Biology and Recent Developments in the Systematics of Phoma, a Complex Genus of Major Quarantine Significance Reviews, Critiques
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biology and Host-Pathogen Interaction of Stagonosporopsis Tanaceti, the Cause of Ray Blight Disease in Pyrethrum
Biology and host-pathogen interaction of Stagonosporopsis tanaceti, the cause of ray blight in pyrethrum Md Abdullahil Baki Bhuiyan Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy Faculty of Veterinary and Agricultural Sciences The University of Melbourne April 2017 i Declaration I declare that this thesis includes only my original work in the direction of the degree of Doctor of Philosophy. I also acknowledge all other materials use in the text. The words of this do not exceed 100,000 words. This thesis fulfils the stipulations set out for the degree of Doctor of Philosophy by the University of Melbourne. Md Abdullahil Baki Bhuiyan April 2017 ii Acknowledgements My grateful thanks to my major supervisor Professor Paul Taylor and co-supervisor Dr Marc Nicolas for their scholastic academic guidance and continuous help to accomplish this thesis. My special thanks to Paul for his friendly support, guidance and encouragement. My special thanks to Tim Groom, Manager- Agricultural Businesses, Botanical Resources Australia (BRA) Pty. Ltd. for his judicious suggestions, inspirations and invitation at BRA to discuss my findings with the industry people which made this research worthwhile. Many thanks to our lab managers Carolyn Selway, Michelle Rhee and Martin Ji; Stephen and Priya Chand (Faculty staff), Steven (Glasshouse) for their assistance and continuous support throughout the research period. I would like offer special gratitude to my lab colleagues especially Niloofar, Dina, Eden, Mee-Yung, Sophia, Azin, Jiang, Dilani, Ruvini and Aruni for their friendship and continuous support. I would like to acknowledge with special gratitude the Melbourne International Research Scholarship (MIRS) and Melbourne International Fee Remission Scholarship (MIFRS) awarded by the University of Melbourne and financial support from BRA. -
Chapter 11 Marine Fungi Associated with Antarctic Macroalgae
Chapter 11 Marine Fungi Associated with Antarctic Macroalgae Mayara B. Ogaki, Maria T. de Paula, Daniele Ruas, Franciane M. Pellizzari, César X. García-Laviña, and Luiz H. Rosa Abstract Fungi are well known for their important roles in terrestrial ecosystems, but filamentous and yeast forms are also active components of microbial communi- ties from marine ecosystems. Marine fungi are particularly abundant and relevant in coastal systems where they can be found in association with large organic substrata, like seaweeds. Antarctica is a rather unexplored region of the planet that is being influenced by strong and rapid climate change. In the past decade, several efforts have been made to get a thorough inventory of marine fungi from different environ- ments, with a particular emphasis on those associated with the large communities of seaweeds that abound in littoral and infralittoral ecosystems. The algicolous fungal communities obtained were characterized by a few dominant species and a large number of singletons, as well as a balance among endemic, indigenous, and cold- adapted cosmopolitan species. The long-term monitoring of this balance and the dynamics of richness, dominance, and distributional patterns of these algicolous fungal communities is proposed to understand and model the influence of climate change on the maritime Antarctic biota. In addition, several fungal isolates from marine Antarctic environments have shown great potential as producers of bioactive natural products and enzymes and may represent attractive sources of biotechno- logical products. M. B. Ogaki · M. T. de Paula · D. Ruas · L. H. Rosa (*) Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil e-mail: [email protected] F. -
Swim Bladder Mycosis in Farmed Rainbow Trout Oncorhynchus Mykiss Caused by Phoma Herbarum and Experimental Verification of Pathogenicity
Vol. 138: 237–246, 2020 DISEASES OF AQUATIC ORGANISMS Published online April 9 https://doi.org/10.3354/dao03464 Dis Aquat Org Swim bladder mycosis in farmed rainbow trout Oncorhynchus mykiss caused by Phoma herbarum and experimental verification of pathogenicity Jirˇí Rˇ ehulka1, Alena Kubátová2, Vit Hubka2,3,* 1Department of Zoology, Silesian Museum, 746 01 Opava, Czech Republic 2Department of Botany, Faculty of Science, Charles University, 128 01 Prague 2, Czech Republic 3Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., 142 20 Prague 4, Czech Republic ABSTRACT: In this study, spontaneous swim bladder mycosis was documented in a farmed finger- ling rainbow trout from a raceway culture system. At necropsy, the gross lesions included a thick- ened swim bladder wall, and the posterior portion of the swim bladder was enlarged due to mas- sive hyperplasia of muscle. A microscopic wet mount examination of the swim bladder contents revealed abundant septate hyphae, and histopathological examination showed periodic acid- Schiff-positive mycelia in the lumen and wall of the swim bladder. Histopathological examination of the thickened posterior swim bladder revealed muscle hyperplasia with expansion by inflam- matory cells. The causative agent was identified as Phoma herbarum through morphological an - alysis and DNA sequencing. The disease was reproduced in rainbow trout fingerlings using intra - peritoneal injection of a spore suspension. Necropsy in dead and moribund fish revealed ex tensive congestion and haemorrhages in the serosa of visceral organs and in liver and abdominal serosan- guinous fluid. Histopathological examination showed severe hepatic congestion, sinusoidal dilata- tion, Kupffer cell reactivity, leukostasis and degenerative changes. -
Analysis of Fungal Diversity of the Rotten Wooden Pillars of a Historic Building
Analysis of fungal diversity of the rotten wooden pillars of a historic building Xingxia Ma ( [email protected] ) Johann Heinrich von Thunen-Institut Bundesforschungsinstitut fur Landliche Raume Wald und Fischerei Bin Zhang Chinese Academy of Forestry Research Institute of Wood Industry Bo Liu Chinese Academy of Forestry Research Institute of Wood Industry Research article Keywords: historical building, building mycology, rotten wooden pillar, fungal diversity, decayed ring Posted Date: February 13th, 2020 DOI: https://doi.org/10.21203/rs.2.23473/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract High-throughput sequencing technology was used to analyze the fungal community structure and its association with the cause of decay on the wooden pillars of an ancient archway in Beijing. The dominant fungi on the rotten pillars belonged to Ascomycetes regardless of the sampling position. Compared with the fungal community composition of discolored wood previously studied, the proportion of Basidiomycetes in rotten wood pillars increased at the highest value of 37.9%. High-throughput sequencing showed that the main fungi in the rst pillar were Ascomycetes ( Phoma , Lecythophora , and Scedosporium ) and Basidiomycetes (Sporidiobolales). Ascomycetes Lecythophora and Basidiomycetes Cryptcoccus and Postia were the main fungi in pillar 2. Phoma , Trichoderma, and Entoloma were isolated from pillar 1, whereas Alternaria and Phaeosphaeriaceae were obtained from pillar 2 using culture isolation. Traditional isolation failed to obtain all dominant fungi. The importance of high-throughput sequencing technology in ancient wooden structure building biodeterioration analysis was further explained. At the three sampling sites, the contact-ground fungal community composition was similar to that of in-ground wood, whereas above-ground fungal community composition was signicantly different from the other two sites. -
Livro-Inpp.Pdf
GOVERNMENT OF BRAZIL President of Republic Michel Miguel Elias Temer Lulia Minister for Science, Technology, Innovation and Communications Gilberto Kassab MUSEU PARAENSE EMÍLIO GOELDI Director Nilson Gabas Júnior Research and Postgraduate Coordinator Ana Vilacy Moreira Galucio Communication and Extension Coordinator Maria Emilia Cruz Sales Coordinator of the National Research Institute of the Pantanal Maria de Lourdes Pinheiro Ruivo EDITORIAL BOARD Adriano Costa Quaresma (Instituto Nacional de Pesquisas da Amazônia) Carlos Ernesto G.Reynaud Schaefer (Universidade Federal de Viçosa) Fernando Zagury Vaz-de-Mello (Universidade Federal de Mato Grosso) Gilvan Ferreira da Silva (Embrapa Amazônia Ocidental) Spartaco Astolfi Filho (Universidade Federal do Amazonas) Victor Hugo Pereira Moutinho (Universidade Federal do Oeste Paraense) Wolfgang Johannes Junk (Max Planck Institutes) Coleção Adolpho Ducke Museu Paraense Emílio Goeldi Natural resources in wetlands: from Pantanal to Amazonia Marcos Antônio Soares Mário Augusto Gonçalves Jardim Editors Belém 2017 Editorial Project Iraneide Silva Editorial Production Iraneide Silva Angela Botelho Graphic Design and Electronic Publishing Andréa Pinheiro Photos Marcos Antônio Soares Review Iraneide Silva Marcos Antônio Soares Mário Augusto G.Jardim Print Graphic Santa Marta Dados Internacionais de Catalogação na Publicação (CIP) Natural resources in wetlands: from Pantanal to Amazonia / Marcos Antonio Soares, Mário Augusto Gonçalves Jardim. organizers. Belém : MPEG, 2017. 288 p.: il. (Coleção Adolpho Ducke) ISBN 978-85-61377-93-9 1. Natural resources – Brazil - Pantanal. 2. Amazonia. I. Soares, Marcos Antonio. II. Jardim, Mário Augusto Gonçalves. CDD 333.72098115 © Copyright por/by Museu Paraense Emílio Goeldi, 2017. Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610). -
Phylogeny and Morphology of Premilcurensis Gen
Phytotaxa 236 (1): 040–052 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.1.3 Phylogeny and morphology of Premilcurensis gen. nov. (Pleosporales) from stems of Senecio in Italy SAOWALUCK TIBPROMMA1,2,3,4,5, ITTHAYAKORN PROMPUTTHA6, RUNGTIWA PHOOKAMSAK1,2,3,4, SARANYAPHAT BOONMEE2, ERIO CAMPORESI7, JUN-BO YANG1,2, ALI H. BHAKALI8, ERIC H. C. MCKENZIE9 & KEVIN D. HYDE1,2,4,5,8 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 7A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand *Corresponding author: Dr. Itthayakorn Promputtha, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. -
Watermelon Fruit Disorders
Watermelon Fruit Disorders Donald N. Maynard1 and Donald L. Hopkins2 ADDITIONAL INDEX WORDS. Citrullus lanatus, disease, physiological disorder SUMMARY. Watermelon (Citrullus lanatus [Thunb.] Matsum & Nakai) fruit are affected by a number of preharvest disorders that may limit their marketability and thereby restrict eco- nomic returns to growers. Pathogenic diseases discussed include bacterial rind necrosis (Erwinia sp.), bacterial fruit blotch [Acidovorax avenae subsp. citrulli (Schaad et al.) Willems et al.], anthracnose [Colletotrichum orbiculare (Berk & Mont.) Arx. syn. C. legenarium (Pass.) Ellis & Halst], gummy stem blight/black rot [Didymella bryoniae (Auersw.) Rehm], and phytophthora fruit rot (Phytophthora capsici Leonian). One insect-mediated disorder, rindworm damage is discussed. Physiological disorders considered are blossom-end rot, bottleneck, and sunburn. Additionally, cross stitch, greasy spot, and target cluster, disorders of unknown origin are discussed. Each defect is shown in color for easy identification. rowers and advisory personnel are often confronted with field problems that are difficult to diagnose. One such case in point Gare the many preharvest maladies affecting watermelon fruit. Although watermelon fields are frequently scouted for pest management purposes, fruit are not examined carefully until harvest begins. Accord- ingly, rapid diagnosis with accurate prediction of consumer acceptability is essential for marketing purposes. It is also important to know if there is likelihood of spread to unaffected fruit in transit. Where possible, we have included suggestions for amelioration of the problem, but have not in- cluded pesticide recommendations because of the advantage of current, local recommendations. Pathogenic diseases BACTERIAL RIND NECROSIS. Rind necrosis was first reported in Hawaii (Ishii and Aragaki, 1960). Typical rind necrosis is characterized by a light brown, dry, and hard discoloration interspersed with lighter areas (Fig. -
Characteristics of Phoma Herbaruh Isolates from Diseased Forest Tree Seedlings
CHARACTERISTICS OF PHOMA HERBARUH ISOLATES FROM DISEASED FOREST TREE SEEDLINGS by I.. L. James, Plant Pathologist Cooperative Forestry and Pest Management USDA Forest Service Northern Region Missoula, Montana April 1985 ABSTRACT PhQma herbarum is frequently isolated from forest tree seedlings displaying tip dieback or stem canker symptoms from nurseries in the northern Rocky Mountains. ~ vitro growth characteristics of fungal colonies are used to differentiate this species from others in the genus Phoma. Descriptions of several isolates and notes Qn nomenclature and habits in nature are discussed. n."Tl'RODU CTION During the course of investigating diseases of forest tree seedlings at two private nurseries in northern Idaho (Clifty View and Nishek Nurseries, Bonners Ferry). the Montana State Nursery in Missoula, Montana (James 1983), and a nursery in Oregon (James 198~), several isolates of Phoma herbarum Westend. were consistently isolated from diseased seedlings. In most cases, this fungus was the most common organism obtained from necrotic t i ssues , Although pathogenicity tests were not conducted, it is suspected that ~. herbarum was important in the etiology of most diseases. This report 'summarizes characteristics 6f several f. herbarum isolates obtained from diseased forest tree seedlings. MATERIALS AND METHODS Taxonomic studies of fungi within the genus Phoma are difficult because of the wide host range and great diversity within individual species. Because of this diversity, species classifications are difficult and often made on the basis of slight morphological differences and host substrates (Sutton 1980). This has resulted in descriptions of more than 2,000 species of Phoma. However, these descriptions have often not reflected fundamental relationships among taxa nor are they of practical value to mycologists or pathologists. -
Phytomyza Vitalbae, Phoma Clematidina, and Insect-Plant
Phytomyza vitalbae, Phoma clematidina, and insect–plant pathogen interactions in the biological control of weeds R.L. Hill,1 S.V. Fowler,2 R. Wittenberg,3 J. Barton,2,5 S. Casonato,2 A.H. Gourlay4 and C. Winks2 Summary Field observations suggested that the introduced agromyzid fly Phytomyza vitalbae facilitated the performance of the coelomycete fungal pathogen Phoma clematidina introduced to control Clematis vitalba in New Zealand. However, when this was tested in a manipulative experiment, the observed effects could not be reproduced. Conidia did not survive well when sprayed onto flies, flies did not easily transmit the fungus to C. vitalba leaves, and the incidence of infection spots was not related to the density of feeding punctures in leaves. Although no synergistic effects were demonstrated in this case, insect–pathogen interactions, especially those mediated through the host plant, are important to many facets of biological control practice. This is discussed with reference to recent literature. Keywords: Clematis vitalba, insect–plant pathogen interactions, Phoma clematidina, Phytomyza vitalbae, tripartite interactions. Introduction Hatcher & Paul (2001) have succinctly reviewed the field of plant pathogen–herbivore interactions. Simple, Biological control of weeds is based on the sure knowl- direct interactions between plant pathogens and insects edge that both pathogens and herbivores can influence (such as mycophagy and disease transmission) are well the fitness of plants and depress plant populations understood (Agrios 1980), as are the direct effects of (McFadyen 1998). We seek suites of control agents that insects and plant pathogens on plant performance. Very have combined effects that are greater than those of the few fungi are dependent on insects for the transmission agents acting alone (Harris 1984). -
Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). -
Biodiversity and Chemotaxonomy of Preussia Isolates from the Iberian Peninsula
Mycol Progress DOI 10.1007/s11557-017-1305-1 ORIGINAL ARTICLE Biodiversity and chemotaxonomy of Preussia isolates from the Iberian Peninsula Víctor Gonzalez-Menendez1 & Jesus Martin1 & Jose A. Siles2 & M. Reyes Gonzalez-Tejero3 & Fernando Reyes1 & Gonzalo Platas1 & Jose R. Tormo1 & Olga Genilloud1 Received: 7 September 2016 /Revised: 17 April 2017 /Accepted: 24 April 2017 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2017 Abstract This work documents 32 new Preussia isolates great richness in flora and fauna, where endemic and singular from the Iberian Peninsula, including endophytic and saprobic plants are likely to be present. Although more than strains. The morphological study of the teleomorphs and 10,000 fungal species have been described in Spain anamorphs was combined with a molecular phylogenetic (Moreno-Arroyo 2004), most of them were mushrooms, leav- analysis based on sequences of the ribosomal rDNA gene ing this environment open to other exhaustive fungal studies. cluster and chemotaxonomic studies based on liquid chroma- Very few examples of fungal endophytes have been described tography coupled to electrospray mass spectrometry. Sixteen from the Iberian Peninsula, suggesting that a large number of natural compounds were identified. On the basis of combined new fungal species will be discovered (Collado et al. 2002; analyses, 11 chemotypes are inferred. Oberwinkler et al. 2006; Bills et al. 2012). Members of the Sporormiaceae are widespread and, de- Keywords Preussia . Chemotypes . Mass spectrometry . spite that they are most commonly found on various types of Secondary metabolites animal dung, they can also be isolated from soil, wood, and plant debris. Fungi of Sporormiaceae form dark brown, sep- tate spores with germ slits, and include approximately 100 Introduction species divided into ten genera, including the recently de- scribed genera Forliomyces and Sparticola (Phukhamsakda et al. -
Approaches to Species Delineation in Anamorphic (Mitosporic) Fungi: a Study on Two Extreme Cases
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 917 Approaches to Species Delineation in Anamorphic (mitosporic) Fungi: A Study on Two Extreme Cases BY OLGA VINNERE ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 ! ""# $"%"" & ' & & ( ) * + ') , -) ""#) . / . 0 1 2 '% . / *+ ) . ) 3$4) 4 ) ) 5/6 3$788#78!9 74 / ' ' & ' & & ' ' & ' & ) ' + +& & & & ' ) : ' & ' ' ' & + & & & 0 1 & ') 5 5 & & & + ' & ' ) - & ; + + ' & ' + ' ' & ' & ) * & ' ' & < & & ) * + ; & ' & & ' + & & & < & < ' ' & & ' ' & ' + ) ' + < ' & ') 5 + < 5 & ' 0 1 0 1 ) 2 & ' + + & 6. = ' & = ' ) . 7 & & 0 1 + + + ) 2 & ' & + & ' ' ' ) - ' & + ' + ' + & ' + ) . & & & & ' + ' ' & ) /= ' & ' & 6. ' ' ' + 7 ' + & ' ' ' ! ) > + ' ' ' + ) * & & ' & & ' = ' & & ' ' & < +') " # $ & ' ? / ( ' & ' % & ' (