Genetic and Pathogenic Relatedness of Pseudoperonospora Cubensis and P. Humuli
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PCR Detection of Pseudoperonospora Humuli and Podosphaera Macularis in Humulus Lupulus
Plant Protect. Sci. Vol. 41, No. 4: 141–149 PCR Detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus JOSEF PATZAK Hop Research Institute Co., Ltd., Žatec, Czech Republic Abstract PATZAK J. (2005): PCR detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus. Plant Protect. Sci., 41: 141–149. Hop downy mildew (Pseudoperonospora humuli) and hop powdery mildew (Podosphaera macularis) are the most important pathogens of hop (Humulus lupulus). The early detection and identification of these pathogens are often made difficult by symptomless or combined infection with another pathogens. Molecular analysis of internal transcribed spacer (ITS) regions of rDNA is a novel and very effective method of species determina- tion. Therefore, specific PCR assays were developed to detect the pathogens Pseudoperonospora humuli and Podosphaera macularis in naturally infected hop plants. The specific PCR primer combinations P1 + P2 and S1 + S2 amplified specific fragments from Pseudoperonospora humuli and Podosphaera macularis, respectively, and did not cross-react with hop DNA nor with DNA from other fungi. PCR primer combinations R1 + R2 and R3 + R4 could be used in multiplex PCR detection of Pseudoperonospora humuli, Podosphaera macularis, Verticillium albo-atrum and Fusarium sambucinum. Phylogenetic relationships were inferred for 42 species of the Erysiphales from nuclear rDNA (ITS1, 5.8S, ITS2). The molecular characterisation and phylogenetic analy- ses confirmed the species identification of hop powdery mildew. The PCR assays used in this study proved to be accurate and sensitive for detection, identification, classification and disease-monitoring of the major hop pathogens. Keywords: hop powdery mildew; hop downy mildew; internal transcribed spacers (ITS); PCR detection; phylo- genetic analysis Hop (Humulus lupulus L.) is a dioecious, peren- disease occurring worldwide. -
Phytophthora Pathogens Threaten Rare Habitats and Conservation Plantings
Phytophthora pathogens threaten rare habitats and conservation plantings Susan J. Frankel1, Janice Alexander2, Diana Benner3, Janell Hillman4 & Alisa Shor5 Abstract Phytophthora pathogens are damaging native wildland vegetation including plants in restoration areas and botanic gardens. The infestations threaten some plants already designated as endangered and degrade high-value habitats. Pathogens are being introduced primarily via container plant nursery stock and, once established, they can spread to adjacent areas where plant species not previously exposed to pathogens may become infected. We review epidemics in California – caused by the sudden oak death pathogen Phytophthora ramorum Werres, De Cock & Man in ‘t Veld and the frst USA detections of P. tentaculata Krber & Marwitz, which occurred in native plant nurseries and restoration areas – as examples to illustrate these threats to conservation plantings. Introduction stock) (Liebhold et al., 2012; Parke et al., Phytophthora (order: Peronosporales; 2014; Jung et al., 2015; Swiecki et al., kingdom: Stramenopila) pathogens 2018b; Sims et al., 2019). Once established, have increasingly been identifed as Phytophthora spp. have the potential associated with plant dieback and to reduce growth, kill and cause other mortality in restoration areas (Bourret, undesirable impacts on a wide variety of 2018; Garbelotto et al., 2018; Sims et al., native or horticultural vegetation (Brasier 2019), threatened and endangered species et al., 2004; Hansen 2007, 2011; Scott & habitat (Swiecki et al., 2018a), botanic Williams, 2014; Jung et al., 2018). gardens and wildlands in coastal California In this review, we focus on the (Cobb et al., 2017; Metz et al., 2017) and consequences of two pathogen southern Oregon (Goheen et al., 2017). -
The Taxonomy and Biology of Phytophthora and Pythium
Journal of Bacteriology & Mycology: Open Access Review Article Open Access The taxonomy and biology of Phytophthora and Pythium Abstract Volume 6 Issue 1 - 2018 The genera Phytophthora and Pythium include many economically important species Hon H Ho which have been placed in Kingdom Chromista or Kingdom Straminipila, distinct from Department of Biology, State University of New York, USA Kingdom Fungi. Their taxonomic problems, basic biology and economic importance have been reviewed. Morphologically, both genera are very similar in having coenocytic, hyaline Correspondence: Hon H Ho, Professor of Biology, State and freely branching mycelia, oogonia with usually single oospores but the definitive University of New York, New Paltz, NY 12561, USA, differentiation between them lies in the mode of zoospore differentiation and discharge. Email [email protected] In Phytophthora, the zoospores are differentiated within the sporangium proper and when mature, released in an evanescent vesicle at the sporangial apex, whereas in Pythium, the Received: January 23, 2018 | Published: February 12, 2018 protoplast of a sporangium is transferred usually through an exit tube to a thin vesicle outside the sporangium where zoospores are differentiated and released upon the rupture of the vesicle. Many species of Phytophthora are destructive pathogens of especially dicotyledonous woody trees, shrubs and herbaceous plants whereas Pythium species attacked primarily monocotyledonous herbaceous plants, whereas some cause diseases in fishes, red algae and mammals including humans. However, several mycoparasitic and entomopathogenic species of Pythium have been utilized respectively, to successfully control other plant pathogenic fungi and harmful insects including mosquitoes while the others utilized to produce valuable chemicals for pharmacy and food industry. -
The Infection Capabilities of Hop Downy Mildew^
THE INFECTION CAPABILITIES OF HOP DOWNY MILDEW^ By G. R. HoERNER Agentj Division of Drug and Related Plants^ Bureau of Plant Industry, United States Department of Agriculture INTRODUCTION Downy mildew, Pseudoperonospora humuli (Miyabe and Tak.) Wils, was first observed in commercial hopyards in Oregon in 1930. Following a survey to determine the incidence of infection, an inves- tigation of the life history and infection capabilities of the causal organ- ism was inaugurated. The primary objectives of the investigation were to determine the host range of the fungus; to discover any evi- dence of resistance to the fungus among botanical species, horticul- tural varieties, or strains of hops developed by means of selection or hybridization; and by attempting to infect all available known hosts of other species of the genus Psevdoperonospora, to confirm or dis- prove the opinion ^ that physiological races of the fungus may exist. MATERIALS AND METHODS In a previous paper the writer ^ discussed in some detail materials and methods employed and results obtained early in the course of this investigation. In addition to hop seedlings, the leaves of hop plants grown from cuttings were employed. Both cotyledons and leaves of seedlings, as well as the leaves of more mature plants of other host genera, were used. In some instances excised cotyledons and leaves were incubated after inoculation in Petri dish moist chambers or floated in covered Petri dishes of nutrient or sugar solutions. The methods of applying the inoculum varied also. In addition to the use of cameFs-hair brushes for the transfer of inoculum, water suspensions of zoosporangia were atomized onto the plant parts or placed in localized areas by means of a medicine dropper. -
Dimorphism of Sporangia in Albuginaceae (Chromista, Peronosporomycetes)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2006 Band/Volume: 58 Autor(en)/Author(s): Constantinescu Ovidiu, Thines Marco Artikel/Article: Dimorphism of sporangia in Albuginaceae (Chromista, Peronosporomycetes). 178-190 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Dimorphism of sporangia in Albuginaceae (Chromista, Peronosporomycetes) O. Constantinescu1 & M. Thines2 1 Botany Section, Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden 2 Institute of Botany, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany Constantinescu O. & Thines M. (2006) Dimorphism of sporangia in Albugi- naceae (Chromista, Peronosporomycetes). - Sydowia 58 (2): 178 - 190. By using light- and scanning electron microscopy, the dimorphism of sporangia in Albuginaceae is demonstrated in 220 specimens of Albugo, Pustula and Wilsoniana, parasitic on plants belonging to 13 families. The presence of two kinds of sporangia is due to the sporangiogenesis and considered to be present in all representatives of the Albuginaceae. Primary and secondary sporangia are the term recommended to be used for these dissemination organs. Key words: Albugo, morphology, sporangiogenesis, Pustula, Wilsoniana. The Albuginaceae, a group of plant parasitic, fungus-like organisms traditionally restricted to the genus Albugo (Pers.) Roussel (Cystopus Lev.), but to which Pustula Thines and Wilsoniana Thines were recently added (Thines & Spring 2005), differs from other Peronosporomycetes mainly by the sub epidermal location of the unbranched sporangiophores, and basipetal sporangiogenesis resulting in chains of sporangia. A feature only occasionally described is the presence of two kinds of sporangia. Tulasne (1854) was apparently the first to report this character in Wilsoniana portulacae (DC. -
Mildew (Peronospora Sparsa)
A review into control measures for blackberry downy mildew (Peronospora sparsa) Guy Johnson and Ruth D’Urban-Jackson ADAS Boxworth, Battlegate Road, Cambridgeshire, CB23 4NN Background Control of downy mildew in commercial blackberry production is becoming increasingly difficult. Losses of effective spray control products in recent years, particularly close to harvest, have exacerbated the problem. Novel and alternative approaches will be required in future. AHDB has already funded several projects to assess new control measures, but this desk study aims to identify additional ideas. Summary of main findings • Use of protected cropping to reduce leaf wetness will help minimise infection • Good site selection to maximise light interception, maintain good air movement and avoid natural sources of infection is important • Maintain good air movement by removing weed growth in the crop vicinity and managing the crop to avoid excessive vegetative growth • Reduce relative humidity below 85%. The use of air fans in glasshouse crops improves air movement • Manage nitrogen application carefully to avoid excessive leaf growth • Photoselective polythene to alter the wavelength of light reaching the crop could affect the infection rate, but this requires further study • The efficacy of the currently approved biopesticide control agents Serenade ASO, Sonata, Amylo X and Prestop requires further assessment • Elicitors (such as potassium phosphite) and plant extracts are known to offer varying levels of control, but these need further screening to assess -
Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics
plants Review Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics Andres F. Salcedo 1 , Savithri Purayannur 1 , Jeffrey R. Standish 1 , Timothy Miles 2, Lindsey Thiessen 1 and Lina M. Quesada-Ocampo 1,* 1 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA; [email protected] (A.F.S.); [email protected] (S.P.); [email protected] (J.R.S.); [email protected] (L.T.) 2 Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Abstract: Downy mildews affect important crops and cause severe losses in production worldwide. Accurate identification and monitoring of these plant pathogens, especially at early stages of the disease, is fundamental in achieving effective disease control. The rapid development of molecular methods for diagnosis has provided more specific, fast, reliable, sensitive, and portable alternatives for plant pathogen detection and quantification than traditional approaches. In this review, we provide information on the use of molecular markers, serological techniques, and nucleic acid amplification technologies for downy mildew diagnosis, highlighting the benefits and disadvantages of the technologies and target selection. We emphasize the importance of incorporating information on pathogen variability in virulence and fungicide resistance for disease management and how the Citation: Salcedo, A.F.; Purayannur, development and application of diagnostic assays based on standard and promising technologies, S.; Standish, J.R.; Miles, T.; Thiessen, including high-throughput sequencing and genomics, are revolutionizing the development of species- L.; Quesada-Ocampo, L.M. Fantastic specific assays suitable for in-field diagnosis. -
Observing Life in the Sea
May 24, 2019 Observing Life in the Sea Sanctuaries MBON Monterey Bay, Florida Keys, and Flower Garden Banks National Marine Sanctuaries Principal Investigators: Frank Muller-Karger (USF) Francisco Chávez (MBARI) Illustration by Kelly Lance© 2016 MBARI Partners: E. Montes/M. Breitbart/A. Djurhuus/N. Sawaya1, K. Pitz/R. Michisaki2, Maria Kavanaugh3, S. Gittings/A. Bruckner/K. Thompson4, B.Kirkpatrick5, M. Buchman6, A. DeVogelaere/J. Brown7, J. Field8, S. Bograd8, E. Hazen8, A. Boehm9, K. O'Keife/L. McEachron10, G. Graettinger11, J. Lamkin12, E. (Libby) Johns/C. Kelble/C. Sinigalliano/J. Hendee13, M. Roffer14 , B. Best15 Sanctuaries MBON 1 College of Marine Science, Univ. of South Florida (USF), St Petersburg, FL; 2 MBARI/CenCOOS, CA; 3 Oregon State University, Corvallis, OR; 4 NOAA Office of National Marine Sanctuaries (ONMS), Washington, DC; 5 Texas A&M University (TAMU/GCOOS), College Station, TX; Monterey Bay, 6 NOAA Florida Keys National Marine Sanctuary (FKNMS), Key West, FL; Florida Keys, and 7 NOAA Monterey Bay National Marine Sanct. (MBNMS), Monterey, CA; Flower Garden Banks 8 NOAA SW Fisheries Science Center (SWFSC), La Jolla, CA, 9 Center for Ocean Solutions, Stanford University, Pacific Grove, CA; National Marine Sanctuaries 10 Florida Fish and Wildlife Research Institute (FWRI), St Petersburg, FL; 11NOAA Office of Response and Restoration (ORR), Seattle, WA; Principal Investigators: 12NOAA SE Fisheries Science Center (SEFSC), Miami, FL; Frank Muller-Karger (USF) 13NOAA Atlantic Oceanographic and Meteorol. Lab. (AOML), Miami, -
Pseudoperonospora Cubensis and P. Humuli Detection Using Species-Specific Probes and High Definition Melt Curve Analysis
Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis Summers, C. F., Adair, N. L., Gent, D. H., McGrath, M. T., & Smart, C. D. (2015). Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis. Canadian Journal of Plant Pathology, 37(3), 315-330. doi:10.1080/07060661.2015.1053989 10.1080/07060661.2015.1053989 Taylor & Francis Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Can. J. Plant Pathol., 2015 Vol. 37, No. 3, 315–330, http://dx.doi.org/10.1080/07060661.2015.1053989 Epidemiology / Épidémiologie Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis CARLY F. SUMMERS1, NANCI L. ADAIR2, DAVID H. GENT2, MARGARET T. MCGRATH3 AND CHRISTINE D. SMART1 1Plant Pathology and Plant-Microbe Biology Section, SIPS, Cornell University, Geneva, NY 14456, USA 2USDA-ARS, Forage Seed and Cereal Research Unit and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, USA 3Plant Pathology and Plant-Microbe Biology Section, SIPS, Cornell University, Long Island Horticultural Research and Extension Center, Riverhead, NY 11901, USA (Accepted 16 May 2015) Abstract: Real-time PCR assays using locked nucleic acid (LNA) probes and high resolution melt (HRM) analysis were developed for molecular differentiation of Pseudoperonospora cubensis and P. humuli, causal agents of cucurbit and hop downy mildew, respectively. The assays were based on a previously identified single nucleotide polymorphism (SNP) in the cytochrome oxidase subunit II (cox2) gene that differentiates the two species. Sequencing of the same region from 15 P. -
<I>Peronospora Belbahrii</I>
VOLUME 6 DECEMBER 2020 Fungal Systematics and Evolution PAGES 39–53 doi.org/10.3114/fuse.2020.06.03 Two new species of the Peronospora belbahrii species complex, Pe. choii sp. nov. and Pe. salviae-pratensis sp. nov., and a new host for Pe. salviae-officinalis M. Hoffmeister1, S. Ashrafi1, M. Thines2,3,4*, W. Maier1* 1Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany 2Goethe University, Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany 3Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany 4LOEWE-Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany *Joint senior and corresponding authors, listed in alphabetical order of the first names: [email protected]; [email protected] Key words: Abstract: The downy mildew species parasitic to Mentheae are of particular interest, as this tribe of Lamiaceae coleus contains a variety of important medicinal plants and culinary herbs. Over the past two decades, two pathogens, downy mildew Peronospora belbahrii and Pe. salviae-officinalis have spread globally, impacting basil and common sage production, multi-gene phylogeny respectively. In the original circumscription ofPe. belbahrii, the downy mildew of coleus (Plectranthus scutellarioides) new host report was ascribed to this species in the broader sense, but subtle differences in morphological and molecular phylogenetic new taxa analyses using two genes suggested that this pathogen would potentially need to be assigned to a species of its own. -
I. Albuginaceae and Peronosporaceae) !• 2
ANNOTATED LIST OF THE PERONOSPORALES OF OHIO (I. ALBUGINACEAE AND PERONOSPORACEAE) !• 2 C. WAYNE ELLETT Department of Plant Pathology and Faculty of Botany, The Ohio State University, Columbus ABSTRACT The known Ohio species of the Albuginaceae and of the Peronosporaceae, and of the host species on which they have been collected are listed. Five species of Albugo on 35 hosts are recorded from Ohio. Nine of the hosts are first reports from the state. Thirty- four species of Peronosporaceae are recorded on 100 hosts. The species in this family re- ported from Ohio for the first time are: Basidiophora entospora, Peronospora calotheca, P. grisea, P. lamii, P. rubi, Plasmopara viburni, Pseudoperonospora humuli, and Sclerospora macrospora. New Ohio hosts reported for this family are 42. The Peronosporales are an order of fungi containing the families Albuginaceae, Peronosporaceae, and Pythiaceae, which represent the highest development of the class Oomycetes (Alexopoulous, 1962). The family Albuginaceae consists of the single genus, Albugo. There are seven genera in the Peronosporaceae and four commonly recognized genera of Pythiaceae. Most of the species of the Pythiaceae are aquatic or soil-inhabitants, and are either saprophytes or facultative parasites. Their occurrence and distribution in Ohio will be reported in another paper. The Albuginaceae include fungi which are all obligate parasites of vascular plants, causing diseases known as white blisters or white rusts. These white blisters are due to the development of numerous conidia, sometimes called sporangia, in chains under the epidermis of the host. None of the five Ohio species of Albugo cause serious diseases of cultivated plants in the state. -
Late Blight of Tomato (Phytophthora Infestans)
Plant Disease Aug. 2008 PD-45 Late Blight of Tomato (Phytophthora infestans) Scot C. Nelson Department of Plant and Environmental Protection Sciences he tomato (Lycopersicon esculentum L.) is one of This publication describes late blight of tomato and the most widely grown vegetable food crops in the discusses ways to deal with this potentially devastating world,T second only to the potato. Crops of tomatoes plant disease. have socioeconomic importance to families, gardeners, farmers, laborers, marketers, retailers, chefs and other Host workers and services in the food and restaurant industries The tomato is a perennial plant in the Solanaceae, the in Hawai‘i. nightshade family, with weak, woody, densely hairy Tomatoes rank as the 10th most valuable agricultural stem that often vines over other plants. It reaches 3–10 commodity in the state, with a 2005 production value of ft in height (1–3 m) and bears clusters of edible fruits more than $9.7 million. In addition, there are numerous classified as vegetables. unaccounted backyard or small tomato gardens in the Native to Central, South, and southern North America state, making the tomato plant one of the most important (Mexico to Peru), tomato is now grown in most arable and widely grown food crops. locations of the world, either as an indoor or outdoor Yet, a humid and tropical environment favors certain crop, hydroponically or in soil. plant diseases. The fact that one lives in the subtrop- ics where the climate allows year-round cultivation of Pathogen tomatoes does not mean it is necessarily a good idea to Phytophthora infestans (Mont.) de Bary is not a true do so, as many unsuspecting gardeners have learned.