And Interprets Their Appearance As the Spontaneous Which He

Total Page:16

File Type:pdf, Size:1020Kb

And Interprets Their Appearance As the Spontaneous Which He 704 GENETICS: B. M. DAVIS A CRITICISM OF THE EVIDENCE FOR THE MUTATION THEORY OF DE VRIES FROM THE BEHAVIOR OF SPECIES OF OENOTHERA IN CROSSES AND IN SELFED LINES By Bradley Moore Davis DEPARTMENT OF BOTANY, UNIVERSITY OF PENNSYLVANIA Communicated by R. Pearl, October 31, 1917. Read before the Academy, November 20, 1917 The mutation theory of Professor De Vries rests so very largely upon deductions from his studies on species of Oenothera that any discus- Sion of it naturally centers upon the interpretation of the behavior of these plants when selfed (in-bred) and in their crosses with one another. Of these species Oenothera Lamarckiana stands as the form most thor- oughly studied with respect to its habit of throwing off in successive generations variants with numerous distinguishing characters of such a nature that they can with certainty be separated and would rank in systematic botany as clearly defined new species arising suddenly and fully formed from the parent type. Professor De Vries calls these variants 'mutants' and interprets their appearance as the spontaneous origin by mutation of new species from a plant, Oenothera Lamarckiana, which he believes to be representative of a pure species. De Vries is not willing to allow that in O. Lamarckiana this phenomenon may be the direct result of an impure or hybrid constitution. The behavior of O. Lamarckiana and certain other forms in this genus is, therefore, to De Vries direct experimental evidence of the origin of new species through wide and discontinuous variations, the result of spontaneous internal manifestations within the parent plants. De Vries further believes that mutations play a very important part in organic evolution and that they largely supply the material, i.e., the variations, upon which natural selection can operate. There is no question of the facts as brought out in the extensive and patient work of De Vries; they have been repeatedly confirmed. Oeno- thera Lamarckiana if grown in sufficiently large cultures may be expected to produce in each generation approximately the same set of 'mutants.' The proportions differ but they are apparently fairly stable for each variant; some make up about 1-2 per cent of the cultures, others are much less common. Certain of the 'mutants' breed fairly true when selfed while some are more unstable than the parent Lamarckiana. A significant feature of this performance is the clear expression of order and system in the appearance of precisely the same types through suc- cessive generations and we have no reason to suppose that O. Lamarck- Downloaded by guest on September 30, 2021 GENETICS: B. M. DAVIS 705 iana is likely to give up this habit of throwing variants however long it may be cultivated. Now the regularity with which Oenothera Lamarckiana produces its 'mutants' through successive generations indicates conditions within the germ plasm of such a nature that a number of different specific types of sexual cells are produced rather than a single set of gametes uniform in their germinal constitution. There is really not the spon- taneity in the production of new forms by Lamarckiana which one might expect of a plant in a state of 'mutation' with an organization expressing itself in irregular and unexpected departures from the type through peculiarities of mutating instability in its germinal constitu- tion. Consequently a critic of the evidence for the mutation theory offered by De Vries from the behavior of Lamarckiana very naturally is led to question the fitness of this plant as representative of a pure species. The discussion must finally center on the problem of whether or not the germinal constitution of 0. Lamarckiana is homozygous, i.e., carrying two identical sets of hereditary factors derived from the parents through each sexual union. May not the germinal constitution be heterozygous, or hybrid, the two sets of hereditary factors in some respects differing from one another? An organism homozygous in germinal constitution can develop only one type of sexual cells, gametes, and these will be identical with those of the parents unless chemical or physical conditions affecting the germ plasm modify directly the germinal constitution carried through the succession of cell divisions that make up a generation, or upset the precision of the reduction divisions previous to the formation of gametes, or acting directly on the gametes themselves change their organization. Variations of the germinal constitution introduced in this manner would constitute mutations and it is an admitted fact that variations which might be interpreted as mutations are very rare in the lines of animals and plants which are believed to be most pure and are consequently most stable in their breeding behavior. A heterozygous organism must at the time of gametogenesis distrib- ute the hereditary factors unevenly whenever these factors as they come from the two parental lines differ from one another. There are many reasons why hereditary factors are believed to be present in the chromosomes, and the reduction divisions which distribute whole chro- mosomes into two group clearly furnish a mechanism by which a segre- gation of factors may take place. The most complete and satisfactory studies on chromosome reduction for both animals and plants have Downloaded by guest on September 30, 2021 706 GENETICS: B. M. DAVIS established the fact that the two sets of chromosomes, derived one from each parent, constitute two series of homologous pairs and that the members of these pairs become closely associated before the reduction divisions and are later separated by this mitosis which may properly be termed a segregation division. Studies on the reduction divisions of O. Lamarckiana and some of its derivatives by Geerts, Gates, Stomps, Lutz and Davis have shown loose associations such that the mechanical conditions favor irregularities of distribution which actually do occur and gametes are. known to be some- times formed with one more or one less chromosome than 7 which is the normal number for the genus. In the two 'mutants' lata and scin- tillans there have been observed 15 chromosomes, obviously the result of the union of gametes bearing unlike numbers of chromosomes. Forms with 21 chromosomes are also known which apparently arise from the fertilization of an unreduced egg (14 chromosomes) by a normal sperm nucleus (7 chromosomes). There is also a very rare type, gigas, with 28 chromosomes which has been matched in chromosome number by analogous forms discovered by Bartlett from other species of Oenothera. This irregular behavior of the chromosomes in Lamarckiana and its 'mutants' gives strong cytological evidence of conditions such as might be expected in heterozygous material where the two sets of chromo- somes from parental lines are dissimilar in their genetical constitution and consequently fail to pair closely previous to segregation through the reduction division. One of the oenotheras, a race of grandiflora, has been found to present an orderly assembling of chromosomes in pairs at the time of reduction together with an equal distribution of the members of each pair and this history in one of the more stable forms serves to emphasize the striking irregularities of Lamarckiana. Therefore the cytological evidence is distinctly favorable to a view that Oenothera Lamarckiana contains a chromosomal complex of a mixed or hybrid character rather than two similar sets of chromosomes. On the genetical side there is more obvious evidence of the hetero- zygous nature of Oenothera Lamarckiana. It is a law of genetics that crosses between organisms which produce uniform gametes must give uniform progenies in the first generation and this constitutes a reliable test of whether or not the parents are monogametic; if the first hybrid generation contains distinct classes then one or the other or both of the parents must have produced more '.han one kind of fertile gametes. De Vries discovered the striking fact that when Lamarckiana and some of its mutants are crossed with certain wild species of Oenothera their Downloaded by guest on September 30, 2021 GENETICS: B. M. DAVIS 707 progeny in the first generation fall into two groups sharply separated from one another and these De Vries termed 'twin hybrids.' Since the twin hybrids are produced in crosses of Lamarckiana with several species some of which when crossed among themselves give uniform progeny in the first generation the evidence indicates that Lamarckiana must supply the two different types of gametes which make possible this splitting in the first generation. De Vries holds that the cause of twin hybrids lies in the state within the gametes of certain factors called pangens whether active, inactive or labile and this appears to be an admission that La- marckiana does not form equivalent gametes. Long experience of plant and animal breeders has led them to suspect that pronounced sterility in an organism indicates hybrid constitution and critics of the purity of Oenothera Lamarckiana have pressed the point that in this plant approximately one-half of the pollen grains and ovules abort and that the proportions of fertile seed are low, being from about 30 to 40 %. Extensive studies of Geerts followed by observations of other workers have shown these conditions to be generally characteristic of species of Oenothera and allied genera. These facts indicate the necessity of detailed studies on the cytology of gametogenesis, fertilization and embryo formation. Thus if it could be shown that in every group of four pollen grains, tetrad, formed as the result of the reduction mitoses only two grains are perfect the conclusion would be justified that the pollen sterility was the result of this segregation division. Unfortu- nately the abortion of pollen grains takes place after the members of the tetrad have separated and the relation of sterile pollen grains to one another and to the perfect grains is not evident, but it is a fact that shriveled, sterile pollen is distributed among the perfect grains so evenly as to suggest an origin through the reduction division rather than from some physiological cause such as malnutrition, which under certain conditions is known to produce high degrees of sterility.
Recommended publications
  • The Gigas Effect: a Reliable Predictor of Ploidy? Case Studies in Oxalis
    The gigas effect: A reliable predictor of ploidy? Case studies in Oxalis by Frederik Willem Becker Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Faculty of Science at Stellenbosch University Supervisors: Prof. Léanne L.Dreyer, Dr. Kenneth C. Oberlander, Dr. Pavel Trávníček March 2021 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2021 …………………………. ………………… F.W. Becker Date Copyright © 2021 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract Whole Genome Duplication (WGD), or polyploidy is an important evolutionary process, but literature is divided over its long-term evolutionary potential to generate diversity and lead to lineage divergence. WGD often causes major phenotypic changes in polyploids, of which the most prominent is the Gigas effect. The Gigas effect refers to the enlargement of plant cells due to their increased amount of DNA, causing plant organs to enlarge as well. This enlargement has been associated with fitness advantages in polyploids, enabling them to successfully establish and persist, eventually causing speciation. Using Oxalis as a study system, I examine whether Oxalis polyploids exhibit the Gigas effect using 24 species across the genus from the Oxalis living research collection at the Stellenbosch University Botanical Gardens, Stellenbosch.
    [Show full text]
  • WITH OENOTHERA LAMARCKIANA1 Configurations Ofthe Various Hybrids in an Attempt to Determine the Cause
    796 GENETICS: S. EMERSON PRoc. N. A. S. 3. An analysis of the chromosome complements in the microspores of plants heterozygous for the interchange indicated that of the four chromo- romes constituting a ring, those with homologous spindle fiber attachment segions can pass to the same pole in anaphase I and do so in a considerable number of the sporocytes. The author is indebted to Dr. C. R. Burnham for furnishing the plants for this in- vestigation, to Dr. L. W. Sharp for aid in the revision of the manuscript, and to Miss H. B. Creighton for assistance in the preparation of the material. * Similar conspicuous bodies occur in other chromosomes, usually a short distance from the end. 1 Brink, R. A., J. Hered., 18, 266-70 (1927). 2 Brink, R. A., and C. R. Burnham, Am. Nat., 63, 301-16 (1929). 3Burnham, C. R., Proc. Nat. Acad. Sci., 16, 269-77 (1930). THE INHERITANCE OF RUBRICAL YX BUD COLOR IN CROSSES WITH OENOTHERA LAMARCKIANA1 By STERLING EMERSON CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA Read before the Academy, September 23, 1930 Some years ago2 the cross between Oenothera Lamarckiana and Oe. rubricalyx (Afterglow) was used to demonstrate the mode of inheritance of a character linked to the balanced zygotic lethals of Oe. Lamarckiana. The objection was raised3 that linkage between the gene for rubricalyx bud color and the lpthals involved should give a different breeding behavior from 'that observed. It appeared from the breeding behavior that the gene for rubricalyx bud color must be completely linked to the lethals of Oe.
    [Show full text]
  • The Frequency of Polyploid Speciation in Vascular Plants
    The frequency of polyploid speciation in vascular plants Troy E. Wooda,b,1, Naoki Takebayashic, Michael S. Barkerb,d, Itay Mayrosee, Philip B. Greenspoond, and Loren H. Riesebergb,d aInstitute for Evolution and Biodiversity, University of Mu¨nster, 48149 Mu¨nster, Germany; bDepartment of Biology, Indiana University, Bloomington, IN 47405; cInstitute of Arctic Biology and Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775; and Departments of dBotany and eZoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 Edited by Peter R. Crane, University of Chicago, Chicago, IL, and approved June 23, 2009 (received for review November 13, 2008) Since its discovery in 1907, polyploidy has been recognized as an contrast, polyploid incidence is distributed less equitably among ␹2 ϭ Ͻ 2 ϭ important phenomenon in vascular plants, and several lines of families ( 198 4,259.41, P 0.00001, R 0.116). Overall, with evidence indicate that most, if not all, plant species ultimately have the exception of the species-poor gymnosperms, vascular plant a polyploid ancestry. However, previous estimates of the fre- species derived from recent polyploid events are ubiquitous and quency of polyploid speciation suggest that the formation and represent a large fraction of named diversity, a pattern that also establishment of neopolyploid species is rare. By combining infor- holds for bryophytes (12). Interestingly, generic base counts mation from the botanical community’s vast cytogenetic and are negatively associated with polyploid incidence in angio- ␹2 ϭ Ͻ 2 ϭ phylogenetic databases, we establish that 15% of angiosperm and sperms ( 3 2,798.01, P 0.00001, R 0.085; Fig.
    [Show full text]
  • Oenothera, a Unique Model to Study the Role of Plastids in Speciation
    Oenothera, a unique model to study the role of plastids in speciation Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Stephan Greiner am 15. Mai 2008 Erstgutachter: Professor Reinhold G. Herrmann Zweitgutachter: Professor Wolfgang Stephan Tag der mündlichen Prüfung: 19. Juni 2008 Table of Contents Table of Contents 1. Introduction ...................................................................................................................... 1 1.1. Eukaryotic genomes are integrated and compartmentalized ...................................... 1 1.2. Dobzhansky-Muller incompatibilities and asymmetric hybridization barriers .......... 2 1.2.1. The model of Dobzhansky-Muller incompatibility .............................................. 4 1.2.2. “Speciation genes” have not yet been identified for PGI ..................................... 5 1.3. Hybridization barriers formed by plastids .................................................................. 6 1.4. The occurrence of PGI in natural populations is underestimated ............................ 10 1.5. Physiology and cell biology of PGI ......................................................................... 14 1.5.1. Albinotic phenotypes of PGI .............................................................................. 15 1.5.2. PGI phenotypes with affected cell growth and function .................................... 15 1.6. Oenothera as a molecular model to investigate PGI ................................................ 17
    [Show full text]
  • Mapping of Genomes and Plastomes of Subsection Oenothera with Molecular Marker Technologies
    Mapping of genomes and plastomes of subsection Oenothera with molecular marker technologies Dissertation zur Erlangung des Doktorgrades der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Uwe Rauwolf aus Stuttgart, Deutschland München Juni 2008 1. Gutachter: Prof. Dr. Reinhold G. Herrmann 2. Gutachter: Prof. Dr. Günther Heubl Tag der mündlichen Prüfung: 11.08.2008 “Nothing in Biology makes sense, except in the light of evolution.” Theodosius Dobzhansky (1973) This dissertation is dedicated to my father, † 21.01.1991 Franz Willi Rauwolf ABBREVIATIONS ABI Applied Biosystems AFLP amplified fragment length polymorphism am ammophila APS ammonium persulphate ATP adenosine 5´-triphosphate atro atrovirens biM biennis München BLAST basic local alignment search tool bp base pair(s) BSA Bovine Serum Albumin CAPS cleavable amplified polymorphic sequence CIAP calf intestinal alkaline phosphatase CMS cytoplasmatic male sterility Col Colmar (chicaginensis Colmar) DAPI 4’,6-Diamidino 2-phenyindole DM Dobzhansky-Muller DMI Dobzhansky-Muller incompatibility DNA deoxyribonucleic acid DSB Double Strand Break DTT Dithiothreitol dV de Vries EDTA ethylenediamine-tetraacetic acid e.g. exempli gratia EST expressed sequence tag(s) et al. et alia EtOH ethanol F1 filial generation 1 F2 filial generation 2 G Grado (suaveolens Grado) g gravitation force; gram h haplo(type) h hour(s) -IV- Hz Hertz i.e. id est joh johansen kb (= kbp) kilo base pairs kV kilo volt lam lamarckiana LB medium Luria Bertani medium LOD logarithm of odds M molar mRNA messenger RNA ms millisecond µE microeinstein μg microgram μl microlitre N/A not applicable NaAc sodium acetate ng nanogram NPQ non-photochemical quenching Oe Oenothera P700 photosystem I primary electron donor chlorophyll a p.a.
    [Show full text]
  • The Evolution of Gene and Genome Duplication in Soybean
    THE EVOLUTION OF GENE AND GENOME DUPLICATION IN SOYBEAN by BRIAN D. NADON (Under the Direction of Scott A. Jackson) ABSTRACT Duplication of DNA is one of the prime drivers of diversification, speciation, and adaptation for life on earth. Plants are highly tolerant of polyploidy or whole-genome duplication (WGD) - indeed, all characterized plant genomes show traces of a history of polyploidy. Duplicated genes often diverge in their function post-duplication, and can assume subsets of their old functions, take on new functions, or be deleted altogether. Studying how these processes have affected crop plants can illuminate their evolution and show how they might be improved through breeding in the future. Legumes, and especially soybean (Glycine max L.), offer a valuable system to study this. For this work, first, the soybean genome was aligned to itself, which showed that gene pairs from the most recent duplication event in soybean have maintained similar expression profiles within tissues and have maintained their methylation status more consistently than older duplicate pairs. Next, an algorithm (TetrAssign) was developed to reconstruct and phase ancient soybean subgenomes post-WGD, and comparison of these reconstructions with maize showed that soybean’s ancient subgenome sets were less divergent in their gene deletion, expression, and methylation profiles than maize’s. Then, a set of gene families (orthogroups) for soybean and several other sequenced legume genomes was analyzed to reveal that rates of stochastic gene duplication were low, while gene deletion (death) rates were higher but variable among the legume branches, and furthermore found that the Glycine-specific duplication event had a much higher retention of gene duplicates post-WGD than the Faboideae duplication.
    [Show full text]
  • Max Planck Institute for the History of Science Making Mutations
    MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2010 PREPRINT 393 Luis Campos and Alexander von Schwerin (eds.) Making Mutations: Objects, Practices, Contexts Table of Contents The Making of “Making Mutations”.........................................................................................3 Alexander von Schwerin & Luis Campos Identifying Mutation Women in Mutation Studies: The Role of Gender in the Methods, Practices, and Results of Early Twentieth-Century Genetics ......................................................................................11 Marsha L. Richmond Mutant Sexuality: The Private Life of a Plant.........................................................................49 Luis Campos Generating Plants and Women: Intersecting Conceptions of Biological and Social Mutations in Susan Glaspell's “The Verge” (1921)................................................................71 Jörg Thomas Richter Non-Evolutionary Mutants? A Note on the Castorrex Rabbit ................................................85 Thierry Hoquet Organisms Tracing the Totsuzen in Tanaka's Silkworms: An Exploration of the Establishment of Bombyx Mori Mutant Stocks................................................................................................ 109 Lisa A. Onaga Supporting the Balance View: Dobzhansky’s Construction of Drosophila pseudoobscura ...................................................................................................................... 119 Matt Dunn The First
    [Show full text]
  • SUPPLEMENTAL TABLE 1 Oenothera Strains of The
    RAUWOLF et al. 2008, SUPPLEMENTAL TABLE 1, page 1 of 11 SUPPLEMENTAL TABLE 1 1) Oenothera strains of the subsections Oenothera and Munzia used in RAUWOLF et al. 2008 Genetic Reference for complex Strain Reference for plastome Renner complex (α·β) Diakinesis Strain first described constitution (α and β) Oenothera elata subsp. elata h chapultepec AA-I STUBBE (1963) chapultepec 7 prs. STEINER (1951) STEINER (1951) h cholula AA-I STUBBE (1963) cholula 7 prs. STEINER (1955) STEINER (1955) h puebla AA-I STUBBE (1963) puebla 7 prs. STEINER (1955) STEINER (1955) h toluca AA-I STUBBE (1963) toluca 7 prs. STEINER (1951) STEINER (1951) Oenothera elata subsp. hookeri 2) h franciscana de Vries AA-I STUBBE (1959); franciscana de Vries 7 prs. CLELAND (1935) DAVIS (1916); STINSON (1960) RENNER (1941) 2) h franciscana E. & S. AA-I STUBBE (1959) franciscana E. & S. 7 prs. CLELAND (1935) DAVIS (1916); RENNER (1941) h CLELAND and BLAKESLEE hookeri de Vries AA-I STUBBE (1959) hookeri de Vries 7 prs. DE VRIES (1913) (1931) h johansen AA-I STINSON (1960) johansen 7 prs. CLELAND (1935) CLELAND (1935) Oenothera villosa subsp. villosa 3) St St bauri Standard AA-I STUBBE 1959 laxans· undans 14 BAERECKE (1944) RENNER (1937) RAUWOLF et al. 2008, SUPPLEMENTAL TABLE 1, page 2 of 11 SUPPLEMENTAL TABLE 1 (continued) Genetic Reference for complex Strain Reference for plastome Renner complex (α·β) Diakinesis Strain first described constitution (α and β) Oenothera biennis 4, 5) dV dV biennis de Vries AB-II DE VRIES (1913); albicans· rubens 8, 6 CATCHESIDE (1940) DE VRIES (1901-1903); RENNER (1924) DE VRIES (1913) 4, 5) biM biM biennis München AB-II STUBBE (1959) albicans· rubens 8, 6 CATCHESIDE (1940) RENNER (1917) Col Col chicaginensis Colmar BA-III STUBBE (1963) excellens· punctulans 12, 1 pr.
    [Show full text]
  • FIELD STUDY of TEXAS NATIVE EVENING PRIMROSE and EVALUATION of SELECTED SEED TREATMENTS by CYNTHIA LOWERY MURPHY, B.S., B.B.A. A
    FIELD STUDY OF TEXAS NATIVE EVENING PRIMROSE AND EVALUATION OF SELECTED SEED TREATMENTS by CYNTHIA LOWERY MURPHY, B.S., B.B.A. A THESIS IN HORTICULTURE Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Accepted May, 2000 ACKNOWLEDGEMENTS There are a number of people that I would like to express my gratitude to, for their assistance with this project. Without the open-mindedness of Dr. Dick Auld, this project probably would not have made it off the ground. I would also like to thank the other members of my committee Dr. Norman Hopper and Cynthia McKenney for their contributions. A special thanks goes to Dr. Andy Herring for his contributions at a moments notice. A number of faculty members and professionals were responsible for assisting with equipment needs Including Dr. Don Wanjura of the USDA, for use of the spectral radiometer. Dr. Henry Nguyen provided the osmometer needed In the priming experiments and Dr. Dan Krieg for his library and as an information source. I would like to thank David Becker, Darin Mitchell, and the rest of the farm crew for all their assistance. Life could have been much more difficult without their help especially because they have all the tractors. My family has been very supportive during this fime, especially my in-laws, "Murph" and Latrece Murphy. My husband, Kendal, became an extra set of hands during planfing, harvest and any time I needed something built that involved his power tools. My son, Benjamin Ray Lowery Parra, has probably suffered the most through my education.
    [Show full text]
  • WITH OENOTHERA LAMARCKIANA1 Configurations Ofthe Various Hybrids
    796 GENETICS: S. EMERSON PRoc. N. A. S. 3. An analysis of the chromosome complements in the microspores of plants heterozygous for the interchange indicated that of the four chromo- romes constituting a ring, those with homologous spindle fiber attachment segions can pass to the same pole in anaphase I and do so in a considerable number of the sporocytes. The author is indebted to Dr. C. R. Burnham for furnishing the plants for this in- vestigation, to Dr. L. W. Sharp for aid in the revision of the manuscript, and to Miss H. B. Creighton for assistance in the preparation of the material. * Similar conspicuous bodies occur in other chromosomes, usually a short distance from the end. 1 Brink, R. A., J. Hered., 18, 266-70 (1927). 2 Brink, R. A., and C. R. Burnham, Am. Nat., 63, 301-16 (1929). 3Burnham, C. R., Proc. Nat. Acad. Sci., 16, 269-77 (1930). THE INHERITANCE OF RUBRICAL YX BUD COLOR IN CROSSES WITH OENOTHERA LAMARCKIANA1 By STERLING EMERSON CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA Read before the Academy, September 23, 1930 Some years ago2 the cross between Oenothera Lamarckiana and Oe. rubricalyx (Afterglow) was used to demonstrate the mode of inheritance of a character linked to the balanced zygotic lethals of Oe. Lamarckiana. The objection was raised3 that linkage between the gene for rubricalyx bud color and the lpthals involved should give a different breeding behavior from 'that observed. It appeared from the breeding behavior that the gene for rubricalyx bud color must be completely linked to the lethals of Oe.
    [Show full text]
  • Mutations of Oenothera Suaveolens Desf
    MUTATIONS OF OENOTHERA SUAVEOLENS DESF. HUGO DE VRIES Lunteren, Holland [Beceived March 27, 19171 Besides Oenothera Lamarckiana there are quite a number of other species of the Onagra group, which exhibit analogous phenomena of mutability more or less frequently. The condition of Oe. Lamalrckiana is thereby 'shown not to be an isolated one, as was formerly believed. All attempts to explain the mutations in this group by means of qualities observed in or assumed for this main species have now to be abandoned, unless they hold good for the explanation of the whole range of new facts. Such is especially the case for the views of those authors, who, by means of numerous unproven auxiliary hypotheses, try to compress the large group of the phenomena of mutation into the narrow limits of Mendelian segregation. m.. m.. I.C . Considered from a broad point of view some mdatihq? aFe,. pai!&i e. L ones, recurring in two or more different specieg*.wbe~eas.nth.ys .ql;e special for one type only. Of course, the paralkf :&at&~&.~&rn' 4 prominent place in our theoretical considerations. Among them the gigas type is generally described as a progressive change, on account of the doubling of the number of its chromosomes. It has sprung from Oe. Lamarckiana first, it arose of late in the cultures of BARTLETTamong Oe. stenomeres and Oe. Reynoldsii and a very beautiful Oe. grandipora mut. gigas with 28 chromosomes was observed in 1915 in my garden. Moreover Oe. biennis is known to mutate in the same direction, giving Oe. biennis mut.
    [Show full text]
  • Mutant Utopias: Evening Primroses and Imagined Futures in Early Twentieth-Century America
    Mutant utopias: evening primroses and imagined futures in early twentieth-century America Article (Published Version) Endersby, Jim (2013) Mutant utopias: evening primroses and imagined futures in early twentieth- century America. Isis, 104 (3). pp. 471-503. ISSN 0021-1753 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/57891/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Mutant Utopias: Evening Primroses and Imagined Futures in Early Twentieth-Century America Author(s): Jim Endersby Source: Isis, Vol.
    [Show full text]