr. Christine Smart. iii For my loving family~ Nancy Jo Summers, James Eric Summers and Rebecca Claire Summers. iv ACKNOWLEDGEMENTS A warm thank you is extended to my advisor, Dr. Christine Smart, for inviting me to be part of a program centered upon dedication to growers, students and community. I greatly appreciated the chance to mentor undergraduates each summer, explore my international agriculture interests, and take part in grower field trials as well as the local school garden program. Thank you to committee members Drs. William Fry, George Abawi and Marc Fuchs for your time, feedback and encouragement. Thank you to Holly Lange for her support in the lab and field– and of course the mountain biking! Working with lab members Amara Dunn, Lisa Jones, Matt Tancos, Zach Hansen, Rachel Kreiss and Maryn Carlson was definitely one of the highlights of my graduate work. Thank you to the undergraduate summer scholars who worked with me: Gussie Williams, Alexandra Curtis and Eva Beyen. Thank you to Don Lotter and Sophia Chami in Tanzania for our collaboration through the CRSP USAID grant work. I am also grateful for the graduate student garden in Geneva each summer, facilitated by Steve Reiners and Chris Smart. Finally, I’d like to thank my close friends Angela Beidler, Kaitlin Berger, Belinda Bonnen, Rachael McLean, Ellen Crocker, Tuyen Nguyen and Spencer Horchler. My partner Colwyn Gulliford, thank you for embarking on this journey with me. And to my loving family, Nancy Jo, Eric and Rebecca Claire– you are my sunshine. My research was supported by grants from Trellis HortCRSP USAID, the Einaudi Center International Research, the Toward Sustainability Foundation, the American Phytopathological Society Kenneth F. Baker and R. James Cook Student Travel Award, NSF pre-doctoral fellowship (DGE-1144153) and USDA-NIFA grant number 2009-55605-05184. v TABLE OF CONTENTS Biographical Sketch ......................................................................................................................... iii Dedication ......................................................................................................................................... iv Acknowledgements .......................................................................................................................... v Table of Contents ............................................................................................................................ vi List of Figures ................................................................................................................................... vii List of Tables .................................................................................................................................... viii Introduction ...................................................................................................................................... 1 Chapter 1. Single Season Effects of Mixed-Species Cover Crops on Tomato Health (cultivar Celebrity) in Multi-State Field Trials ............................................................................ 8 Chapter 2. Fungal and Oomycete Pathogen Detection in the Rhizosphere of Organic Tomatoes Grown in Cover Crop-Treated Soils .......................................................................... 51 Chapter 3. Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis ......................................................................................... 75 Chapter 4. Identification of genetic variation between obligate plant pathogens Pseudoperonospora cubensis and P. humuli using RNA sequencing (RNA-seq) and genotyping-by-sequencing (GBS) .................................................................................................. 113 Conclusions ....................................................................................................................................... 152 Appendix I: Tomato integrated pest management in Tanzania ................................................ 158 Appendix II: Neighbor-joining trees of concatenated SNPs .................................................... 163 vi LIST OF FIGURES 1.1 Productivity Graphs .................................................................................................................... 28 1.2 Disease Graphs ............................................................................................................................ 41 3.1 Linear regression of 10-fold dilutions of Pseudoperonospora cubensis and P. humuli DNA against corresponding mean quantification cycle values ....................................................... 96 3.2 Melt and difference curves from a high resolution melt curve assay for Pseudoperonospora cubensis and P. humuli samples .................................................................................................... 99 3.3 Melt and difference curves from a high resolution melt curve assay for Pseudoperonospora cubensis and P. humuli when conducted
Recommended publications
  • PCR Detection of Pseudoperonospora Humuli and Podosphaera Macularis in Humulus Lupulus
    Plant Protect. Sci. Vol. 41, No. 4: 141–149 PCR Detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus JOSEF PATZAK Hop Research Institute Co., Ltd., Žatec, Czech Republic Abstract PATZAK J. (2005): PCR detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus. Plant Protect. Sci., 41: 141–149. Hop downy mildew (Pseudoperonospora humuli) and hop powdery mildew (Podosphaera macularis) are the most important pathogens of hop (Humulus lupulus). The early detection and identification of these pathogens are often made difficult by symptomless or combined infection with another pathogens. Molecular analysis of internal transcribed spacer (ITS) regions of rDNA is a novel and very effective method of species determina- tion. Therefore, specific PCR assays were developed to detect the pathogens Pseudoperonospora humuli and Podosphaera macularis in naturally infected hop plants. The specific PCR primer combinations P1 + P2 and S1 + S2 amplified specific fragments from Pseudoperonospora humuli and Podosphaera macularis, respectively, and did not cross-react with hop DNA nor with DNA from other fungi. PCR primer combinations R1 + R2 and R3 + R4 could be used in multiplex PCR detection of Pseudoperonospora humuli, Podosphaera macularis, Verticillium albo-atrum and Fusarium sambucinum. Phylogenetic relationships were inferred for 42 species of the Erysiphales from nuclear rDNA (ITS1, 5.8S, ITS2). The molecular characterisation and phylogenetic analy- ses confirmed the species identification of hop powdery mildew. The PCR assays used in this study proved to be accurate and sensitive for detection, identification, classification and disease-monitoring of the major hop pathogens. Keywords: hop powdery mildew; hop downy mildew; internal transcribed spacers (ITS); PCR detection; phylo- genetic analysis Hop (Humulus lupulus L.) is a dioecious, peren- disease occurring worldwide.
    [Show full text]
  • Genetic and Pathogenic Relatedness of Pseudoperonospora Cubensis and P. Humuli
    Mycology Genetic and Pathogenic Relatedness of Pseudoperonospora cubensis and P. humuli Melanie N. Mitchell, Cynthia M. Ocamb, Niklaus J. Grünwald, Leah E. Mancino, and David H. Gent First, second, and fourth authors: Department of Botany and Plant Pathology, third author: United States Department of Agriculture– Agricultural Research Service (USDA-ARS), Horticultural Crops Research Unit; and fifth author: USDA-ARS, Forage Seed and Cereal Research Unit, and Department of Botany and Plant Pathology, Oregon State University, Corvallis. Accepted for publication 6 March 2011. ABSTRACT Mitchell, M. N., Ocamb, C. M., Grünwald, N. J., Mancino, L. E., and in nuclear, mitochondrial, and ITS phylogenetic analyses, with the Gent, D. H. 2011. Genetic and pathogenic relatedness of Pseudoperono- exception of isolates of P. humuli from Humulus japonicus from Korea. spora cubensis and P. h u m u l i . Phytopathology 101:805-818. The P. cubensis isolates appeared to contain the P. humuli cluster, which may indicate that P. h um u li descended from P. cubensis. Host-specificity The most economically important plant pathogens in the genus experiments were conducted with two reportedly universally susceptible Pseudoperonospora (family Peronosporaceae) are Pseudoperonospora hosts of P. cubensis and two hop cultivars highly susceptible to P. humuli. cubensis and P. hu m u li, causal agents of downy mildew on cucurbits and P. cubensis consistently infected the hop cultivars at very low rates, and hop, respectively. Recently, P. humuli was reduced to a taxonomic sporangiophores invariably emerged from necrotic or chlorotic hyper- synonym of P. cubensis based on internal transcribed spacer (ITS) sensitive-like lesions. Only a single sporangiophore of P.
    [Show full text]
  • Inventory and Review of Quantitative Models for Spread of Plant Pests for Use in Pest Risk Assessment for the EU Territory1
    EFSA supporting publication 2015:EN-795 EXTERNAL SCIENTIFIC REPORT Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory1 NERC Centre for Ecology and Hydrology 2 Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK ABSTRACT This report considers the prospects for increasing the use of quantitative models for plant pest spread and dispersal in EFSA Plant Health risk assessments. The agreed major aims were to provide an overview of current modelling approaches and their strengths and weaknesses for risk assessment, and to develop and test a system for risk assessors to select appropriate models for application. First, we conducted an extensive literature review, based on protocols developed for systematic reviews. The review located 468 models for plant pest spread and dispersal and these were entered into a searchable and secure Electronic Model Inventory database. A cluster analysis on how these models were formulated allowed us to identify eight distinct major modelling strategies that were differentiated by the types of pests they were used for and the ways in which they were parameterised and analysed. These strategies varied in their strengths and weaknesses, meaning that no single approach was the most useful for all elements of risk assessment. Therefore we developed a Decision Support Scheme (DSS) to guide model selection. The DSS identifies the most appropriate strategies by weighing up the goals of risk assessment and constraints imposed by lack of data or expertise. Searching and filtering the Electronic Model Inventory then allows the assessor to locate specific models within those strategies that can be applied.
    [Show full text]
  • The Identity of Phyllosticta Destructiva Desm. and Similar Phoma-Like Fungi Described from Malvaceae and Lycium Halimifolium
    The identity of Phyllosticta destructiva Desm. and similar Phoma-like Fungi described from Malvaceae and Lycium halimifolium H.A. van der Aa and H.A. van Kesteren Centraalbureau voor Schimmelcultures, Baarn, and PlantenziektenkundigeDienst, Wageningen. SUMMARY examination of By comparative type specimens and freshly collected material,and pure cultures and by inoculation experiments, it was shown that Phyllosticta destructiva 1 and numerous other Phoma-like fungi described on Malvaceae and Lycium halimifolium are identical with the übiquitousweak and wound parasite Phoma exigua Desm. 1. INTRODUCTION In 1847 Desmazieres described Phyllosticta destructiva as a member of the Sphaeropsidales with “sporidiis minutis ovoideo-oblongis, subhyalinis, 1-2 sep- tatis”. This fungus was found on Malva species (Phyllosticta destructiva var. malvarum) and on Lycium species (van lycii) and was therefore considered to be the the a polyphagous species. According to type specimen (Herb. PC) and distributedexsiccata in PI. cryptog. N. France [ed. 1] Fasc. 33, No. 1627. 1847 of Phyllosticta destructiva on Malva sylvestris and Lycium halimifolium (sub syn. the be characterized L. europaeum) spores now can as 1-, 2-, or occasionally 3-celled, (2.5)5-10(13) X (1.5)2-4 p, in size. This species concept does not fit in Saccardo’s Sphaerioideae-hyalosporae. In his system (1884) the most impor- tant characters for separating genera and species were septation of the spores, identity of the host and the part ofthe plant on which the fungus occurred. This was the reason why subsequent authors described differentspecies of Ascochyta, and Malvaceae Diplodina, Phoma, Phyllosticta on and on Lycium halimifolium similar to Phyllosticta destructiva and ignored the existence and priority of this last name.
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • A Polyphasic Approach to Characterise Phoma and Related Pleosporalean Genera
    available online at www.studiesinmycology.org StudieS in Mycology 65: 1–60. 2010. doi:10.3114/sim.2010.65.01 Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera M.M. Aveskamp1, 3*#, J. de Gruyter1, 2, J.H.C. Woudenberg1, G.J.M. Verkley1 and P.W. Crous1, 3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Dutch Plant Protection Service (PD), Geertjesweg 15, 6706 EA Wageningen, The Netherlands; 3Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: Maikel M. Aveskamp, [email protected] #Current address: Mycolim BV, Veld Oostenrijk 13, 5961 NV Horst, The Netherlands Abstract: Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the β-tubulin (TUB) gene region.
    [Show full text]
  • Phoma Destructiva Causing Blight of Tomato Plants: a New Fungal Threat for Tomato Plantations in Brazil?
    Trop. plant pathol. (2018) 43:257–262 https://doi.org/10.1007/s40858-017-0200-2 SHORT COMMUNICATION Phoma destructiva causing blight of tomato plants: a new fungal threat for tomato plantations in Brazil? Adans A. Colmán1 & Janaina L. Alves1 & Meiriele da Silva1 & Robert W. Barreto1 Received: 17 July 2017 /Accepted: 24 October 2017 /Published online: 20 November 2017 # Sociedade Brasileira de Fitopatologia 2017 Abstract Solanum lycopersicum is among the most impor- Solanum lycopersicum (Solanaceae) is one of the most impor- tant crops in Brazil. This crop is affected by a large range of tant and broadly grown vegetables in the world. Brazil is fungal diseases that are recognized as major limitations for among the major producers of tomato worldwide (Vale et al. tomato production. Recently, plants grown in a greenhouse 2007). A large range of fungal and oomycete diseases affect in Viçosa, Minas Gerais, Brazil, were found to bear severe tomato (Jones et al. 2014; Lopes and Ávila 2005), some of blight symptoms. A pycnidial coelomycete was repeatedly which are universally regarded as major threats to tomato found in association with necrotic tissues. The fungus had its production, such as early blight, caused by Alternaria spp., morphology recognized as equivalent to that of Phoma and and late blight, caused by Phytophthora infestans. Others, related genera. A phylogenetic analysis based on nrDNA such as Phoma rot, are considered as having less relevance. (ITS) and partial β-tubulin (TUB) sequences led to the con- In Brazil, this disease is considered to be of secondary impor- clusion that the fungus involved was Phoma destructiva.
    [Show full text]
  • A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
    Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA.
    [Show full text]
  • Tomato Disease Tomato Field Guide Field
    TOMATO DISEASE TOMATO DISEASE FIELD GUIDE DISEASE TOMATO FIELD GUIDE 1 TOMATO DISEASE FIELD GUIDE PREFACE This guide provides descriptions and photographs of the more common tomato diseases and disorders worldwide. For each disease and disorder the reader will find the common name, causal agent, distribution, symptoms, conditions for disease development and control measures. We have also included a section on common vectors of tomato viruses. New to this guide are several bacterial, virus and viroid descriptions as well as several tomato disorders. The photographs illustrate characteristic symptoms of the diseases and disorders included in this guide. It is important to note, however, that many factors can influence the appearance and severity of symptoms. Many of the photographs are new to this guide. We are grateful to the many academic and private industry individuals who contributed photographs for this guide. The primary audience for this guide includes tomato crop producers, agricultural advisors, private consultants, farm managers, agronomists, food processors, and members of the chemical and vegetable seed industries. This guide should be used as a reference for information about common diseases and disorders as well as their control. However, diagnosis of these diseases and disorders using only this guide is not recommended nor encouraged, and it is not intended to be substituted for the professional opinion of a producer, grower, agronomist, plant pathologist or other professionals involved in the production of tomato crops. Even the most experienced plant pathologist relies upon laboratory and greenhouse techniques to confirm a plant disease and/or disease disorder diagnosis. Moreover, this guide is by no means inclusive of every tomato disease.
    [Show full text]
  • Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system.
    [Show full text]
  • Pseudoperonospora Humuli) and Tolerance by Phytophthora Isolates to the Systemic Fungicide Meta- Laxyl
    AN ABSTRACT OF THE THESIS OF Robert M. Hunger for the degree of Doctor of Philosophy inPlant Pathology presented on March 17, 1982 Title: Chemical Control of Hop Downy Mildew (Pseudoperonospora humuli) and Tolerance by Phytophthora Isolates to the Systemic Fungicide Meta- laxyl. Abstract approved: Redacted for privacy Dr. Chester E. Horner Four systemic fungicides (metalaxyl, M 9834, propamocarb, and efosite aluminum) were evaluated for control of the downy mildew disease (Pseudoperonospora humuli) of hops (Humulus lupulus). Metalaxyl applied at 0.3 gm/plant in mid-April resulted in nearly complete control of the disease and increased yields significantly. Treatment with M 9834 at 0.3 gm/plant resulted in control comparable to metalaxyl up to four weeks after application, but disease incidence increased sharply after six weeks. Propamocarb and efosite aluminum treatments were less effective than metalaxyl or M 9834, but did result in substantial disease control. The possibility that metalaxyl tolerance occurs in Phytophthora, fungus related to Pseudoperonospora was examined in vitro. Thirty- five isolates of Phytophthora megasperma were tested for tolerance to metalaxyl. Tolerance was measured by comparing isolate growth, and oogonia and sporangia formation on amended and control media. Based on growth at 0, 1, and 10 pg metalaxyl/ml, 15 isolates were highly sensitive, 8 moderately tolerant, and 12 highly tolerant to the fungi- cide. No isolates in the highly sensitive group formed oogonia at 1 pg metalaxyl/ml, whereas six isolates from the moderately tolerant group, and eight from the highly tolerant group did. The number of isolates forming sporangia and the mean number of sporangia formed per isolate decreased with increasing fungicide concentration.
    [Show full text]
  • Pseudoperonospora Cubensis
    Which Morphological Characteristics Are Most Influenced by the Host Matrix in Downy Mildews? A Case Study in Pseudoperonospora cubensis Fabian Runge1, Beninweck Ndambi1,2, Marco Thines3,4,5* 1 University of Hohenheim, Institute of Botany, Stuttgart, Germany, 2 University of Hohenheim, Institute of Plant Production and Agroecology in the Tropics and Subtropics, Stuttgart, Germany, 3 Biodiversity and Climate Research Centre (BiK-F), Frankfurt (Main), Germany, 4 Senckenberg Gesellschaft fu¨r Naturforschung, Frankfurt (Main), Germany, 5 Johann Wolfgang Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt (Main), Germany Abstract Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness.
    [Show full text]