A Polyphasic Approach to Characterise Phoma and Related Pleosporalean Genera

Total Page:16

File Type:pdf, Size:1020Kb

A Polyphasic Approach to Characterise Phoma and Related Pleosporalean Genera available online at www.studiesinmycology.org StudieS in Mycology 65: 1–60. 2010. doi:10.3114/sim.2010.65.01 Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera M.M. Aveskamp1, 3*#, J. de Gruyter1, 2, J.H.C. Woudenberg1, G.J.M. Verkley1 and P.W. Crous1, 3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Dutch Plant Protection Service (PD), Geertjesweg 15, 6706 EA Wageningen, The Netherlands; 3Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: Maikel M. Aveskamp, m.aveskamp@cbs.knaw.nl #Current address: Mycolim BV, Veld Oostenrijk 13, 5961 NV Horst, The Netherlands Abstract: Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the β-tubulin (TUB) gene region. A total of 324 strains were included in the analyses of which most belonged to Phoma taxa, whilst 54 to related pleosporalean fungi. In total, 206 taxa were investigated, of which 159 are known to have affinities toPhoma . The phylogenetic analysis revealed that the current Boeremaean subdivision is incorrect from an evolutionary point of view, revealing the genus to be highly polyphyletic. Phoma species are retrieved in six distinct clades within the Pleosporales, and appear to reside in different families. The majority of the species, however, including the generic type, clustered in a recently established family, Didymellaceae. In the second part of this study, the phylogenetic variation of the species and varieties in this clade was further assessed. Next to the genus Didymella, which is considered to be the sole teleomorph of Phoma s. str., we also retrieved taxa belonging to the teleomorph genera Leptosphaerulina and Macroventuria in this clade. Based on the sequence data obtained, the Didymellaceae segregate into at least 18 distinct clusters, of which many can be associated with several specific taxonomic characters. Four of these clusters were defined well enough by means of phylogeny and morphology, so that the associated taxa could be transferred to separate genera. Aditionally, this study addresses the taxonomic description of eight species and two varieties that are novel to science, and the recombination of 61 additional taxa. Key words: Boeremia, coelomycetes, Didymella, Didymellaceae, DNA phylogeny, Epicoccum, Leptosphaerulina, Macroventuria, Peyronellaea, Phoma, Pleosporales, taxonomy, Stagonosporopsis. Taxonomic novelties: New genus: Boeremia Aveskamp, Gruyter & Verkley. New species: Phoma brasiliensis Aveskamp, Gruyter & Verkley, Ph. bulgarica Aveskamp, Gruyter & Verkley, Ph. dactylidis Aveskamp, Gruyter & Verkley, Ph. dimorpha Aveskamp, Gruyter & Verkley, Ph. longicolla Aveskamp, Gruyter & Verkley, Ph. minor Aveskamp, Gruyter & Verkley, Ph. pedeiae Aveskamp, Gruyter & Verkley, Ph. saxea Aveskamp, Gruyter & Verkley. New varieties: Boeremia exigua var. gilvescens Aveskamp, Gruyter & Verkley, B. exigua var. pseudolilacis Aveskamp, Gruyter & Verkley. New combinations: Boeremia crinicola (Siemasko) Aveskamp, Gruyter & Verkley, B. diversispora (Bubák) Aveskamp, Gruyter & Verkley, B. exigua var. exigua (Desm.) Aveskamp, Gruyter & Verkley, B. exigua var. heteromorpha (Schulzer & Sacc.) Aveskamp, Gruyter & Verkley, B. exigua var. lilacis (Sacc.) Aveskamp, Gruyter & Verkley, B. exigua var. linicola (Naumov & Vassiljevsky) Aveskamp, Gruyter & Verkley, B. exigua var. populi (Gruyter & Scheer) Aveskamp, Gruyter & Verkley, B. exigua var. coffeae (Henn.) Aveskamp, Gruyter & Verkley, B. exigua var. viburni (Roum. ex. Sacc.) Aveskamp, Gruyter & Verkley, B. foveata (Foister) Aveskamp, Gruyter & Verkley, B. lycopersici (Cooke) Aveskamp, Gruyter & Verkley, B. noackiana (Allesch.) Aveskamp, Gruyter & Verkley, B. sambuci-nigrae (Sacc.) Aveskamp, Gruyter & Verkley, B. strasseri (Moesz) Aveskamp, Gruyter & Verkley, B. telephii (Vestergr.) Aveskamp, Gruyter & Verkley, Epicoccum pimprinum (P.N. Mathur, S.K. Menon & Thirum.) Aveskamp, Gruyter & Verkley, E. sorghi (Sacc.) Aveskamp, Gruyter & Verkley, Peyronellaea americana (Morgan-Jones & J.F. White) Aveskamp, Gruyter & Verkley, Pey. alectorolophi (Rehm.) Aveskamp, Gruyter & Verkley, Pey. anserina (Marchal) Aveskamp, Gruyter & Verkley, Pey. arachidicola (Khokhr.) Aveskamp, Gruyter & Verkley, Pey. aurea (Gruyter, Noordel. & Boerema) Aveskamp, Gruyter & Verkley, Pey. calorpreferens (Boerema, Gruyter & Noordel.) Aveskamp, Gruyter & Verkley, Pey. coffeae-arabicae (Aveskamp, Verkley & Gruyter) Aveskamp, Gruyter & Verkley, Pey. curtisii (Berk.) Aveskamp, Gruyter & Verkley, Pey. eucalyptica (Sacc.) Aveskamp, Gruyter & Verkley, Pey. gardeniae (S. Chandra & Tandon) Aveskamp, Gruyter & Verkley, Pey. lethalis (Ellis & Bartholomew) Aveskamp, Gruyter & Verkley, Pey. pomorum var. pomorum (Thüm.) Aveskamp, Gruyter & Verkley, Pey. pomorum var. circinata (Kusnezowa) Aveskamp, Gruyter & Verkley, Pey. pomorum var. cyanea (Jooste & Papendorf) Aveskamp, Gruyter & Verkley, Pey. obtusa (Fuckel) Aveskamp, Gruyter & Verkley, Pey. pinodella (L.K. Jones) Aveskamp, Gruyter & Verkley, Pey. pinodes (Berk. & A. Bloxam) Aveskamp, Gruyter & Verkley, Pey. protuberans (Lév.) Aveskamp, Gruyter & Verkley, Pey. sancta (Aveskamp, Gruyter & Verkley) Aveskamp, Gruyter & Verkley, Pey. subglomerata (Boerema, Gruyter & Noordel.) Aveskamp, Gruyter & Verkley, Pey. zeae-maydis (Arny & R.R. Nelson)Aveskamp, Gruyter & Verkley, Phoma clematidis-rectae (Petr.) Aveskamp, Woudenberg & Gruyter, Ph. noackiana (Allesch.) Aveskamp, Gruyter & Verkley, Stagonosporopsis ajacis (Thüm.) Aveskamp, Gruyter & Verkley, S. andigena (Turkenst.) Aveskamp, Gruyter & Verkley, S. artemisiicola (Hollós) Aveskamp, Gruyter & Verkley, S. astragali (Cooke & Harkn.) Aveskamp, Gruyter & Verkley, S. caricae (Sydow & P. Sydow) Aveskamp, Gruyter & Verkley, S. crystalliniformis (Loer., R. Navarro, M. Lôbo & Turkenst.) Aveskamp, Gruyter & Verkley, S. cucurbitacearum (Fr.) Aveskamp, Gruyter & Verkley, S. dorenboschii (Noordel. & Gruyter) Aveskamp, Gruyter & Verkley, S. heliopsidis (H.C. Greene) Aveskamp, Gruyter & Verkley, S. ligulicola var. ligulicola (K.F. Baker, Dimock & L.H. Davis) Aveskamp, Gruyter & Verkley, S. ligulicola var. inoxydabilis (Boerema) Aveskamp, Gruyter & Verkley, S. loticola (Died.) Aveskamp, Gruyter & Verkley, S. oculo-hominis (Punith.) Aveskamp, Gruyter & Verkley, S. rudbeckiae (Fairm.) Aveskamp, Gruyter & Verkley, S. trachelii (Allesch.) Aveskamp, Gruyter & Verkley, S. valerianellaea (Gindrat, Semecnik & Bolay) Aveskamp, Gruyter & Verkley. New names: Peyronellaea australis Aveskamp, Gruyter & Verkley, Phoma fungicola Aveskamp, Gruyter & Verkley, Ph. novae- verbascicola Aveskamp, Gruyter & Verkley. Copyright 2010 CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. 1 AveSkAMp et al. INTRODUCTION habitat of Phoma spp. is the marine environment (Kohlmeyer & Volkmann-Kohlmeyer 1991), in which Phoma species are regularly Coelomycetous fungi (Grove 1935) are geographically widespread found that are completely new to science (e.g. Osterhage et al. and are found in numerous ecological niches. Sutton (1980) 2000, Yarden et al. 2007). mentions exponents of this anamorph group inhabiting soil, The genus Phoma has always been considered to be one of organic debris, and water, as well as species that parasitise other the largest fungal genera, with more than 3 000 infrageneric taxa fungi, lichens, insects and vertebrates. A substantial percentage described (Monte et al. 1991). The number of species described of the coelomycetes is associated with plant material, either as in Phoma rose to this level due to the common practice of host opportunists or as primary pathogens (Sutton 1980). associated nomenclature, in combination with the paucity in Difficulties in morphological
Recommended publications
  • ISOLAMENTO E CRESCIMENTO DE Asperisporium Caricae E SUA RELAÇÃO FILOGENÉTICA COM Mycosphaerellaceae
    LARISSA GOMES DA SILVA ISOLAMENTO E CRESCIMENTO DE Asperisporium caricae E SUA RELAÇÃO FILOGENÉTICA COM Mycosphaerellaceae Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós- Graduação em Fitopatologia, para obtenção do título de Magister Scientiae. VIÇOSA MINAS GERAIS – BRASIL 2010 LARISSA GOMES DA SILVA ISOLAMENTO E CRESCIMENTO DE Asperisporium caricae E SUA RELAÇÃO FILOGENÉTICA COM Mycosphaerellaceae Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós- Graduação em Fitopatologia, para obtenção do título de Magister Scientiae. APROVADA: 23 de fevereiro de 2010. ________________________________ ___________________________ Profº. Eduardo Seiti Gomide Mizubuti Pesq. Harold Charles Evans (Co-orientador) ________________________________ ________________________________ Pesq. Trazilbo José de Paula Júnior Pesq. Robson José do Nascimento _______________________________ Profº. Olinto Liparini Pereira (Orientador) À toda a minha família, sobretudo aos meus pais, Gilberto e Márcia, pelo apoio incondicional, e Aos meu irmãos, Thami e Julian, pelo carinho e incentivo, e também ao meu namorado Caio pelo estímulo e carinhosa cumplicidade DEDICO ii AGRADECIMENTOS Agradeço primeiramente a Deus pela orientação divina e por me proporcionar força nos momentos de desestímulo e solução nas horas aflitas. À minha família pelo amor, companheirismo, pelos ensinamentos sábios e pela presença e incentivos constantes, principalmente aos meus pais e irmãos por sempre estarem prontos a me ouvir e vibrarem com as minhas conquistas. Ao meu namorado Caio, pelo eterno carinho, cumplicidade, apoio e por sempre ter uma palavra de conforto nos momentos mais difíceis, me incentivando para seguir em frente. Ao Profº Olinto Liparini Pereira pela paciência, dedicação, entusiasmo, companheirismo, incentivo, e principalmente confiança para a execução deste trabalho.
    [Show full text]
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Download Full Article in PDF Format
    Cryptogamie, Mycologie, 2013, 34 (4): 303-319 © 2013 Adac. Tous droits réservés Phylogeny and morphology of Leptosphaerulina saccharicola sp. nov. and Pleosphaerulina oryzae and relationships with Pithomyces Rungtiwa PHOOKAMSAK a, b, c, Jian-Kui LIU a, b, Ekachai CHUKEATIROTE a, b, Eric H. C. McKENZIE d & Kevin D. HYDE a, b, c * a Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand b School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand c International Fungal Research & Development Centre, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China d Landcare Research, Private Bag 92170, Auckland, New Zealand Abstract – A Dothideomycete species, associated with leaf spots of sugarcane (Saccharum officinarum), was collected from Nakhonratchasima Province, Thailand. A single ascospore isolate was obtained and formed the asexual morph in culture. ITS, LSU, RPB2 and TEF1α gene regions were sequenced and analyzed with molecular data from related taxa. In a phylogenetic analysis the new isolate clustered with Leptosphaerulina americana, L. arachidicola, L. australis and L. trifolii (Didymellaceae) and the morphology was also comparable with Leptosphaerulina species. Leptosphaerulina saccharicola is introduced to accommodate this new collection which is morphologically and phylogenetically distinct from other species of Leptosphaerulina. A detailed description and illustration is provided for the new species, which is compared with similar taxa. The type specimen of Pleosphaerulina oryzae, is transferred to Leptosphaerulina. It is redescribed and is a distinct species from L. australis, with which it was formerly synonymized. Leptosphaerulina species have been linked to Pithomyces but the lack of phylogenetic support for this link is discussed.
    [Show full text]
  • Biology and Recent Developments in the Systematics of Phoma, a Complex Genus of Major Quarantine Significance Reviews, Critiques
    Fungal Diversity Reviews, Critiques and New Technologies Reviews, Critiques and New Technologies Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance Aveskamp, M.M.1*, De Gruyter, J.1, 2 and Crous, P.W.1 1CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands 2Plant Protection Service (PD), P.O. Box 9102, 6700 HC Wageningen, The Netherlands Aveskamp, M.M., De Gruyter, J. and Crous, P.W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31: 1-18. Species of the coelomycetous genus Phoma are ubiquitously present in the environment, and occupy numerous ecological niches. More than 220 species are currently recognised, but the actual number of taxa within this genus is probably much higher, as only a fraction of the thousands of species described in literature have been verified in vitro. For as long as the genus exists, identification has posed problems to taxonomists due to the asexual nature of most species, the high morphological variability in vivo, and the vague generic circumscription according to the Saccardoan system. In recent years the genus was revised in a series of papers by Gerhard Boerema and co-workers, using culturing techniques and morphological data. This resulted in an extensive handbook, the “Phoma Identification Manual” which was published in 2004. The present review discusses the taxonomic revision of Phoma and its teleomorphs, with a special focus on its molecular biology and papers published in the post-Boerema era. Key words: coelomycetes, Phoma, systematics, taxonomy.
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, remispora@gmail.com Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Watermelon Fruit Disorders
    Watermelon Fruit Disorders Donald N. Maynard1 and Donald L. Hopkins2 ADDITIONAL INDEX WORDS. Citrullus lanatus, disease, physiological disorder SUMMARY. Watermelon (Citrullus lanatus [Thunb.] Matsum & Nakai) fruit are affected by a number of preharvest disorders that may limit their marketability and thereby restrict eco- nomic returns to growers. Pathogenic diseases discussed include bacterial rind necrosis (Erwinia sp.), bacterial fruit blotch [Acidovorax avenae subsp. citrulli (Schaad et al.) Willems et al.], anthracnose [Colletotrichum orbiculare (Berk & Mont.) Arx. syn. C. legenarium (Pass.) Ellis & Halst], gummy stem blight/black rot [Didymella bryoniae (Auersw.) Rehm], and phytophthora fruit rot (Phytophthora capsici Leonian). One insect-mediated disorder, rindworm damage is discussed. Physiological disorders considered are blossom-end rot, bottleneck, and sunburn. Additionally, cross stitch, greasy spot, and target cluster, disorders of unknown origin are discussed. Each defect is shown in color for easy identification. rowers and advisory personnel are often confronted with field problems that are difficult to diagnose. One such case in point Gare the many preharvest maladies affecting watermelon fruit. Although watermelon fields are frequently scouted for pest management purposes, fruit are not examined carefully until harvest begins. Accord- ingly, rapid diagnosis with accurate prediction of consumer acceptability is essential for marketing purposes. It is also important to know if there is likelihood of spread to unaffected fruit in transit. Where possible, we have included suggestions for amelioration of the problem, but have not in- cluded pesticide recommendations because of the advantage of current, local recommendations. Pathogenic diseases BACTERIAL RIND NECROSIS. Rind necrosis was first reported in Hawaii (Ishii and Aragaki, 1960). Typical rind necrosis is characterized by a light brown, dry, and hard discoloration interspersed with lighter areas (Fig.
    [Show full text]
  • A Mechanistic Weather-Driven Model for Ascochyta Rabiei Infection and Disease Development in Chickpea
    plants Article A Mechanistic Weather-Driven Model for Ascochyta rabiei Infection and Disease Development in Chickpea Irene Salotti and Vittorio Rossi * Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; irene.salotti1@unicatt.it * Correspondence: vittorio.rossi@unicatt.it Abstract: Ascochyta blight caused by Ascochyta rabiei is an important disease of chickpea. By using systems analysis, we retrieved and analyzed the published information on A. rabiei to develop a mechanistic, weather-driven model for the prediction of Ascochyta blight epidemics. The ability of the model to predict primary infections was evaluated using published data obtained from trials conducted in Washington (USA) in 2004 and 2005, Israel in 1996 and 1998, and Spain from 1988 to 1992. The model showed good accuracy and specificity in predicting primary infections. The probability of correctly predicting infections was 0.838 and the probability that there was no infection when not predicted was 0.776. The model’s ability to predict disease progress during the growing season was also evaluated by using data collected in Australia from 1996 to 1998 and in Southern Italy in 2019; a high concordance correlation coefficient (CCC = 0.947) between predicted and observed data was obtained, with an average distance between real and fitted data of root mean square error (RMSE) = 0.103, indicating that the model was reliable, accurate, and robust in predicting seasonal dynamics of Ascochyta blight epidemics. The model could help growers schedule fungicide treatments to control Ascochyta blight on chickpea. Citation: Salotti, I.; Rossi, V.
    [Show full text]
  • (US) 38E.85. a 38E SEE", A
    USOO957398OB2 (12) United States Patent (10) Patent No.: US 9,573,980 B2 Thompson et al. (45) Date of Patent: Feb. 21, 2017 (54) FUSION PROTEINS AND METHODS FOR 7.919,678 B2 4/2011 Mironov STIMULATING PLANT GROWTH, 88: R: g: Ei. al. 1 PROTECTING PLANTS FROM PATHOGENS, 3:42: ... g3 is et al. A61K 39.00 AND MMOBILIZING BACILLUS SPORES 2003/0228679 A1 12.2003 Smith et al." ON PLANT ROOTS 2004/OO77090 A1 4/2004 Short 2010/0205690 A1 8/2010 Blä sing et al. (71) Applicant: Spogen Biotech Inc., Columbia, MO 2010/0233.124 Al 9, 2010 Stewart et al. (US) 38E.85. A 38E SEE",teWart et aal. (72) Inventors: Brian Thompson, Columbia, MO (US); 5,3542011/0321197 AllA. '55.12/2011 SE",Schön et al.i. Katie Thompson, Columbia, MO (US) 2012fO259101 A1 10, 2012 Tan et al. 2012fO266327 A1 10, 2012 Sanz Molinero et al. (73) Assignee: Spogen Biotech Inc., Columbia, MO 2014/0259225 A1 9, 2014 Frank et al. US (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CA 2146822 A1 10, 1995 patent is extended or adjusted under 35 EP O 792 363 B1 12/2003 U.S.C. 154(b) by 0 days. EP 1590466 B1 9, 2010 EP 2069504 B1 6, 2015 (21) Appl. No.: 14/213,525 WO O2/OO232 A2 1/2002 WO O306684.6 A1 8, 2003 1-1. WO 2005/028654 A1 3/2005 (22) Filed: Mar. 14, 2014 WO 2006/O12366 A2 2/2006 O O WO 2007/078127 A1 7/2007 (65) Prior Publication Data WO 2007/086898 A2 8, 2007 WO 2009037329 A2 3, 2009 US 2014/0274707 A1 Sep.
    [Show full text]
  • Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
    Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: jckang@gzu.edu.cn Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae).
    [Show full text]
  • The Emergence of Cereal Fungal Diseases and the Incidence of Leaf Spot Diseases in Finland
    AGRICULTURAL AND FOOD SCIENCE AGRICULTURAL AND FOOD SCIENCE Vol. 20 (2011): 62–73. Vol. 20(2011): 62–73. The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Marja Jalli, Pauliina Laitinen and Satu Latvala MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland, email: marja.jalli@mtt.fi Fungal plant pathogens causing cereal diseases in Finland have been studied by a literature survey, and a field survey of cereal leaf spot diseases conducted in 2009. Fifty-seven cereal fungal diseases have been identified in Finland. The first available references on different cereal fungal pathogens were published in 1868 and the most recent reports are on the emergence of Ramularia collo-cygni and Fusarium langsethiae in 2001. The incidence of cereal leaf spot diseases has increased during the last 40 years. Based on the field survey done in 2009 in Finland, Pyrenophora teres was present in 86%, Cochliobolus sativus in 90% and Rhynchosporium secalis in 52% of the investigated barley fields.Mycosphaerella graminicola was identi- fied for the first time in Finnish spring wheat fields, being present in 6% of the studied fields.Stagonospora nodorum was present in 98% and Pyrenophora tritici-repentis in 94% of spring wheat fields. Oat fields had the fewest fungal diseases. Pyrenophora chaetomioides was present in 63% and Cochliobolus sativus in 25% of the oat fields studied. Key-words: Plant disease, leaf spot disease, emergence, cereal, barley, wheat, oat Introduction nbrock and McDonald 2009). Changes in cropping systems and in climate are likely to maintain the plant-pathogen interactions (Gregory et al.
    [Show full text]
  • A Polyphasic Approach to Characterise Two Novel Species of Phoma (Didymellaceae) from China
    Phytotaxa 197 (4): 267–281 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.197.4.4 A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China QIAN CHEN1,2, KE ZHANG2, GUOZHEN ZHANG1* & LEI CAI2* 1College of Agriculture and Biotechnology, China Agricultural University, No. 2 West Yuanmingyuan Rd, Haidian District, Beijing 100193, P.R. China 2State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Rd, Chaoyang District, Beijing 100101, P. R. China Corresponding authors: Lei Cai: cail@im.ac.cn; Guozhen Zhang: zhanggzh@cau.edu.cn. Abstract Phoma odoratissimi sp. nov. on Viburnum odoratissimum and Syringa oblate, and Phoma segeticola sp. nov. on Cirsium segetum from China are introduced and described, employing a polyphasic approach characterising morphological charac- teristics, host association and phylogeny. Both species are the first records of Phoma species on their respective hosts. Multi- locus phylogenetic tree was inferred using combined sequences of the internal transcribed spacer regions 1 & 2 and 5.8S nrDNA (ITS), and partial large subunit 28S nrDNA region (LSU), β-tubulin (TUB) region and RNA polymerase II (RPB2) region. The two new species clustered in two separate and distinct lineages, and are distinct from their allied species. Key words: Karst, morphology, plant pathogen, phylogeny, taxonomy INTRODUCTION The coelomycetous genus Phoma Sacc. emend. Boerema & G.J. Bollen is omnipresent in the environments and consists of pathogens, opportunists and several saprobic species from a wide range of substrates (Aveskamp et al.
    [Show full text]