NIB Moose Flechten Pilze

Total Page:16

File Type:pdf, Size:1020Kb

NIB Moose Flechten Pilze Wolfgang Rabitsch und Stefan Nehring (Hrsg.) Naturschutzfachliche Invasivitäts- bewertungen für in Deutschland wild lebende gebietsfremde terrestrische Moose, Flechten und Pilze BfN-Skripten 603 2021 Naturschutzfachliche Invasivitäts- bewertungen für in Deutschland wild lebende gebietsfremde terrestrische Moose, Flechten und Pilze Ergebnisse aus dem gleichnamigen F+E-Vorhaben (FKZ: 3514 86 0200) Herausgegeben von Wolfgang Rabitsch Stefan Nehring Titelbild: Graphische Darstellung der Methodik der naturschutzfachlichen Invasivitätsbewertung für ge- bietsfremde Arten. Stellvertretend sind für die Moose (Foto links) Campylopus introflexus (Kak- tusmoos) und für die Pilze (Foto rechts) Clathrus archeri (Tintenfischpilz) abgebildet. Unter den in Deutschland wild lebenden Flechten ist bislang keine gebietsfremde Art nachgewiesen worden. Vier Arten gelten jedoch als kryptogen, d.h. ihre Herkunft (einheimisch oder gebietsfremd) ist bis- lang nicht genau bekannt. Stellvertretend für die Flechten (Foto Mitte) ist Anisomeridium polypori (Spitzkegelflechte) abgebildet. (Graphik: ©BfN, Fotos: C. introflexus ©Sandra Skowronek, Clathrus archeri ©Stefan Nehring, A. polypori ©Jymm/CC BY-SA (https://creativecommons- .org/licenses/by-sa/4.0) https://upload.wikimedia.org/wikipedia/commons/8/88/Anisomeridium_p- olypori_Jymm.jpg, Ausschnitt). Adressen der Herausgeber: Dr. Wolfgang Rabitsch Umweltbundesamt, Abt. Biologische Vielfalt & Naturschutz Spittelauer Lände 5, 1090 Wien E-Mail: [email protected] Dr. Stefan Nehring Bundesamt für Naturschutz Konstantinstraße 110, 53179 Bonn E-Mail: [email protected] Gefördert durch das Bundesamt für Naturschutz mit Mitteln des Bundesministeriums für Umwelt, Natur- schutz und nukleare Sicherheit (BMU) (FKZ: 3514 86 0200). Diese Veröffentlichung wird aufgenommen in die Literaturdatenbank „DNL-online“ (www.dnl-online.de). BfN-Skripten sind nicht im Buchhandel erhältlich. Eine pdf-Version dieser Ausgabe kann unter http://www.bfn.de heruntergeladen werden. Institutioneller Herausgeber: Bundesamt für Naturschutz Konstantinstr. 110 53179 Bonn URL: www.bfn.de Der institutionelle Herausgeber übernimmt keine Gewähr für die Richtigkeit, die Genauigkeit und Vollstän- digkeit der Angaben sowie für die Beachtung privater Rechte Dritter. Die in den Beiträgen geäußerten An- sichten und Meinungen müssen nicht mit denen des institutionellen Herausgebers übereinstimmen. Diese Schriftenreihe wird unter den Bedingungen der Creative Commons Lizenz Namens- nennung – keine Bearbeitung 4.0 International (CC BY - ND 4.0) zur Verfügung gestellt (https://creativecommons.org/licenses/by-nd/4.0/deed.de). Druck: Druckerei des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit (BMU) Gedruckt auf 100% Altpapier ISBN 978-3-89624-364-5 DOI 10.19217/skr603 Bonn - Bad Godesberg 2021 INHALTSVERZEICHNIS Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde terrestrische Moose, Flechten und Pilze I. Moose und Flechten Maike Isermann, Wolfgang Rabitsch & Stefan Nehring 1 EINLEITUNG ........................................................................................................... 5 2 INVASIVITÄTSBEWERTUNGEN .......................................................................... 17 Campylopus introflexus (Kaktusmoos) ................................................................................... 18 Lophocolea semiteres (Stumpfblättriges Kammkelchmoos) .................................................. 20 Lunularia cruciata (Kreuz-Mondbechermoos) ........................................................................ 22 Orthodontium lineare (Linealblättriges Geradzahnmoos)....................................................... 24 3 GESAMTARTENLISTE GEBIETSFREMDER UND KRYPTOGENER TERRESTRISCHER MOOSE UND FLECHTEN .................................................... 26 3.1 Moose ........................................................................................................................... 27 3.2 Flechten ........................................................................................................................ 32 4 LITERATUR ........................................................................................................... 35 II. Pilze Peter Karasch, Hans Halbwachs, Julia Kruse, Wolfgang Rabitsch & Stefan Nehring 1 EINLEITUNG ......................................................................................................... 42 2 INVASIVITÄTSBEWERTUNGEN .......................................................................... 46 Cryphonectria parasitica (Edelkastanienrindenkrebs) ............................................................ 48 Cryptostroma corticale (Rußrindenkrankheit) ......................................................................... 50 Cylindrocladium buxicola (Buchsbrand) ................................................................................. 52 Dothistroma pini (Dothistroma-Nadelbräune) ......................................................................... 54 Dothistroma septosporum (Dothistroma-Nadelbräune).......................................................... 56 Erysiphe alphitoides (Eichenmehltau) .................................................................................... 58 Eutypella parasitica (Ahorn-Stammkrebs) .............................................................................. 60 Hymenoscyphus fraxineus (Eschentriebsterben) ................................................................... 62 Lecanosticta acicola (Lecanostica-Nadelbräune) ................................................................... 64 Ophiostoma novo-ulmi (Neues Ulmensterben) ...................................................................... 66 Ophiostoma ulmi (Holländisches Ulmensterben) ................................................................... 68 Phytophthora x alni (Erlensterben) ......................................................................................... 70 Phytophthora cambivora ......................................................................................................... 72 Phytophthora cinnamoni (Phytophthora-Wurzelfäule)............................................................ 74 Phytophthora citricola ............................................................................................................. 76 Phytophthora plurivora ........................................................................................................... 78 Phytophthora ramorum ........................................................................................................... 80 3 GESAMTARTENLISTE GEBIETSFREMDER UND KRYPTOGENER TERRESTRISCHER PILZE ................................................................................... 82 3.1 Pilze .............................................................................................................................. 83 4 LITERATUR ......................................................................................................... 113 3 4 Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde terrestrische Moose, Flechten und Pilze I. Moose und Flechten Maike Isermann 1, Wolfgang Rabitsch 2 & Stefan Nehring 3 1 Universität Bremen, FB2, Bremen 2 Umweltbundesamt, Wien 3 Bundesamt für Naturschutz, Bonn 1 EINLEITUNG Die Gruppe der Moose (Bryophyta) setzt sich aus Hornmoosen (Anthoceratopsida), Lebermoosen (Hepa- ticopsida) und Laubmoosen (Bryopsida) zusammen (Frahm & Frey 2004). Flechten stellen eine Symbiose aus einer Alge und einem oder mehreren Pilzen dar (Spribille et al. 2016). Die Gruppe der Flechten kann in die morphologischen Gruppen Krusten-, Blatt- und Strauchflechten unterteilt werden (Wirth et al. 2013). Beide Organismengruppen breiten sich über Sporen und zumindest teilweise vegetativ aus. Von weltweit 15.344 Moosarten werden 139 Moosarten (0,9%) in einem oder mehreren Ländern als ge- bietsfremd angesehen (Essl et al. 2013, Mateo et al. 2015). In Europa sind 32 Arten zumindest in einem Land gebietsfremd, davon sind 11 Lebermoose und 21 Blattmoose (Essl & Lambdon 2009). Weitere 13 Moosarten gelten in Europa als kryptogen, da deren Status „heimisch“ oder „gebietsfremd“ bislang nicht eindeutig geklärt werden konnte (Essl & Lambdon 2009). Insgesamt kommen in Europa rund 1.800 Moosarten vor (Söderström et al. 2002, Hill et al. 2006, Hodgetts et al. 2020). Für Deutschland sind 1.507 Moosarten inklusive untergeordneter Taxa bekannt (Meinunger & Schröder 2007a, b, c), von denen nach der aktuellen Roten Liste Deutschlands 1.195 Arten als etabliert gelten (Caspari et al. 2018). Gebiets- fremde Moosarten machen in Europa 1,8% am Gesamtartenbestand der Moose aus, ein zu den Gefäß- pflanzen mit ca. 10% gebietsfremden Arten vergleichsweise sehr geringer Anteil (Essl & Lambdon 2009). Ein wichtiger Grund für diesen Unterschied ist, dass infolge des deutlich größeren Mangels an histori- schen Verbreitungsdaten für Moose (Magill 2010, Mutke & Geffert 2010) eine ursprünglich gebietsfremde Herkunft einzelner Moosarten gar nicht erst erkannt wird bzw. nicht in ausreichendem Maße belegt wer- den kann (Essl et al. 2013, Hodgetts et al. 2020). Weltweit sind rund 20.000 Flechtenarten beschrieben (Feuerer & Hawksworth 2007). Auf Grund von Er- fassungsmängeln ist jedoch mit einer deutlich höheren Anzahl von Arten zu rechnen. Auch in Mitteleuropa und speziell in Deutschland werden erst seit einigen Jahrzehnten umfassendere Erhebungen zur Flech- tenflora durchgeführt.
Recommended publications
  • Thuja Plicata Has Many Traditional Uses, from the Manufacture of Rope to Waterproof Hats, Nappies and Other Kinds of Clothing
    photograph © Daniel Mosquin Culturally modified tree. The bark of Thuja plicata has many traditional uses, from the manufacture of rope to waterproof hats, nappies and other kinds of clothing. Careful, modest, bark stripping has little effect on the health or longevity of trees. (see pages 24 to 35) photograph © Douglas Justice 24 Tree of the Year : Thuja plicata Donn ex D. Don In this year’s Tree of the Year article DOUGLAS JUSTICE writes an account of the western red-cedar or giant arborvitae (tree of life), a species of conifers that, for centuries has been central to the lives of people of the Northwest Coast of America. “In a small clearing in the forest, a young woman is in labour. Two women companions urge her to pull hard on the cedar bark rope tied to a nearby tree. The baby, born onto a newly made cedar bark mat, cries its arrival into the Northwest Coast world. Its cradle of firmly woven cedar root, with a mattress and covering of soft-shredded cedar bark, is ready. The young woman’s husband and his uncle are on the sea in a canoe carved from a single red-cedar log and are using paddles made from knot-free yellow cedar. When they reach the fishing ground that belongs to their family, the men set out a net of cedar bark twine weighted along one edge by stones lashed to it with strong, flexible cedar withes. Cedar wood floats support the net’s upper edge. Wearing a cedar bark hat, cape and skirt to protect her from the rain and INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite, A grove of 80- to 100-year-old Thuja plicata in Queen Elizabeth Park, Vancouver.
    [Show full text]
  • <I>Phylloporus
    VOLUME 2 DECEMBER 2018 Fungal Systematics and Evolution PAGES 341–359 doi.org/10.3114/fuse.2018.02.10 Phylloporus and Phylloboletellus are no longer alone: Phylloporopsis gen. nov. (Boletaceae), a new smooth-spored lamellate genus to accommodate the American species Phylloporus boletinoides A. Farid1*§, M. Gelardi2*, C. Angelini3,4, A.R. Franck5, F. Costanzo2, L. Kaminsky6, E. Ercole7, T.J. Baroni8, A.L. White1, J.R. Garey1, M.E. Smith6, A. Vizzini7§ 1Herbarium, Department of Cell Biology, Micriobiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA 2Via Angelo Custode 4A, I-00061 Anguillara Sabazia, RM, Italy 3Via Cappuccini 78/8, I-33170 Pordenone, Italy 4National Botanical Garden of Santo Domingo, Santo Domingo, Dominican Republic 5Wertheim Conservatory, Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA 6Department of Plant pathology, University of Florida, Gainesville, Florida 32611, USA 7Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, I-10125 Torino, Italy 8Department of Biological Sciences, State University of New York – College at Cortland, Cortland, NY 1304, USA *Authors contributed equally to this manuscript §Corresponding authors: [email protected], [email protected] Key words: Abstract: The monotypic genus Phylloporopsis is described as new to science based on Phylloporus boletinoides. This Boletales species occurs widely in eastern North America and Central America. It is reported for the first time from a neotropical lamellate boletes montane pine woodland in the Dominican Republic. The confirmation of this newly recognised monophyletic genus is molecular phylogeny supported and molecularly confirmed by phylogenetic inference based on multiple loci (ITS, 28S, TEF1-α, and RPB1).
    [Show full text]
  • Dying Cedar Hedges —What Is the Cause?
    Points covered in this factsheet Symptoms Planting problems Physiological effects Environmental, Soil and Climate factors Insect, Disease and Vertebrate agents Dying Cedar Hedges —What Is The Cause? Attractive and normally trouble free, cedar trees can be great additions to the landscape. Dieback of cedar hedging in the landscape is a common prob- lem. In most cases, it is not possible to pinpoint one single cause. Death is usually the result of a combination of envi- ronmental stresses, soil factors and problems originating at planting. Disease, insect or animal injury is a less frequent cause. Identifying The Host Certain species of cedar are susceptible to certain problems, so identifying the host plant can help to identify the cause and whether a symptom is an issue of concern or is normal for that plant. The most common columnar hedging cedars are Thuja plicata (Western Red Cedar - native to the West Coast) and Thuja occidentalis (American Arborvitae or Eastern White ICULTURE, PLANT HEALTH UNIT Cedar). Both species are often called arborvitae. Common varieties of Western Red ce- dar are ‘Emerald Giant’, ‘Excelsa’ and Atrovirens’. ‘Smaragd’ and ‘Pyramidalis’ are com- mon varieties of Eastern White cedar hedging. Species of Cupressus (Cypress), Chamaecyparis nootkatensis (Yellow Cedar or False Cypress) and Chamaecyparis law- soniana (Port Orford Cedar or lawsom Cypress) are also used in hedging. Symptoms The pattern of symptom development/distribution can provide a clue to whether the prob- lem is biotic (infectious) or abiotic (non-infectious). Trees often die out in a group, in one section of the hedge, or at random throughout the hedge.
    [Show full text]
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Effect of a Trichoderma Bio-Inoculant on Ectomycorrhizal Colonisation of Pinus Radiata Seedlings
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Effect of a Trichoderma bio-inoculant on ectomycorrhizal colonisation of Pinus radiata seedlings A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science at Lincoln University by R.F Minchin Lincoln University 2010 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science. Abstract Effect of a Trichoderma bio-inoculant on ectomycorrhizal colonisation of Pinus radiata seedlings by R.F Minchin Ectomycorrhizal colonisation potential of Pinus radiata seedlings inoculated with the commercially available Trichoderma species bio-inoculant, Arbor-Guard™, was investigated in a commercial containerised nursery setting and in a separate glasshouse experiment, which included the co-inoculation of specific ectomycorrhizal fungi. Application of Arbor-Guard™ to Pinus radiata seedlings in a containerised commercial nursery had no significant effect on the ability of the naturally occurring ectomycorrhizal (ECM) fungi to colonise the seedlings. Thelephora terrestris was the dominant ectomycorrhizal species colonising the P. radiata root tips and has been described as a species able to rapidly outcompete other ECM species colonisation, particularly in high organic matter media like that used at the containerised commercial nursery investigated.
    [Show full text]
  • PCR Detection of Pseudoperonospora Humuli and Podosphaera Macularis in Humulus Lupulus
    Plant Protect. Sci. Vol. 41, No. 4: 141–149 PCR Detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus JOSEF PATZAK Hop Research Institute Co., Ltd., Žatec, Czech Republic Abstract PATZAK J. (2005): PCR detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus. Plant Protect. Sci., 41: 141–149. Hop downy mildew (Pseudoperonospora humuli) and hop powdery mildew (Podosphaera macularis) are the most important pathogens of hop (Humulus lupulus). The early detection and identification of these pathogens are often made difficult by symptomless or combined infection with another pathogens. Molecular analysis of internal transcribed spacer (ITS) regions of rDNA is a novel and very effective method of species determina- tion. Therefore, specific PCR assays were developed to detect the pathogens Pseudoperonospora humuli and Podosphaera macularis in naturally infected hop plants. The specific PCR primer combinations P1 + P2 and S1 + S2 amplified specific fragments from Pseudoperonospora humuli and Podosphaera macularis, respectively, and did not cross-react with hop DNA nor with DNA from other fungi. PCR primer combinations R1 + R2 and R3 + R4 could be used in multiplex PCR detection of Pseudoperonospora humuli, Podosphaera macularis, Verticillium albo-atrum and Fusarium sambucinum. Phylogenetic relationships were inferred for 42 species of the Erysiphales from nuclear rDNA (ITS1, 5.8S, ITS2). The molecular characterisation and phylogenetic analy- ses confirmed the species identification of hop powdery mildew. The PCR assays used in this study proved to be accurate and sensitive for detection, identification, classification and disease-monitoring of the major hop pathogens. Keywords: hop powdery mildew; hop downy mildew; internal transcribed spacers (ITS); PCR detection; phylo- genetic analysis Hop (Humulus lupulus L.) is a dioecious, peren- disease occurring worldwide.
    [Show full text]
  • Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil
    Mycosphere Doi 10.5943/mycosphere/3/6/11 Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil Ferreira AJ1* and Cortez VG1 1Universidade Federal do Paraná, Rua Pioneiro 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil Ferreira AJ, Cortez VG 2012 – Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil. Mycosphere 3(6), 962–976, Doi 10.5943 /mycosphere/3/6/11 A macromycete survey at the São Camilo State Park, a seasonal semideciduous forest fragment in Southern Brazil, State of Paraná, was undertaken. Six lepiotoid fungi were identified: Lepiota elaiophylla, Leucoagaricus lilaceus, L. rubrotinctus, Leucocoprinus cretaceus, Macrolepiota colombiana and Rugosospora pseudorubiginosa. Detailed descriptions and illustrations are presented for all species, as well as a brief discussion on their taxonomy and geographical distribution. Macrolepiota colombiana is reported for the first time in Brazil and Leucoagaricus rubrotinctus is a new record from the State of Paraná. Key words – Agaricales – Brazilian mycobiota – new records Article Information Received 30 October 2012 Accepted 14 November 2012 Published online 3 December 2012 *Corresponding author: Ana Júlia Ferreira – e-mail: [email protected] Introduction who visited and/or studied collections from the Agaricaceae Chevall. (Basidiomycota) country in the 19th century. More recently, comprises the impressive number of 1340 researchers have studied agaricoid diversity in species, classified in 85 agaricoid, gasteroid the Northeast (Wartchow et al. 2008), and secotioid genera (Kirk et al. 2008), and Southeast (Capelari & Gimenes 2004, grouped in ten clades (Vellinga 2004). The Albuquerque et al. 2010) and South (Rother & family is of great economic and medical Silveira 2008, 2009a, 2009b).
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Genetic and Pathogenic Relatedness of Pseudoperonospora Cubensis and P. Humuli
    Mycology Genetic and Pathogenic Relatedness of Pseudoperonospora cubensis and P. humuli Melanie N. Mitchell, Cynthia M. Ocamb, Niklaus J. Grünwald, Leah E. Mancino, and David H. Gent First, second, and fourth authors: Department of Botany and Plant Pathology, third author: United States Department of Agriculture– Agricultural Research Service (USDA-ARS), Horticultural Crops Research Unit; and fifth author: USDA-ARS, Forage Seed and Cereal Research Unit, and Department of Botany and Plant Pathology, Oregon State University, Corvallis. Accepted for publication 6 March 2011. ABSTRACT Mitchell, M. N., Ocamb, C. M., Grünwald, N. J., Mancino, L. E., and in nuclear, mitochondrial, and ITS phylogenetic analyses, with the Gent, D. H. 2011. Genetic and pathogenic relatedness of Pseudoperono- exception of isolates of P. humuli from Humulus japonicus from Korea. spora cubensis and P. h u m u l i . Phytopathology 101:805-818. The P. cubensis isolates appeared to contain the P. humuli cluster, which may indicate that P. h um u li descended from P. cubensis. Host-specificity The most economically important plant pathogens in the genus experiments were conducted with two reportedly universally susceptible Pseudoperonospora (family Peronosporaceae) are Pseudoperonospora hosts of P. cubensis and two hop cultivars highly susceptible to P. humuli. cubensis and P. hu m u li, causal agents of downy mildew on cucurbits and P. cubensis consistently infected the hop cultivars at very low rates, and hop, respectively. Recently, P. humuli was reduced to a taxonomic sporangiophores invariably emerged from necrotic or chlorotic hyper- synonym of P. cubensis based on internal transcribed spacer (ITS) sensitive-like lesions. Only a single sporangiophore of P.
    [Show full text]
  • Mitochondrial Genomes of the Early Land Plant Lineage
    Dong et al. BMC Genomics (2019) 20:953 https://doi.org/10.1186/s12864-019-6365-y RESEARCH ARTICLE Open Access Mitochondrial genomes of the early land plant lineage liverworts (Marchantiophyta): conserved genome structure, and ongoing low frequency recombination Shanshan Dong1,2, Chaoxian Zhao1,3, Shouzhou Zhang1, Li Zhang1, Hong Wu2, Huan Liu4, Ruiliang Zhu3, Yu Jia5, Bernard Goffinet6 and Yang Liu1,4* Abstract Background: In contrast to the highly labile mitochondrial (mt) genomes of vascular plants, the architecture and composition of mt genomes within the main lineages of bryophytes appear stable and invariant. The available mt genomes of 18 liverwort accessions representing nine genera and five orders are syntenous except for Gymnomitrion concinnatum whose genome is characterized by two rearrangements. Here, we expanded the number of assembled liverwort mt genomes to 47, broadening the sampling to 31 genera and 10 orders spanning much of the phylogenetic breadth of liverworts to further test whether the evolution of the liverwort mitogenome is overall static. Results: Liverwort mt genomes range in size from 147 Kb in Jungermanniales (clade B) to 185 Kb in Marchantiopsida, mainly due to the size variation of intergenic spacers and number of introns. All newly assembled liverwort mt genomes hold a conserved set of genes, but vary considerably in their intron content. The loss of introns in liverwort mt genomes might be explained by localized retroprocessing events. Liverwort mt genomes are strictly syntenous in genome structure with no structural variant detected in our newly assembled mt genomes. However, by screening the paired-end reads, we do find rare cases of recombination, which means multiple concurrent genome structures may exist in the vegetative tissues of liverworts.
    [Show full text]
  • Shropshire Fungus Checklist 2010
    THE CHECKLIST OF SHROPSHIRE FUNGI 2011 Contents Page Introduction 2 Name changes 3 Taxonomic Arrangement (with page numbers) 19 Checklist 25 Indicator species 229 Rare and endangered fungi in /Shropshire (Excluding BAP species) 230 Important sites for fungi in Shropshire 232 A List of BAP species and their status in Shropshire 233 Acknowledgements and References 234 1 CHECKLIST OF SHROPSHIRE FUNGI Introduction The county of Shropshire (VC40) is large and landlocked and contains all major habitats, apart from coast and dune. These include the uplands of the Clees, Stiperstones and Long Mynd with their associated heath land, forested land such as the Forest of Wyre and the Mortimer Forest, the lowland bogs and meres in the north of the county, and agricultural land scattered with small woodlands and copses. This diversity makes Shropshire unique. The Shropshire Fungus Group has been in existence for 18 years. (Inaugural meeting 6th December 1992. The aim was to produce a fungus flora for the county. This aim has not yet been realised for a number of reasons, chief amongst these are manpower and cost. The group has however collected many records by trawling the archives, contributions from interested individuals/groups, and by field meetings. It is these records that are published here. The first Shropshire checklist was published in 1997. Many more records have now been added and nearly 40,000 of these have now been added to the national British Mycological Society’s database, the Fungus Record Database for Britain and Ireland (FRDBI). During this ten year period molecular biology, i.e. DNA analysis has been applied to fungal classification.
    [Show full text]
  • MMA MASTERLIST - Sorted by Taxonomy
    MMA MASTERLIST - Sorted by Taxonomy Sunday, December 10, 2017 Page 1 of 86 Amoebozoa Mycetomycota Protosteliomycetes Protosteliales Ceratiomyxaceae Ceratiomyxa fruticulosa Ceratiomyxa fruticulosa var. fruticulosa Ceratiomyxa fruticulosa var. poroides Ceratiomyxa sp. Mycetozoa Myxogastrea Incertae Sedis in Myxogastrea Liceaceae Licea minima Stemonitidaceae Brefeldia maxima Comatricha pulchella Comatricha sp. Comatricha typhoides Stemonitis axifera Stemonitis fusca Stemonitis sp. Stemonitis splendens Chromista Oomycota Incertae Sedis in Oomycota Peronosporales Peronosporaceae Plasmopara viticola Pythiaceae Pythium deBaryanum Oomycetes Saprolegniales Saprolegniaceae Saprolegnia sp. Peronosporea Albuginales Albuginaceae Albugo candida Fungus Ascomycota Ascomycetes Boliniales Boliniaceae Camarops petersii Capnodiales Capnodiaceae Scorias spongiosa Diaporthales Gnomoniaceae Cryptodiaporthe corni Sydowiellaceae Stegophora ulmea Valsaceae Cryphonectria parasitica Valsella nigroannulata Elaphomycetales Elaphomycetaceae Elaphomyces granulatus Elaphomyces sp. Erysiphales Erysiphaceae Erysiphe aggregata Erysiphe cichoracearum Erysiphe polygoni Microsphaera extensa Phyllactinia guttata Podosphaera clandestina Uncinula adunca Uncinula necator Hysteriales Hysteriaceae Glonium stellatum Leotiales Bulgariaceae Crinula caliciiformis Crinula sp. Mycocaliciales Mycocaliciaceae Phaeocalicium polyporaeum Peltigerales Collemataceae Leptogium cyanescens Lobariaceae Sticta fimbriata Nephromataceae Nephroma helveticum Peltigeraceae Peltigera evansiana Peltigera
    [Show full text]